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Impedance Matrix Compression (IMC)
Using lteratively Selected Wavelet Basis

Zachi BaharavStudent Member, IEEEand Yehuda Leviatarfellow, IEEE

Abstract—In this paper, we present a novel approach for a few terms; namely, when one expands such a signal in a
the incorporation of wavelets into the solution of frequency- avelet series, only few terms are dominant and constitute
domain integral equations arising in scattering problems. In this major part of the signal energy. This fact has mainly

approach, we utilize the fact that when the basis functions used b lied f . o | ;
are wavelet-type functions, only a few terms in a series expansion €en applied 1or Compression purposes In signal processing

are needed to represent the unknown quantity. To determine [6]-[8], but recently it has also been used in computational
these dominant expansion functions, an iterative procedure is electromagnetics [9], [10]. In [9], [10], instead of solving for

devised. The new approach combined with the iterative procedure g the coefficients in the wavelet expansion of the unknown
yields a new algorithm that has many advantages over the j,qyced current, only those expected to be dominant based

presently used methods for incorporating wavelets. Numerical the phvsical oot imati fth th b
results which illustrate the approach are presented for three on the physical optics approximation of the current have been

scattering problems. solved for.
In this paper, the determination of the dominant coefficients

is affected systematically using an iterative procedure. The
iterative procedure allows to zoom in on the fine details of
|. INTRODUCTION the signal in any region of interest. It also provides a means

AVELET expansions have been employed recentf;?r gradually attaining higher accuracy level. The matrices
in numerical solutions of commonly used frequencyj-r‘VOIVed are much smaller and, hence, the solution requires

domain integral equations [1]-[5]. In the conventional aps_ignificantly less memory and run time. Clearly, the subset of

proach to the solution of these integral equations [1], thasis functions providing gooo_i approximation to the curr_ent on

unknown quantity of interest (usually the current on thihe scattgrer' for a certain exc.|tat|o'n may not be bgst suited for
scatterer) is first expanded in terms of a set of wavelet baSiber excitations. Hence, the iterative basis selection procedure
functions. Then the difference between the two sides of t§B0Uld be repeated over again each time the incident field
equation is forced to be orthogonal to a set of wavelet testifjanges. _

functions. This amounts to describing the operator, which is a! "€ organization of the paper is as follows. In the next sec-

convolution integral of the unknown quantity with the Green’ion: the problem under study is specified and formulated using
function, in a wavelet basis. In many cases, the wavelet testfig/avelet expansion. Section il embodies the description of

functions are nearly orthogonal to the fields due to the wavel8f iterative compression algorithm, comprising an iterative

basis functions. Hence, the resultant matrix representation§ivelet basis selection that is followed by a matrix compres-

the operator (the impedance matrix) is highly localized arion (as opposed to thresholding) procedure. Numerical results

it becomes diagonally dominant as the wavelet functions gd€ described in Section V. Finally, summary and conclusions
spatially narrower. In these cases, the impedance matrix &{f 9iven in Section V.

undergo a thresholding operation, which renders the matrix
sparse. However, this virtue of being localized is liable to [I. FORMULATION

be scatterer geometry dependent. Moreover, once thresholdingyiih oyt loss of generality, let us consider the scalar problem
has been applied there is no systematic way (other thgncomputing the currenf, on the perimeter of a perfectly
trivially using .smaller threshold levels) leading to a MOr@onducting z-directed cylinder excited by a TMwave, as
accurate solution. _ described in Fig. 2. This scattering problem can be formulated
In this paper, a different approach is proposed. Rather thanyarious ways, but here we resort to tfield integral
resorting to the sparseness of the operator in the wavelgl,ation formulation. To overcome the difficulties associated
expansion, we utilize the sparse representation of the (Y&, the integration of the wavelet functions, conventional

unknown) quantity in the wavelet expansion. It is well knowmyse_pasis functions are used initially to expand the current.
that wavelets can represent nonstationary signals with oWy have

Index Terms—Electromagnetic scattering, wavelet transforms.
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unknown coefficient of the pulse-functioR;. Applying the

. . . . step 1:
E-field integral equation in the least-square error sens¥ at eSeti=0
testing points on the cylinder perimete¥/ (> N), we arrive ¢ Choose an initial subset of
formally at basis functions W°

(A =V )
. . - step 2:

where[Z] is the impedance matrix, is the (unknown) current ® %% Construct the compressed
vector, andV is the excitation vector. impedance matrix [2']

In order to transform the pulse basis functions into wavelet prom
basis functions, we introduce a\x N transformation matrix o Iﬁcréase 1 by one.
[T7] (which is assumed to be real and unitary) and denote

the transpose ofI;] by [17]. The rows of[I}] describe the step 3:
new wavelet basis functions in terms of the pulses. Similarly,
to transform the individual testing points into wavelet testing
arrays, we introduce ai/ x M transformation matriXZy],

which is assumed to be real and unitary. The rowdg7of] step 4:

e Solve [Z’] A =B
for A!

e Evaluate J!

describe the new wavelet testing arrays in terms of the « Compute the error
individual testing points. The basis transformations are now el=B-[2] A&
effected by
A= [Tr]f (3) step 5:
5 — e Analyze &' and construct the
B=[Iv]V ~ (4) updated subset Wi+!
(2] = [Tv][Z][17] (5)

and we arrive at the matrix equation

step 6:
o Check termination conditions:
||é'lH <e or I>lsop

— —

[2]A=5. (6)

This matrix equation is equivalent (in terms of the resulting
J.) to the previous matrix equation given by (2). However, in
(6), both the source functions and testing points are expressed |step &
in the respective wavelet bases. Thus, the curfentan be
expressed as

e Define J, = J! as the solution

Fig. 1. lterative compression algorithm. The various steps are described in

N some more detail in the text (see Section IlI-A).
J, = Z AW (7)
= Step 1—Initialization:Let ! denote a typical iteration and
where{W;},i= 1,2, -, N denote the wavelet functions andet the subsetW' = {Wik)}rty consisting of N; basis
{A;},i=1,2,--- N are the elements of. functions be the associated iterate. St zero and choose the

initial iterateW?. This iterate comprises a small numiéy of
wavelet functions{m(;k)}l’f; taken as a crude approximation
) _ ] for the basis needed for expanding the unknown cursent
In this section, rather than solving (6) or a thresholded veg; the examples that follow we us#, = 1 since it is

Slog of this matrlxlequa'_uon fflﬂh'l' ,Aév [‘;Vh'clf: detlerm_me generally a good practice to taki¥, as small as possible
J= by (7)1, we apply an iterative algorithm for the selection o nd let the algorithm select iteratively the relevant basis

the_ plomlnant wavelet_ basis funct|qns. The iterative ‘?‘Ig(_)r_'thmnctions. However, if a good estimate of the unknown current
facilitates a systematic determination of the more significant

. . : IS available, one might consider starting out with a larger set
terms in the series expansion (7) and thereby allows a solutlofn ; . .

. . . of appropriate basis functions.
of a much smaller matrix equation for the evaluation.Jof Step 2| q Matrix C iaBonsid th
Clearly, the iterative algorithm can be carried on toward usin b ep f—l;np_e ?nce_ a;"/_)j Emp{;&/zs& N?n3| Ier ; he
all the basis functions to yield the very same solution as thageset o a5|_s unction =1 i'i’“)}k_ﬂ_ along ,\Q"t
of the original matrix (2). However, our intent is to derive afhe corresponding subset of unknown coefficiefits )}~ -

accurate enough solution for (2) while using a significantgast the coefficient§A; ;) };'L, into a column vectord' and

Il. | TERATIVE COMPRESSIONALGORITHM

smaller number of basis functions. construct a matrix2'], comprising the{é(k)} ., columns of
the impedance matrixz].

A. Algorithm Description Step 3—Determination of : Solve [Z’]ffl = B for the

The iterative compression algorithm is depicted as a flovector of coefficientsd . The dimensions ofz'], ﬁl, and B

chart in Fig. 1. The steps of the algorithm are described beloare M x N;, N; x 1, and M x 1, respectively.
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_ -1 .
Step 4—Error ComputationOnce A is known, the cur- B. Implementation Remarks

rent /. may be approximated by In the previous section, we have described the algorithm
in a somewhat concise manner. Following are a few issues
which are important for a successful implementation of the
algorithm.

First, one should note that the computational burden in-

The field due to/! does not produce the exact scattered fieyolved in the solut_ion of the ma_trix equation in_ Step 3 can be
Hence, the requi‘red boundary condition is not satisfied. T gssened by applying a conventional thresholding procedure to

oo g X .
fact manifests itself as an error in satisfying (6). This errof J- Since[Z'] is not only compressed but also localized, it
is given by will be rendered sparse and allow the use of a sparse matrix

solver for solving[Z']A! = B.
& =B —[2A" (9)  Asecond issue related to Step 3 is the possibility of deduc-
ing knowledge from the previous iteration for the solution of

Since the right-hand side of (9) is expressed in terms B¢ matrix equation in the current one. There are basically two
wavelet basis functions, so & . This implies that the bound- W&ys to solve the matrix equation. One is by a direct inversion

ary condition error along the perimeter can be expressed a¢sing the pseudo-inverse PE'] [11, p. 221] and the other is
by an iterative solution such as the conjugate-gradient [11, pp.

M 516-529]. If the direct inversion approach is applied, one can
E' = Z et Wi (10) exploit the knowledge of the inverse pF'~'] since[2'~ "] is
=1 a submatrix of Z']. If an iterative solution is applied, one can
choose the vectod!~! as the initial guess for the solution.
where {¢;}}2, are the elements of . Since this guess is presumably close to the solutibnthe
Step 5—Construct the Updated Sub®ét"': Toward re- jterative solution will converge faster.
ducing the boundary condition error along the perimeter (10), The last issue concerns the compression of the impedance
we search for the largest (in terms of magnitude) elemematrix. As described in the algorithm (Steps 2 and 3), we first
of gl. If the basis function associated with this elemént construct the Compressed impedance mdml)@ and’ in turn,
contained inW', we pursue the next largest element&f solve[2/]A! =  for the vector of unknown coefficientd! in
The above search is repeated until we find a preset numbegiQf |east-squares error sense. However, the determinatiéh of
largest elements of', whose associated basis functicere in Step 3 can also be effected by solviif [T,][f’ — vV inthe
notin W'. These basis functions are then addedVd to least-squares error sense. Clearly, these two matrix equations
form an updated SUbSé’N_l+1- _ _ _ are equivalent as far a¥ is concerned. Yet, the latter one can
The idea is to deduce information as to which basis fungg row reduced in a rather straightforward manner and solved
tions will allow a more compact, yet accurate, representation@f 5, approximateéf’ in a faster way. Hence, it is naturally
the current from the error coefficient vector. The idea is basﬁpeferred. The thinning of the rows is done while ensuring
on the apparent correlation between the wavelet expansionypf; the testing points corresponding to the rows retained are
the error and the wavelet expansion of the unknown curreghya|ly distributed along the circumference of the scatterer and
This correlation is even more profound when we deal witgjyyolves the following tradeoff: on one hand, as more rows
the rapidly varying parts of the error. The rapidly varyingce omitted (as long as at least rows are kept), the solution
parts are associated with wavelet expansion functions that gigomes less computationally intensive. On the other hand,
spatially narrow and characterized by high spatial-frequengyying an overdetermined set of equations offers stability by
content. Such wavelet functions radiate quite poorly and theiihgering the solution less sensitive to the exact location of
fields_ are, therefore, highly Iocalized._ Hence, by adding theges; points. Based on our experience, keeping the number of
functions to the set used for spanning the current, one Gaflys three times the number of unknowns strikes a via media

affect the error locally. o _ between efficiency and stability. Once the approximation of
Step 6—Check Stopping Criteriafwo stopping rules are 1t js found, the error in satisfying (6), which is given in Step
checked. If either the norm of the error is smaller then & py (9), is obtained by

predefined values or the iteration count has exceeded a

predefined numbet,., the iterative process terminates and gl = [TNV](V — [Z][Tﬂ[f’). (12)
we proceed directly to Step 8. Otherwise, the iterative process
continues to the next step.

Step 7—Prepare for Next IterationThe iteration counter is
increased by one and we move on to begin a new iterationin this section, we consider three scattering problems.
(Step 2). Representative computations are given to show how the it-

Step 8—Evaluation of,: This is the final step. An approx- erative compression algorithm operates and to demonstrate its
imation for the unknown currenf, can be obtained from (8). merits.

We have The first problem analyzed is that of a TMlane wave
scattering by a perfectly conducting circular cylinder. The
J, =Jb (11) geometry of this scattering problem is depicted in Fig. 2. The

Ny
JL=3" A Wi, (8)
k=1

IV. NUMERICAL RESULTS
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Fig. 2. Scattering problem of a circular conducting cylinder excited by a Qe— % e Wa
TM.. incident plane wave. The length parameter along the perimeter is denoted 8 J4 E4
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Fig. 3. Results obtained in the first four iterations of the iterative solution ! 1
for the scattering problem depicted in Fig. 2. '
1/2) +
1
. ) ) ) . ) ) 1 . 0.
incident wave is of unit magnetic field. The radius of the o e ) Tt
cylinder is equal to one wavelength. The circular perimeter w? Jo E°
- . " . ¥4
has been divided into 32 equally spaced pulses, which were, ® @ 0
. . . . I
in turn, transformed into a Haar wavelet basis. The Haar basis, P d
while very simple, is just right for conveying the main ideas of 1 15
the paper. It is quite possible though that the use of smoothe é .
wavelets would have yielded more accurate results with fewef §
. . . . . . 0.5
basis function. The longest wavelet basis function is comprisetf| 0.5
of 16 pulses and covers half of the cylinder circumference. & 15 T T8 16 123’ 32 s e =
Results obtained in each of the first 11 iterations are depicted w Jz E
in Figs. 3 and 4. The results obtained in each iteration are (s) () (u)

divided into three data sets, which are represented separagﬂy‘l‘ Results obtained in iterations 4—.

in three different figures:

scattering problem depicted in Fig. 2.

10 of the iterative solution for the
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» The figures situated on the left (denoted (a), (d), (9))

display on a combined-space grid the pertinent @&t .

of wavelet basis functions. The basis functions involved |J: | M

are denoted by black rectangles. The horizontal axis in 0. /

these figures is the spatial location and the vertical axis

describes the spatial variation (for a detailed discussion

of such representations of the combined space see, far 5. Magnitude of current density. along the circular perimeter of the

example [12] [13]) Note that there are 32 rectanadl atterer for the scattering problem illustrated in Fig. 2, obtained with 31
ple, o ’ . . 9 %%sis functions.

corresponding to the 32 wavelet basis functions used,

partitioning the combined space. The two rectangles at the

bottom [one of them is colored black in (a)] correspond 3

to the two basis functions that, for the Haar basis, are Ei’”(\/-> & 1A

constant over half of the cylinder circumference. The left Frine s=1 g

half of these drawings pertains to wavelet functions that _ . . .

g. 6. Scattering problem of a conducting cylinder of square cross section

. . 4 i
are in the th? lit region. The upper part Corres_ponds_gicited by a TM incident plane wave. The length parameter along the
wavelet functions suitable for describing the rapid spatigérimeter is denoted by.

variations of the current.

The (;igure_E sitrl:ated in _th(ej cer;tehr (denote(_j (0). (e), (@qually spaced pulses and, as before, a Haar wavelet basis is
”,') escrll € tde_ magr;llt_u e of the a8ppr_(|3;1<|mate curreflbed. The longest wavelet basis function consists of 16 pulses
Jf‘ as eva uated in eac lteration via (8). The currenFs Zﬁﬁd covers one side of the cylinder. Shown in Fig. 7 are results
given in values which are normalized to the magnitu

f the incid i field. Th G q Sbtained in progressive numbers of iterations, describing how
of the incident ma_gnepc eld. These Tigures emqnstr_a%e approximate current gradually approaches the correct one.
best the progressive improvement of the approximatiqq

for th t7. achieved with this i ) h ote that after iteration 7 there is an error in satisfying the
or the current/, achieved with this iterative scheme. boundary condition in the vicinity of the upper left edge of the

* The flgur_es situated on the right (deno_ted ((_3)' _(f)’ (')cylinder(s = 16). Projecting this error on the wavelet basis, a
) describe the mzigglnltude of the error in satisfying th?patially narrow wavelet function is automatically selected,
boundary condition” as evaluated in Step 4 of eachyhich, in the subsequent iteration (iteration 8), adequately
iteration by (10). The field-errors are given in valuegepresents the singularity of the current distribution near the
which are normalized to the magnitude of the incidenu‘.pper left edge.
electric field. Now we turn to a brief comparison between the new

Let us now review the iterative scheme in somewhat moapproach and the conventional one where the impedance ma-

detail. Fig. 3(a) describes the initial S&{® employed. Here, trix undergoes thresholding, which renders the matrix sparse.
we start with only one basis function, which is of constar@omprehensive comparison between the thresholding method
amplitude over half of the cylinder (in the lit region). Thisand impedance matrix compression method can be found in
basis function is denoted by a black rectangle in (a). Fig. 3(f9] and [10]. Fig. 8 describes the performance of the two
shows the approximation obtained after solving for the calgorithms. The vertical axis describAg,.., the square of the
efficient of the basis function described in (a). The error ih, norm of the error in satisfying the boundary condition. The
satisfying the boundary condition is displayed in Fig. 3(chorizontal axis is the compression ratio. The compression ratio
The wavelet series coefficients of this error are evaluated asdequal to one minus the ratio between the number of nonzero
this information is analyzed to determine two additional basédements of Z'] in the last iteration performed and the number
functions which together with the initial s&v° form the of elements of the original matrix. Note that while we consider
updated seW'! shown in Fig. 3(d). Similar explanation canthe matrix[Z] in the last iteration as a measure of complexity,
be extended to the rest of the figures. It is interesting to natee must recall that other matrix equations, albeit smaller
that due to the symmetry of the problem the basis functions size, have been solved in the preceding iterations. The
are chosen symmetrically as well. This is effectdgthoutany advantage of the new algorithm is clearly seen in the figure.
outside intervention and is due to the fact that the symmetry Ahother perspective on the difference between the methods can
the geometry and the excitation is reflected in the error vectte gained from Fig. 9. The approximate current obtained based
Fig. 3 describes the first four iterations and the next seven the thresholding procedure is shown in Fig. 9(a), while the
iterations are described in Fig. 4. The last iteration shovwame obtained based on the new algorithm is shown in Fig. 9(b).
is the tenth iteration, which involves 21 basis functions. Ahe fields due to these currents satisfy the boundary condition
reference solution is depicted for comparison in Fig. 5. The within the same average error level Aff,. = 0.1%. It
reference solution is the one arrived at iteration 15 and whighseen that the current shown in Fig. 9(a) has many rapidly
involves 31 basis functions. varying ripples. The wiggly behavior of the solution stems

The second example considers the scattering of a TNtom the fact that all the rapidly varying wavelets are actually

plane wave by a perfectly conducting cylinder of square cropkying a part in the solution. In contrast, only part of these
section. The geometry of this scattering problem is depictedwavelets are used to construct the solution shown in Fig. 9(b)
Fig. 6. The scatterer perimeter is divided in this case into &hd, hence, this solution is smoother.

0,
Length-paraniete¥ (s)

s =16 s =32
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Fig. 9. Magnitude of current density. along the perimeter of the square

4 1. scatterer (depicted in Fig. 6) obtained by two solution methods: cases con-
agL sidered are for (a) the conventional method of thresholding the impedance
y 2-2 k 1 _matri_x and (b) the itere_ative compre_ssion algorithm proposed in thi; paper (Qt
q ~ 15 1 0 iteration 9). Both solutions are subject to the same accuracy requirements in
14— -1 1 ! ; terms of satisfying the boundary condition.
| 0§ ! f—
Y1 16 32 48 64 1 16 32 48 64 1 16 32 48 64
wi J! E! —
@ © 0 E(\f )D
Hinc _i
a9 5 ! ) ) ) )
3 Fig. 10. Scattering problem of a conducting half circular shell excited by a
25 1 TM. incident plane wave.

LT A =le=s—i=2  have been comparable in magnitude, which implies that a
J? E7 substantial reduction in the number of matrix elements would
© () () not be achieved by means of a thresholding procedure without
suffering loss of accuracy. If instead of the pulse functions,
! ol 14 Haar wavelets are used to expand the unknown current and
zg_J . Haar Wavelet_transform is app_lled to the testing p0|_nts, the
v % o resultant matrix will also comprise 8192 complex entries, but
v on R . ' the matrix will be more localized and a thresholding procedure
1 16 32 48 64 16 3z a8 64 * 16 a2 48 s« can render the matrix sparse without much degrading solution
w? J? E? accuracy. For example, applying a thresholding while allowing
) k) 0} an average error level ak £,. = 0.1% resulted in 4712 zero
Fig. 7. Results obtained in iterations 0, 1, 7, and 8 of the iterative squtl&lementS which implies a sparseness Ievei_é% = 0.5752,
for the scattering problem depicted in Fig. 6. Thus, the complexity here is that of solving a 128 64
sparse matrix with 3480 nonzero elements. Finally, to arrive
3 at the same error level of 0.1% using the new compression

algorithm, only eight iterations were performed, which resulted
in 17 basis functions. As mentioned before, the number of
testing points can be reduced proportionately to the reduction
AEy(%) 14 in the number of elements. In this example, the number of
. testing points is approximately three times the number of basis
functions. It follows that the matrix arrived at in this case is

of size 64x 17, that is a matrix of 1088 complex elements,

R e and the compression level is thus
Compression (%) 17 x 64

i . ) ) Compression= 1 — —— = 0.867. (13)
Fig. 8. Boundary condition error versus compression of the impedance 64 x 128

matrix for the scattering problem illustrated in Fig. 6, obtained by two solutiol L be claimed th v the | . . h b
methods. Cases considered are for the conventional approach of threshol In, It may be claimed that only the last iteration has been

the original impedance matrix (denoted by pluses) and for the iteratitaken into account, but one should keep in mind the fact that
compression algorithm proposed in this paper (denoted by crosses).  the previous iterations involved much smaller matrices and
that they could be used as initial guesses for the solution of
We will further exploit the above example to illustrate soméhe matrix equation.
of the computational merits of the new method. In this case, aAs was mentioned previously, the correlation between the
total of 64 pulse-basis functions were originally used to expamévelet expansion of the error and wavelet expansion of
the unknown current and the boundary condition was impos#gg: current plays a key part in the success of the suggested
in the least-square error sense at 128 testing points. Thaigorithm, where the error is indicative of which elements
if one had pursued the solution using a standard methodsfould be added to the current expansion. Clearly, it can
moments approach, the size of the resultant impedance mab# argued that in the case of a concave body where the
would have been 12& 64, that is a matrix comprising 8192correlation is not as obvious as it is in the case of a convex
complex entries. Moreover, the elements of this matrix woulabdy, the results will not be as good. The following example

2.5

N

0.5
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Fig. 11. Magnitude of current densitf along the circular perimeter of the @) () ©
scatterer for the scattering problem illustrated in Fig. 10, obtained with 64
basis functions. ’ ‘ ‘ ‘ ‘ ‘ !‘ &
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Fig. 12. Boundary condition error versus compression of the impedance01 32 64 % 32 64 1 32 64
matrix for the scattering problem illustrated in Fig. 10, obtained by two w8 Jf EB
solution methods. Cases considered are for the conventional approach of .
thresholding the original impedance matrix (denoted by pluses) and for the () (h) @)

iterative compression algorithm proposed in this paper (denoted by crosses).
1

thus deals with the scattering by a concave body. The spes
cific configuration considered is that of a half circular shell, 4
as depicted in Fig. 10. The perimeter was divided into 64 o
pulse-basis functions, which were, in turn, transformed into Wiz J? E'?
a Haar wavelet basis. The resultant solution, when neither 0 ® (0
compression nor thresholding is applied, is shown in Fig. 11.
A comparison between the two methods—that of thresholding'
and that of compression—is given in Fig. 12. It is evident that
even in a case where internal reflections exist the iterative basij
construction works quite well. This is probably owing to the'4
fact that the correlation between the error and the current in thé a2 2 64 ] 2 64
small scale is conserved regardless of the shape of the scatterer. w8 J1® E'

Finally, Fig. 13 presents intermediate results obtained in the () (n) (©)

Course of the _Iteratlve Process- which show how the Iterat'\é%. 13. Results obtained in iterations 4, 6, 8, 12, and 18 of the iterative
solution for this scattering problem evolves. solution for the scattering problem depicted in Fig. 10.

\/\\\J/ L\\\_/j—\\)‘ 09

&

GV‘\/" VA s

64

V. SUMMARY AND CONCLUSIONS of the ingredients of this two-dimensional solution can be read-

In this paper, we proposed a new algorithm for the incolly generalized to three-dimensional cases. Other efforts can be
poration of wavelets into the solution of integral equatiordevoted to dealing exclusively with the iterative algorithm. We
arising in scattering problems. This algorithm utilizes the fa@€lieve that by exploring the cases in which the algorithm falls
that quite often only a few terms are needed to descridéthin the class of conjugate directions algorithms [14], one
the current on the scatterer to a good approximation. A&&n deduce how the computational efficiency of the algorithm
iterative procedure for the determination of these few tern@n be improved.
has been presented. The procedure is based on the apparent
correlation between the respective wavelet expansions of the
error and the unknown current. Numerical results have beg B. z. Steinberg and Y. Leviatan, “On the use of wavelet expansions in
furnished, which demonstrated the applicability and features the method of moments/EEE Trans. Antennas Propagatol. 41, pp.
of the algorithm. [2] glolasmlgngﬂ ay ﬁ?}gﬁon the application of fast wavelet transform to

Future research can proceed along two lines. An important the integral-equation solution of electromagnetic scattering problems,”
continuation can be extension of the approach to more complex Microwave Opt. Technol. Leftvol. 6, no. 3, pp. 168-173, Mar. 1993.

. . . .é3] R. L. _Wagngr, G.P. Ottoz and W_. C. Ch(_ew, “Fast Wavegwde mode com-
pmblems such as problems mvolvmg scattering by metalli putation using wavelet-like basis functiondEEE Microwave Guided

and penetrable finite-size bodies. It is quite obvious that many Wwave Lett. vol. 3, pp. 208-210, July 1993.

REFERENCES



BAHARAV AND LEVIATAN: IMPEDANCE MATRIX COMPRESSION USING SELECTED WAVELET BASIS 233

[4] B. Z. Steinberg and Y. Leviatan, “Periodic wavelet expansions fofll] G. H. Golub and C. F. Van LoanMatrix Computations 2nd ed.

analysis of scattering from metallic cylinderdficrowave Opt. Technol. Baltimore, MD: Johns Hopkins Univ. Press, 1989.

Lett, vol. 7, no. 6, pp. 266—268, Apr. 1994. [12] C. Herely, J. Kovacevic, R. Ramachandran, and M. Vetterli, “Tilings
[5] J. C. Goswami, A. K. Chan, and C. K. Chui, “An analysis of two- of the time-frequency plane: Construction of arbitrary orthogonal bases

dimensional scattering by metallic cylinders using wavelets on a  and fast tiling algorithms,1EEE Trans. Signal Processingol. 41, pp.

bounded interval,” inlEEE AP-S Int. Symp. DigSeattle, WA, June 3341-3359, Dec. 1993. _ _

1994, vol. 1, p. 2. [13] I. DaubechiesTen Lectures on WaveletsPhiladelphia, PA: Soc. Indust.

Appl. Math., 1992.
f14] J. E. Dennis, Jr. and K. Turner, “Generalized conjugate directidris,”
Alg. Applicat, vol. 88/89, pp. 187-209, 1987.

[6] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms fo
best basis selection|EEE Trans. Inform. Theorwol. 38, pp. 713-718,
Mar. 1992.

[7] K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a rate-
distortion sense,IEEE Trans. Image Processingol. 2, pp. 160-175,

Apr. 1993.
[8] C. H. H. Chu, “Data compression by multiresolution tree sear@nt.  75-hi Baharav (5'95), for photograph and biography, see p. 1238 of the
Eng, vol. 33, no. 7, pp. 2136-2142, July 1994. September 1996 issue of thiRANSACTIONS

[9] Z. Baharav and Y. Leviatan, “Impedance matrix compression with the
use of wavelet expansiongylicrowave Opt. Technol. Lettvol. 12, no.
5, pp. 268-272, Aug. 1996.
, “Impedance matrix compression using adaptively constructed
basis functions,” |[EEE Trans. Antennas Propagatvol. 44, pp. Yehuda Leviatan (S'81-M'86—SM'88—F'98), for photograph and biography,
1231-1238, Sept. 1996. see p. 1238 of the September 1996 issue of tiRsNEACTIONS

[20]




