1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 2, February 1998

Table of Contents for this issue

Complete paper in PDF format

Folded Loop Antenna for Mobile Hand-Held Units

Konstantinos D. Katsibas, Constantine A. Balanis, Fellow, IEEE, Panayiotis A. Tirkas, Member, IEEE, and Craig R. Birtcher

Page 260.

Abstract:

The vertical folded loop antenna, modeled as wire and printed radiating element mounted on a conducting box, simulating a cellular telephone with and without dielectric coating, is analyzed. Finite-difference time-domain (FDTD) method is used to calculate radiation patterns and input impedance. The results are compared with measurements and with NEC data. Very good agreement is obtained in all cases. Parasitic loading is used to enhance the bandwidth of the printed element. The antenna meets design requirements for existing and future mobile communication systems.

References

  1. M. B. Pautet and M. Mouly, The GSM System for Mobile Communications.Paris, France: 1992.
  2. D. J. Goodman, "Second generation wireless information networks," IEEE Trans. Veh. Technol., vol. 40, pp. 366-374, May 1991.
  3. R. Luebbers, L. Chen, T. Uno, and S. Adachi, "FDTD calculation of radiation patterns, impedance, and gain for a monopole antenna on a conducting box," IEEE Trans. Antennas Propagat., vol. 40, pp. 1577-1583, Dec. 1992.
  4. M. A. Jensen and Y. Rahmat-Samii, "Performance analysis for hand-held transceivers using FDTD," IEEE Trans. Antennas Propagat., vol. 42, pp. 1106-1113, Aug. 1994.
  5. T. Taka and K. Tsunekawa, "Performance analysis of a built-in planar inverted F antenna for 800 MHz band portable radio units," IEEE J. Select. Areas Commun., vol. 5, pp. 921-929, June 1987.
  6. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., no. 114, pp. 185-200, Oct. 1994.
  7. D. S. Katz, E. T. Thiele, and A. Taflove, "Validation and extension to three dimensions of the berenger PML absorbing boundary condition for FD-TD meshes," IEEE Microwave Guided Wave Lett., vol. 4, pp. 268-270, Aug. 1994.
  8. R. Mittra and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave Guided Wave Lett., vol. 5, pp. 84-86, Mar. 1995.
  9. W. V. Andrew, C. A. Balanis, and P. A. Tirkas, "A comparison of the Berenger perfectly matched layer and the Lindman higher-order ABC's for the FDTD method," IEEE Microwave Guided Wave Lett., vol. 5, pp. 192-194, June 1995.
  10. C. J. Burke and A. J. Poggio, Numerical Elecromagnetics Code (NEC): User's Manual, Lawrence Livermore Nat. Lab., Livermore, CA, Jan. 1981.
  11. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method.Boston, MA: Artech, 1995.
  12. P. A. Tirkas and C. A. Balanis, "Finite-difference time-domain method for antenna radiation," IEEE Trans. Antennas Propagat., vol. 40, pp. 334-340, Mar. 1992.
  13. C. Wu, K. L. Wu, Z. Q. Bi, and J. Litva, "Accurate characterization of planar printed antennas using FDTD method," IEEE Trans. Antennas Propagat., vol. 40, pp. 526-535, May 1992.
  14. H. S. Tsai and R. A. York, "FDTD analysis of CPW-fed folded-slot and multiple-slot antennas on thin substrates," IEEE Trans. Antennas Propagat., vol. 44, pp. 217-227, Feb. 1996.
  15. C. A. Balanis, Advanced Enginering Electromagnetics.New York: Wiley, 1989.
  16. A. Taflove and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory Tech., vol. 23, pp. 623-630, Aug. 1995.
  17. K. D. Katsibas, "Analysis and design of mobile antennas for handheld units," Masters' thesis, Arizona State University, Tempe, AZ, Aug. 1996.
  18. C. A. Balanis, Antenna Theory: Analysis and Design, 2nd ed.New York: Wiley, 1996
  19. C. A. Balanis, K. D. Katsibas, P. A. Tirkas, and C. R. Birtcher, "Loop antenna for mobile and personal communication systems," in IEEE 47th Annu. Int. Veh. Technol. Conf., Phoenix, AZ, May 1997, pp. 452-454.
  20. M. A. Jensen and Y. Rahmat-Samii, "EM interaction of handset antennas and a human in personal communications," Proc. IEEE, vol. 83, pp. 5-17, Jan. 1995.
  21. H. Y. Yang and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Trans. Antennas Propagat., vol. AP-35, pp. 860-863, July 1987.
  22. L. P. B. Katehi and N. G. Alexopoulos "On the modeling of electromagnetically coupled microstrip antennas-the printed strip dipole," IEEE Trans. Antennas Propagat., vol. AP-32, pp. 1179-1186, Nov. 1984.
  23. R. Q. Lee and K. F. Lee, "Gain enhancement of microstrip antennas with overlaying parasitic directors," Electron. Lett., vol. 24, no. 11, pp. 656-658, May 1988.
  24. C. Wood, "Improved bandwidth of microstrip antennas using parasitic elements" Proc. Inst. Elect. Eng.--Microwaves Opt. Antennas, vol. 127, pt. H, no. 4, pp. 231-234, Aug. 1980.