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Two-Scale Model and Ocean Radar Doppler
Spectra at Moderate- and Low-Grazing Angles

Valery U. Zavorotny and Alexander G. Voronovich

Abstract—Results of numerical calculations of polarized radar
Doppler spectra from the ocean surface at low-grazing angles
and at various wind speeds are presented. Calculations are
based on the modified two-scale model, which includes Bragg
scattering from both free and bound capillary waves. Here, we
derive an analytical expression for the Doppler spectrum in the
form of a two-dimensional (2-D) integral over large-scale slopes.
For the surface description, the model of a directional wave
spectrum is used, which takes into account the wave age (a limited
fetch). A comparison of computed curves with experimentally
measured Doppler spectra shows that the inclusion of “fast”
bound capillary waves significantly improves results. Using the
reasonable parameter values for the model of bound waves we
obtained widths of Doppler spectra which are in good agreement
with experiments for low-grazing angles�g = 10

� and for winds
up to U10 � 10 m/s. However, remaining discrepancies show that
using Bragg scattering from bound waves is not enough to close
the problem. Despite of limitations the approach can be used for
a more thorough analysis of measured Doppler spectra in order
to determine the contributions of various scattering mechanisms.

Index Terms—Sea surface electromagnetic scattering.

I. INTRODUCTION

T HE phenomenon of low-grazing scattering from a rough
sea surface has attracted much attention, both experimen-

tally and theoretically (see, e.g., [1]–[11]). This subject is of
practical importance in areas of the low-altitude/long-range
radar ocean remote sensing or target tracking, communication,
and navigation systems operating at low-grazing conditions
above the ocean surface. On the other hand, the observations
at low-grazing angles (particularly, in the backscattering direc-
tion) differ from what the classical theoretical models (a small
perturbation method, or a two-scale composite model) based
on the Bragg-scattering mechanism predict for those angles.
The key property of the low-grazing microwave backscat-
tering is that for co-polarized emitted and received signals
the radar cross section at horizontal polarization sometimes
may attain or exceed the level of the vertically polarized
signal. Another crucial difference lies in the shape of Doppler
spectra (especially at horizontal polarization) for a low-grazing
backscattering signal compared with those for a steep inci-
dence.
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The most practical tool for the theoretical description of
rough surface scattering until now has been the two-scale
(or composite) surface model [13]–[15]. As it was found by
Trizna [12], although the two-scale model based on linear
hydrodynamics appears to account for the peak Doppler shift
of the spectrum for vertical polarization, it is insufficient to
describe horizontally and cross-polarized data, which have
larger Doppler shifts. For the case of moderate- and low-
incidence angles Doppler spectra calculations based on the
two-scale model and a comparison with experimental data
were reported in papers [17]–[20]. Recently, Leeet al. [4],
[5] explain their measured low-grazing angle Doppler spectra
by coexistence of scatterers producing “slow signals” at fre-
quencies close to the Bragg resonance with “fast scatterers”
associated with breaking wave crests. Apparently, for some
patches of an ocean surface the Bragg-scattering mechanism
continues to work even at low-grazing angles contributing to
the total backscattering signal. At the same time, close to unity
polarization ratios of the “fast signals” suggest that some non-
Bragg scatter from “fast scatterers” should be involved in the
process.

While the theoretical description of non-Bragg scattering is
still a subject for disputes, we intend to study the role of the
Bragg component in Doppler spectra at low-grazing angles
using our version of the two-scale model of the moving ocean
surface. Here, we present a detailed derivation of an analytical
expression for the polarized radar Doppler spectrum from an
ocean surface, results of numerical computations based on it,
and discuss their relevance to low-grazing-angle backscatter
by a comparison with experimental data.

II. TWO-SCALE MODEL

We consider an electromagnetic (EM) wave incident on a
dielectric moving rough surface, the mean position of which is
at the

!

� = (x; y) plane, the elevation of which above the plane
is given by the equationz = h(

!

� ; t). Wave vectors of incident
and scattered waves are in the(x; z) plane with thez axis
directed upward (see Fig. 1). According to the basic concept
of the composite model, the total rough-surface elevation is

h(
!

� ; t) = h1(
!

� ; t) + h2(
!

� ; t) (1)

where h1(
!

� ; t) is a large-scale (in comparison to the EM
wavelength�) surface component which supposedly acts as
a smooth facet within its characteristic scale.h2(

!

� ; t) is a
small-scale roughness superimposed on the large-scale one and
statistically independent at different facets. The fact that facets
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Fig. 1. Scattering geometry of a two-scale moving sea surface.

are curved rather than planar might be a significant matter
in X-band backscattering for low-grazing angles. In [10],
estimations and numerical calculations of curvature effects are
made assuming that the modulation effect of facet tilts can
be neglected. For this ideal case curvature effects begin to
show up for grazing angles�g . 10�–20�. However, when
the effect of facet tilts is included assuming the realistic sea-
roughness spectrum, the considerable curvature effects (about
5-dB increase) occur only for�g . 5� [11]. The calculations
show that at the nominal grazing angle�g � 10� scattering
from steep facets (with smaller curvature effects) dominates
over that from sloping ones (with stronger curvature effects).
Here, we shall consider�g � 10� and assume that the effect
of facet curvatures can be excluded from discussion.

In terms of spatial spectra, the splitting presented by (1)
can be reformulated as follows:

W (
!
�) = W1(

!
� ) +W2(

!
� ) (2)

where W (
!
�) is the entire spatial spectrum of surface

roughness,W1(
!
�) = W (

!
�)�(�� � �) is a low-frequency

part that forms the large-scale undulating surface,W2(
!
�) =

W (
!
� )�(� � ��) is a high-frequency part, and�� is a scale-

dividing parameter (here,� =
���!�
��� and�(�) is a step-function).

Tilts of the large-scale surface component can be characterized
by the variance of related slopess

�2sx; y =


s2x; y

�
=

Z Z
�2x; yW1(

!
�)d2�: (3)

The high-frequency partW2(
!
�) should comply with two

requirements. First, it should embrace the range of spatial
frequencies satisfying the Bragg backscattering condition

� = �B = 2K cos �0g (4)

where �
0

g is the local grazing angle. Second, the Rayleigh
criterion K�h2 sin �0g � 1 should be satisfied. Here�2h2 �R R

W2(
!
� )d2� is the height variance of the small-scale rough-

nesses. Within these limits, it is believed that the choice of��
is arbitrary.

III. D OPPLERSPECTRUM IN A TWO-SCALE SURFACE MODEL

Now we turn to a consideration of an ocean-like moving
surface. In this case, according to a chosen range of spatial
scales, a small-scale roughnessh2(

!
� ; t) describes capillary (or

gravity-capillary) surface waves propagating in all directions.

Let the EM wave with wave vector
!

K = (k; 0; q) =
K(cos �g ; 0; � sin �g) illuminate the tilted facet of a large-
scale gravity wave where�g is the grazing angle for the
incident EM wave with regard to the mean surface plane
(see Fig. 1). Notice thattan �g = q=k. The tilts of facets
can be described by the two-dimensional (2-D) slope vector
!
s = (sx; sy) � rh1(

!
� ; t) wheresx = tan 
, sy = tan �,

and
 is a facet-tilt angle in the plane of incidencex–z, and� is
a facet-tilt angle in the perpendicular plane. Also assume that
the facet itself moves at a speed

!
u = (ux; uy; uz). For ocean-

surface gravity waves this motion is associated with an orbital
velocity of the surface water layer. In this case, the frequency
of the EM wave scattered in the backward direction is

! = !0 � !B + 2
!

K �
!
u � !0 + !�

1
; !B = cB�B : (5)

Here,!0 is a frequency of the incident EM wave and!B, �B ,
cB are, respectively, the frequency, the wave number, and
the phase speed of the Bragg resonant gravity-capillary wave.
The sign� accounts for approaching or receding waves. It
is assumed in what follows that (5) is written for the case
when the mean velocity of ocean water is equal to zero
relative to the radar. In the presence of a steady drift (i.e.,
radar motion, currents or wind drift), one needs to introduce
into (5) an additional Doppler shift. As a consequence of
the two-scale model the total Doppler shift!�

1
= �!B +

2(kux + quz) consists of two terms. The first is caused by
intrinsic velocities of small-scale Bragg-resonant waves and
another one is produced by orbital motions associated with a
large-scale component.

We now assume that Bragg-resonant waves can be of two
types: “slow” and “fast.” For a description of “slow” ones the
following dispersion relation of linear (free) gravity-capillary
waves is used here:

cB = cslB(�B) =
p
g=�B + T�B=% (6)

whereg is gravitation acceleration,T is surface tension, and%
is the water density. We choose further for surface tension
T = 73 dyne/cm, and for water density% = 1 g/cm3.
For “fast” scatterers we assume that they are presumably
associated with bound (parasitic) capillary waves generated at
the front face of nonlinear gravity waves in the vicinity of their
crests [2]. Thus, the velocity of the bound wave is assumed to
be close to the phase velocity of the corresponding nonlinear
gravity wave

cB = cfB(�nl) �
p
g=�nl; where �nl � �B : (7)

For the purpose of our numerical simulations the wave
number of the nonlinear gravity wave�nl was chosen by
matching calculated curves with experimental radar data [5].
Clearly, the effect of orbital motions on “fast” scatterers should
be determined by large-scale components with� < �nl.
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Hence, the scale-dividing parameter�� for this type of scatter
has to be�nl.

As mentioned above, the two-scale scattering model pos-
tulates that the resultant cross section of the entire two-scale
surface is a cross section of a single facet averaged over facet-
tilt statistics. The same is true for the frequency spectrum of the
backscattering signal. Averaging over the statistical ensemble
of facets obviously results in the following equation for the
frequency or Doppler spectrum of the backscattering signal:

F (!) =

Z
P
�
!
s ;

!
u
�h
�+(

!

s )�
�
! � !0 � !+1

�
+��(

!
s )�

�
! � !0 � !�1

�i
d2sd3u:

(8)

Here, ��(
!
s ) is the Bragg backscattering cross section that

depends on the relative orientation of the incident wave and

a facet and on the direction of resonant waves;P
�
!
s ;

!
u
�

is
an appropriate joint probability density function of the slope
vector

!
s and the vector of orbital velocity

!
u . One should

remember that according to our concept the cross section��

is a sum of two terms;�sl for “slow” (free) and�f for “fast”
(bound) resonant waves. The cross section is also dependent
on the polarization state of the transmitted and received EM
wave. We shall introduce subscripts referring to a specific
polarization later. The total backscattering cross section is

� �
Z

F (!)d! =

Z
P
�
!
s
�h
�+(

!
s ) + ��(

!
s )
i
d2s (9)

where P
�
!
s
�

=
R
P
�
!
s ;

!
u
�
d3u is the probability density

distribution of slopes only.
Technically, it is more convenient to have the probability

densityP
�
!
s ;

!
u
�

in (8) represented in terms of corresponding

characteristic functioneP
P
�
!
s ;

!
u
�
= (2�)�5

Z
d2�

Z
d3� eP (!� ; !� )ei

�
!

� �
!

s+
!

� �
!

u

�
:

(10)

Substituting (10) into (9) and performing obvious integra-
tions as a result, one obtains

F =

Z h
�+(

!
s )M+

�
!
s ; !

�
+ ��(

!
s )M�

�
!
s ; !

�i
d2s

(11)

where

M� = (2�)�5
Z

d2�

Z
d3�

Z
d3u�

�
! � !0 � !�1

�
� eP (!� ; !� ) exp �

i

�
!
� �!s +

!
� �!u

��
: (12)

Further, for a description of the long wave component,
h1(

!
� ; t), we limit our consideration by Gaussian statistics. In

this caseeP is determined completely by correlation functions
of slopes and orbital velocities. We also assume that the

incidence plane of the EM wave lies in the wind direction.
Then

eP = exp

"
�1

2

�
�2sx�

2
x + �2sy�

2
y + �2ux�

2
x + �2uy�

2
y

+�2uz�
2
z + 2hsxuzi�x�z + 2hsyuzi�y�z

�#
: (13)

Here,�2si , and�2ui are variances ofi components of a slope
vectors and of an orbital velocityu, respectively. Also here,
we have correlations of some

!
s and

!
u components. For the

Gaussian form of functioneP presented by (13) the integrals
in (12) can be evaluated explicitly as

M� =
1

2

1

�sx�sy�ux
p
2�D

� exp

�
� 1

2D

��
1 + (�2 �N2

yz) tan
2 �g

�
�2x

+
�
1 + (�2 � N2

xz) tan
2 �g

�
�2y

+ 2�2 tan2 �gNxzNyz�x�

+
�
1 + (�2 � N2

xz) tan
2 �g

�
�2y +

�
�!�

2k�ux

�2

��!�

k�ux
� tan �g(Nxz�x + Nyz�y)

��
:

(14)

Here

� =�uz=�ux; Nij = hsiuji=�ui�uj
� �i = si=�ui ; �!� = ! � !0 � !B (15)

and

D =1 + �2(1 �N2
xz �N2

yz) tan
2�g : (16)

IV. A M ODEL OF THE SURFACE LARGE-SCALE COMPONENT

To continue the analysis let us derive variances and correla-
tors of slopes and velocities obtained in the above equations.
Here we shall assume first that the large-scale surfaceh1(

!
� ; t)

can be described by a statistically homogeneous, stationary
ensemble of linear propagating waves with sufficiently small
slopes

h1(
!
� ; t) =

1p
2

Z �
a�e

i
!

� �
!

��i!�t + a��e
�i

!

� �
!

�+i!�t
�
d2�

(17)

wherea� is a complex Fourier amplitude with the wave vector
!
� , !� as its frequency, and the asterisk indicates a complex

conjugation. For gravity waves!2� = g�, where� =
���!����. We

also assume that nonlinear effects resulting in the appearance
of bound waves are small enough to be neglected below in the
calculations of correlators associated with large-scale waves.
Spatial homogeneity of the statistical ensemble yields

ha�a�0 i = ha��a��0 i = 0 (18)

and

ha�a��0 i =	1(
!
� )�(

!
� � !

� 0) (19)
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where angle brackets stands for statistical ensemble averag-
ing and 	1(

!
�) is the directional wavenumber spectrum of

h1(
!
� ; t) [21]. Indeed, the spectrum	 (or 	1; 2) satisfies to

the relationship

	(
!
�) = 2

Z 1

0

X(
!
�; !)d! (20)

where

X(
!
�; !) =

1

(2�)3

Z 1

�1

d2�

Z 1

�1

dte
�i
�
!

� �
!

��!t
�

�
D
h(
!
r ; t0)h(

!
r +

!
� ; t0 + t)

E
(21)

is the wave spectrum for a statistically homogeneous, station-
ary wave fieldh(

!
� ; t) [21]. The directional spectrum	(

!
�)

is connected to the spectrumW (
!
�) introduced in (2) by the

relation

W (
!
�) = 1

2
[	(

!
�) + 	(�!� )]: (22)

Note that the power spectrumW (
!
�) arises from the time-

independent spatial analysis, which does not contain actual
wave-propagation information, whereas the spectrum	(

!
�)

represents the wavenumber directional (here, in� directions)
distribution of wave-energy propagation. From the above
equations it follows that the spectrum	(

!
�) is normalized

according to the relation�2h � 

h2
�
=

R
	(

!
� )d2�. Using

well-known relations for linear surface waves, one easily
obtains from (17)

!
s =

ip
2

Z
!
�
�
a�e

i
!

� �
!

��i!�t � a��e
�i

!

� �
!

�+i!�t
�
d2� (23)

!
u? =

1p
2

Z
!�

!
�

j�j
�
a�e

i
!

� �
!

��i!�t + a��e
�i

!

� �
!

�+i!�t
�
d2�

(24)

uz = � ip
2

Z
!�

�
a�e

i
!

� �
!

��i!�t � a��e
�i

!

� �
!

�+i!�t
�
d2�:

(25)

Upon squaring and averaging we obtain the parameters needed
for the functionP

�2sx;y =


s2x; y

�
=

Z Z
�2x; y	1(

!
� )d2� (26)

�2ux;y =


u2x; y

�
=

Z
�2x;y

j�j2 !
2
�	1(

!
�) d2� (27)

�2uz =


u2z
�
=

Z
!2�	1(�) d� � �2ux + �2uy (28)

and D
!
s uz

E
= �

Z
!
�!�	1(

!
�) d2�: (29)

For a statistically homogeneous surface,
D
!
s �!u?

E
=

huxuzi = huyuzi = 0.

V. BACKSCATTERING CROSSSECTION FROM TILTED FACET

The function needed for calculations of the integral in (11)
is ��(

!
s ), a backscattering cross section of a tilted facet. The

expression for this value is well-known (see e.g., [16]):

��HH (
!
s ) = 4�K4 sin4 �0g

�����
�
a cos �

b

�2

g?(�
0
g)

+

�
sin �

b

�2

gk(�
0
g)

�����
2

	2(�2Ka; �2Kd sin �) (30)

��V V (
!
s ) = 4�K4 sin4 �0g

�����a cos �

b

�
gk(�

0
g)

+

�
sin �

b

�2

g?(�
0
g)

�����
2

	2(�2Ka; �2K d sin �) (31)

where

a = cos (�g + 
); b = cos �0g

d = sin (�g + 
); �0g = arcsin (d cos �): (32)

Here, the sign� indicates the direction of the approaching
and receding Bragg-resonant waves. Subscripts HH and VV
stand for horizontal- and vertical-polarization cases, respec-
tively. Remember that the angle�g is a grazing angle for
the incident EM wave with regard to the mean-surface plane,
whereas the angle�0g is a local grazing angle between wave

vector
!
K and the plane of a facet. The angle
 is a facet-tilt

angle in the plane of incidence,x–z, and� is a facet-tilt angle
in the perpendicular plane. Coefficientsg? andgk in (30) and
(31) are defined as follows:

g?(�
0
g) =

" � 1h
sin �0g +

q
"� cos2 �0g

i2 (33)

gk(�
0
g) =

(" � 1)
�
"(1 + cos2 �0g)� cos2 �0g

�h
" sin �0g +

q
" � cos2 �0g

i2 (34)

where" is the complex dielectric constant of a sea water.
Equations (30) and (31) for an elementary cross section at

two polarizations include the directional spectrum	2(�x; �y)

of the Bragg-resonant componenth2(
!
� ; t). A dependence on

�y appears here due to a facet tilting out of the plane of
incidence.

VI. M ODEL FOR THE SURFACE SPECTRUM

In the calculations to be presented below, we have assumed
an improved model for the surface spectrum, which accounts
for recently discovered features as the high-frequency spectral
bump [22] and the wave-age dependence typical for devel-
oping or young seas, which takes place under limited fetch
conditions (see, e.g., [23]). This model contains one important
parameter—the inverse wave age


 = U10=cp � U10

p
�d=g (35)

whereU10 is the wind velocity at a height of 10 m,cp is
the phase speed of the dominant wave, which corresponds
to the spectral peak,�d is the wavenumber of the dominant
wave. For example, for a well-developed sea,
 = 0:83,
and for young seas,
 � 2–3. There is strong experimental
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support that for0:83 < 
 < 5, the energy-containing part
of the spectrum depends on the wave age [23]. At the same
time, the wave-age dependence of the high wave-number
spectrum is a controversial issue [24]. Taking into account
these circumstances, we adopt what we call here the modified
Donelan–Banner–J¨ahne spectrum, which is based on models
discussed in [22]–[24]

	(�; �) =AL0(�)�

(�)��4Hi(�)D(�; �) (36)

where

A =0:00216 
0:55 (37)

L0(�) = exp [�(�d=�)2] (38)

� =1:7+ 6 log 
 (39)


(�) = exp [�(�1=2 � �
1=2
d )2=2�2�d] (40)

� =0:08(1 + 4
�3) (41)

Hi(�) = [Rro + SRres]Vdis (42)

Rro = [1 + (�=�ro)
2]�1 (43)

S = exp f[3:45(1� exp (�U10=U�)� 4:95] ln 10g

(44)

Rres =0:8� sech[(�� �res)=�w] (45)

Vdis = exp [�(�=�dis)
2] (46)

D =sech2f[(0:4 + 2:28(�=�p)
�0:65](�� �U)g (47)

�d = g(
=U10)
2: (48)

Dimensional numerical constants in (43)–(45) and (46) are
�ro = 100 rad/m, �res = 400 rad/m, �w = 450 rad/m,
�dis = 6283, U� = 4:7 m/s, and�U in (47) is the angle
of wind direction in radians. Upon substitution of
 = 0:83
into (37), (39), and (41) we obtain expressions for a case of
the well developed spectrum considered by Apel [22].

To account for the presumed presence of bound waves we
set

Hi(�) = Hsl
i (�) +Hf

i (�) (49)

Hsl
i (�) = (1� �)Hi(�); Hf

i (�) = �Hi(�) (50)

where � is a share of “fast” (bound) waves in the total
elevation spectrum. As it was mentioned above the phase speed
of bound waves coincides with the phase speed of the primary
gravity wave which depends on�nl [see (7)]. To account for
a possible spread of the�nl value the following model for the
distribution function is adopted:

P (�nl) =

( 0; if �nl < �d and�nl > �1
(�nl � �d)(�0 � �d); if �d � �nl � �0
(�1 � �nl)=(�1 � �d); if �0 < �nl � �0

(51)

where�0 denotes a position of the distribution maximum. The
distribution is confined between�d, the elevation spectrum
peak position, and the high-frequency cutoff�1. Therefore, in
our model for bound waves exist three free parameters�, �0,
and �1. Because they are not available from measurements
reported in [4] and [5], their rough estimates were obtained
by fitting calculated Doppler spectra with measured ones. Of
course, the spectral model of bound waves presented above
by (42)–(51) is introduced here in a pure phenomenological

TABLE I
ENVIRONMENTAL DATA

ad hocmanner and further, more rigorous approaches would
be welcomed.

VII. N UMERICAL RESULTS AND

COMPARISON WITH EXPERIMENT

Because our intention was to compare calculations with
experimental data from [4] and [5], we must briefly describe
the condition and geometry of the experiment. The data were
obtained from a CW dual-polarized X-band (9.02–9.47 GHz)
coherent scatterometer, which was mounted on an extended
platform on the bow of a boat. Backscattering experiments
were conducted off the west coast of Scotland in the sum-
mer of 1991. Time-resolved backscattered signals and their
Doppler spectra were obtained from the ocean surface at a
range of grazing angles from 10� to 70� and for a range
of wind speeds. The contributions from both the boat speed
and the wind drift were taken into account. Corresponding
values can be found in our Table I. Series of Doppler spectra
obtained at different wind directions and wind velocities show
a transition from the conventional Bragg scattering to the less-
studied scattering regimes. We chose to compare our numerical
upwind/downwind calculations with data [4, Fig. 20], which
depict Doppler spectra as a function of wind direction obtained
at a fixed grazing angle of�g = 35�. Another case for
comparison is taken from [5, Fig. 3], which represents wind-
speed dependence of upwind-looking Doppler spectra for a
grazing angle of 10�.

We present here environmental data for both cases in our
Table I. In this table�g is a grazing angle,�U is an angle
between the positivex direction and wind direction shown in
(36), U10 is the wind speed at 10 m above water level,fd
is the dominant wave frequency of the ocean wave-amplitude
spectrum, related to�d from (35),vb is the boat speed, andvw
is the wind drift. The inverse wave age
 is calculated using
(35) withU10 andfd from Table I. Note that for our scattering
geometry�U = 0� refers to the downwind direction and�U =
180� refers to the upwind direction. We should mention also
that the scattering experiment cited appeared to be conducted
at young seas rather than at well-developed ones. Data for the
wind drift, vw were available from [5] only for measurements
at �g = 10�. Values forvw for �g = 35� were obtained here
indirectly as a result of matching the peak positions taken from
computations and from experimental Doppler spectra. Mention
also that the wave-elevation spectrum presented in [5, Fig. 10]
was obviously underestimated by the constant close to 19 dB,
probably due to a normalization error.

Results presented below were obtained by numerical in-
tegration in (11) with use of (14), (30), and (31). For our
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computations we used a radar wavelength� = 3.22 cm (X-
band) and a dielectric constant for sea water" = 51:4+i39:1,
values reported in [4]. Also, we took into account that what
was mentioned as grazing-angle direction is actually a bore-
sight direction or direction of the maximum in the antenna
pattern.

For calculating the “slow” component of Doppler spectra the
scale-dividing parameter�� was chosen equal to3kB , while
for the case of “fast” component (as it was explained above),
�
�

was chosen equal to�nl. An additional averaging over�nl
was performed using the modeled distribution presented by
(51). Numerical parameters of this distribution and the values
of the bound wave share� can be found in Table I. The
numerical integration over tiltss in (11) was performed within
ranges limited by�3�s. To account for the near-crest position
of bound waves at the front face of the gravity wave-carrier,
these limits were shifted by�30� when calculating “fast”
component. At low-grazing angles, a shadowing of the surface
by its large-scale excursions takes place. For simplicity, we
treat this shadowing as a geometrical self-shadowing, which
can be simulated in (11) by integration only over positive local
slopes only, i.e., whentan �g + s > 0. Thus, backscattering
from self-shadowed facets is completely excluded. However,
shadowing due to neighboring surface excursions cannot be
accounted for within a standard two-scale approach.

Curves presented on Fig. 2(a) and (b) shows Doppler spectra
for the case of a moderate grazing angle�g = 35� in the
upwind and in the downwind directions, respectively. Solid
curves are experimental data from [4], dashed curves represent
two-scale model calculations for the “slow” component . A
contribution from bound waves was neglected in this case:
� = 0. Thick and thin lines correspond to the VV and HH
polarizations, respectively. The theoretical curves were calcu-
lated assuming the modified Donelan–Banner–Jähne spectrum
from (36) and environmental data from Table I. Note that
Doppler measurements and two-scale model calculations of
(“slow” according to our terminology) Doppler spectra for
the steep incidence (�g � 70�) presented in previous studies
[17], [18] demonstrate a quite good agreement. However, at
�g = 35� our calculations based only on a “slow component”
begin to show some departures from measured curves. The
comparison of numerical curves and experimental ones in
Fig. 2(a) and (b) shows that only for a downwind direction
do we have a fair correspondence between the experiment
and calculations for both polarizations in terms of peak values
and spectral widths. The more pronounced departure between
calculated and measured Doppler spectra appears at upwind
direction [see Fig. 2(b)]. The peak value at the VV polarization
is higher by about 10 dB than the computations give us. The
width of the experimental spectrum is visually larger and the
spectrum itself extends more toward higher frequencies than
the calculated one. This makes it similar to what the Doppler
spectra look like at smaller grazing angles.

Now we turn to the case of low-grazing angles�g = 10�.
This case is presented in a series of plots in Fig. 3(a)–(c),
which were calculated for conditions presented in Table I.
Here, we have upwind direction andU10 ranging from 3.8
to 10.3 m/s. Thick solid curves represent measured Doppler

(a)

(b)

Fig. 2. Doppler spectra at (a) upwind and (b) downwind directions and at
grazing angle�g = 35�. Solid curves are experimental data from [4], dashed
curves represent two-scale model calculations for the “slow” component
� = 0. Thick and thin lines correspond to the VV- and HH-polarizations,
respectively.

spectra. Dashed curves represent two-scale model calculations
for the “slow” component of Doppler spectra (without bound
waves� = 0), while thin solid curves correspond to ”slow+
fast” spectra (with bound waves� 6= 0). Upper three curves
correspond to the VV polarization and lower three curves
correspond to the HH polarization.

A better fit (for both� = 0 and� 6= 0 cases) is observed
at weaker winds, which is reasonable. Also, for weak winds
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(a) (b)

(c)

Fig. 3. Doppler spectra as a function of wind velocity [from panels (a)–(c)] at the upwind direction and at grazing angle�g = 10�. Thick solid
curves represent experimental data from [5], dashed curves represent two-scale model calculations for the “slow” component� = 0 thin solid curves
represent two-scale model calculations for the “slow+ fast” spectrum� 6= 0. Upper three curves correspond to the VV polarization and lower three
curves correspond to the HH polarization.

one can see a bimodal shape both for calculated and measured
spectra. For the surface with free capillary waves only and
without large-scale components, the Doppler spectrum of the
backscattered signal would have consisted of two narrow
separate peaks: one at Bragg resonant frequencyf+B for
approaching capillary waves and another at Bragg resonant
frequencyf�B for receding capillary waves. The difference
between amplitudes for these two peaks is determined by the
angular dependenceD(�; �) in (47). For the case presented

in Fig. 3(a) this difference is about 7.4 dB. Inclusion of
large-scale components immediately leads to an appearance of
orbital motions associated with these components. For strong
enough winds and developed seas these motions generate
much larger values of the orbital velocity compared to the
phase velocitycp. As a result, orbital velocities should spread
out those Bragg peaks, and the width of the Doppler spectrum
would be determined by the variance of the corresponding
component of orbital velocity. For higher winds this variance
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exceeds the differencef+B � f�B and the Doppler spectra
become unimodal.

ForU10 = 3:8 m/s [Fig. 3(a)] lower frequency parts of cal-
culated spectra have a good match at the HH polarization with
a somewhat lower position for the calculated VV-polarization
curve. Peak positions match for the VV polarization at ex-
pected Bragg resonant frequenciesf+B and f�B . One can see
that an inclusion of the “fast” component can improve results
especially for the HH polarization. On Fig. 3(b) and (c) the
positions of the single peak nearf+B for VV spectra, measured
and calculated (even for the case of the “slow” component
only), are in a good agreement, and for HH spectra they
are not, which coincides with the conclusion made by Trizna
[12]. A significant widening and buildup of measured Doppler
spectra is seen at frequenciesf & f+B on Fig. 3(b) and (c).
The widening can be explained by scattering by “fast” bound
waves. A rather good agreement with experimental data in
this regard was achieved for reasonable values of parameters
�, �0, and �1 (see Table I). The buildup, however, cannot
be explained by this mechanism only and it can be partially
attributed to the growing contribution from the non-Bragg
scattering from steep and curved roughnesses. Of course,
this mechanism is out of the scope of the two-scale model
presented here. However, it is instructive to see what part
of measured spectrum still can be assigned to chosen here
mechanisms and models and what part needs more advanced
theory.

VIII. C ONCLUSIONS

We have presented the results of numerical calculations of
polarized radar Doppler spectra from the ocean surface in
upwind and downwind directions at�g = 35� and for various
wind speeds in an upwind direction and at�g = 10�. These
calculations are based on the modified two-scale model, which
includes Bragg scattering from both free and bound capillary
waves and their random modulation by tilts and orbital motions
produced by large-scale components of gravity waves. The
latter process is described by making use of linear wave theory
and Gaussian statistics for those large-scale waves. The final
expression for the Doppler spectrum is obtained in the form of
a 2-D integral over large-scale slopes. This expression includes
such second-order statistical parameters as variances of slope
components, variances of orbital velocity components, their
correlations, and power spectra of surface elevations at Bragg-
resonant frequencies. For the surface statistical description we
invoke models of directional wave spectra, which take into
account the effect of wave age.

In experiments [4], [5] it was found that at low-grazing
angles (and sometimes even at moderate-grazing angles) two
different mechanisms are responsible for the formation of the
Doppler spectrum. One relates to the low-frequency part of
the spectrum (“slow signal”) presumably caused by the Bragg
scattering from free capillary waves; another relates to the
high-frequency part of the spectrum (“fast signal”) due to the
some other mechanisms. The two-scale model used here is
assigned to describe effects related to the Bragg scattering from
both free and bound resonant waves. Therefore, our intention

was to check which spectral features may and which may
not be explained by the theory developed here. Using the
reasonable parameter values for the model of bound waves
we obtained widths of Doppler spectra, which are in good
agreement with experiments for low grazing angles�g = 10�

and for winds up toU10 � 10 m/s. However, this model
cannot account for the entire buildup of the Doppler spectra
at frequenciesf & f+

B
for higher windsU10 & 6 m/s. A more

elaborate and self-consistent hydrodynamic model together
with more advanced theory for non-Bragg scattering from
steep roughnesses is obviously desirable. Despite of evident
limitations the presented here approach can be used for a more
thorough analysis of measured Doppler spectra in order to
determine the contributions of various scattering mechanisms.
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