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Impedance Matrix Compression (IMC)
Using Iteratively Selected Wavelet Basis

Zachi Baharav,Student Member, IEEE, and Yehuda Leviatan,Fellow, IEEE

Abstract—In this paper, we present a novel approach for
the incorporation of wavelets into the solution of frequency-
domain integral equations arising in scattering problems. In this
approach, we utilize the fact that when the basis functions used
are wavelet-type functions, only a few terms in a series expansion
are needed to represent the unknown quantity. To determine
these dominant expansion functions, an iterative procedure is
devised. The new approach combined with the iterative procedure
yields a new algorithm that has many advantages over the
presently used methods for incorporating wavelets. Numerical
results which illustrate the approach are presented for three
scattering problems.

Index Terms—Electromagnetic scattering, wavelet transforms.

I. INTRODUCTION

W AVELET expansions have been employed recently
in numerical solutions of commonly used frequency-

domain integral equations [1]–[5]. In the conventional ap-
proach to the solution of these integral equations [1], the
unknown quantity of interest (usually the current on the
scatterer) is first expanded in terms of a set of wavelet basis
functions. Then the difference between the two sides of the
equation is forced to be orthogonal to a set of wavelet testing
functions. This amounts to describing the operator, which is a
convolution integral of the unknown quantity with the Green’s
function, in a wavelet basis. In many cases, the wavelet testing
functions are nearly orthogonal to the fields due to the wavelet
basis functions. Hence, the resultant matrix representation of
the operator (the impedance matrix) is highly localized and
it becomes diagonally dominant as the wavelet functions get
spatially narrower. In these cases, the impedance matrix can
undergo a thresholding operation, which renders the matrix
sparse. However, this virtue of being localized is liable to
be scatterer geometry dependent. Moreover, once thresholding
has been applied there is no systematic way (other than
trivially using smaller threshold levels) leading to a more
accurate solution.

In this paper, a different approach is proposed. Rather than
resorting to the sparseness of the operator in the wavelet
expansion, we utilize the sparse representation of the (yet
unknown) quantity in the wavelet expansion. It is well known
that wavelets can represent nonstationary signals with only
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a few terms; namely, when one expands such a signal in a
wavelet series, only few terms are dominant and constitute
the major part of the signal energy. This fact has mainly
been applied for compression purposes in signal processing
[6]–[8], but recently it has also been used in computational
electromagnetics [9], [10]. In [9], [10], instead of solving for
all the coefficients in the wavelet expansion of the unknown
induced current, only those expected to be dominant based
on the physical optics approximation of the current have been
solved for.

In this paper, the determination of the dominant coefficients
is affected systematically using an iterative procedure. The
iterative procedure allows to zoom in on the fine details of
the signal in any region of interest. It also provides a means
for gradually attaining higher accuracy level. The matrices
involved are much smaller and, hence, the solution requires
significantly less memory and run time. Clearly, the subset of
basis functions providing good approximation to the current on
the scatterer for a certain excitation may not be best suited for
other excitations. Hence, the iterative basis selection procedure
should be repeated over again each time the incident field
changes.

The organization of the paper is as follows. In the next sec-
tion, the problem under study is specified and formulated using
a wavelet expansion. Section III embodies the description of
the iterative compression algorithm, comprising an iterative
wavelet basis selection that is followed by a matrix compres-
sion (as opposed to thresholding) procedure. Numerical results
are described in Section IV. Finally, summary and conclusions
are given in Section V.

II. FORMULATION

Without loss of generality, let us consider the scalar problem
of computing the currentJz on the perimeter of a perfectly
conductingz-directed cylinder excited by a TMz wave, as
described in Fig. 2. This scattering problem can be formulated
in various ways, but here we resort to theE-field integral
equation formulation. To overcome the difficulties associated
with the integration of the wavelet functions,N conventional
pulse-basis functions are used initially to expand the current.
We have

Jz =

NX

i=1

IiPi (1)

wherePi denotes the pulse-function centered about theith
source point on the cylinder perimeter andIi is the yet

0018–926X/98$10.00 1998 IEEE



BAHARAV AND LEVIATAN: IMPEDANCE MATRIX COMPRESSION USING SELECTED WAVELET BASIS 227

unknown coefficient of the pulse-functionPi. Applying the
E-field integral equation in the least-square error sense atM

testing points on the cylinder perimeter (M � N ), we arrive
formally at

[Z]~I = ~V (2)

where[Z] is the impedance matrix,~I is the (unknown) current
vector, and~V is the excitation vector.

In order to transform the pulse basis functions into wavelet
basis functions, we introduce anN �N transformation matrix
[TI ] (which is assumed to be real and unitary) and denote
the transpose of[TI] by [ ~TI ]. The rows of[TI] describe the
new wavelet basis functions in terms of the pulses. Similarly,
to transform the individual testing points into wavelet testing
arrays, we introduce anM �M transformation matrix[TV ],
which is assumed to be real and unitary. The rows of[TV ]
describe the new wavelet testing arrays in terms of the
individual testing points. The basis transformations are now
effected by

~A = [TI ]~I (3)
~B = [TV ]~V (4)

[Z] = [TV ][Z][ ~TI] (5)

and we arrive at the matrix equation

[Z] ~A = ~B: (6)

This matrix equation is equivalent (in terms of the resulting
Jz) to the previous matrix equation given by (2). However, in
(6), both the source functions and testing points are expressed
in the respective wavelet bases. Thus, the currentJz can be
expressed as

Jz =

NX

i=1

AiWi (7)

wherefWig; i = 1;2; � � � ; N denote the wavelet functions and
fAig; i = 1; 2; � � � ; N are the elements of~A.

III. I TERATIVE COMPRESSIONALGORITHM

In this section, rather than solving (6) or a thresholded ver-
sion of this matrix equation forA1; � � � ; AN [which determine
Jz by (7)], we apply an iterative algorithm for the selection of
the dominant wavelet basis functions. The iterative algorithm
facilitates a systematic determination of the more significant
terms in the series expansion (7) and thereby allows a solution
of a much smaller matrix equation for the evaluation ofJz.
Clearly, the iterative algorithm can be carried on toward using
all the basis functions to yield the very same solution as that
of the original matrix (2). However, our intent is to derive an
accurate enough solution for (2) while using a significantly
smaller number of basis functions.

A. Algorithm Description

The iterative compression algorithm is depicted as a flow
chart in Fig. 1. The steps of the algorithm are described below.

Fig. 1. Iterative compression algorithm. The various steps are described in
some more detail in the text (see Section III-A).

Step 1—Initialization:Let l denote a typical iteration and
let the subsetWl = fWi(k)g

Nl

k=1 consisting ofNl basis
functions be the associated iterate. Setl to zero and choose the
initial iterateW0. This iterate comprises a small numberN0 of
wavelet functionsfWi(k)g

N0

k=1 taken as a crude approximation
for the basis needed for expanding the unknown currentJz.
In the examples that follow we useN0 = 1 since it is
generally a good practice to takeN0 as small as possible
and let the algorithm select iteratively the relevant basis
functions. However, if a good estimate of the unknown current
is available, one might consider starting out with a larger set
of appropriate basis functions.

Step 2—Impedance Matrix Compression:Consider the
subset of basis functionsWl = fWi(k)g

Nl

k=1 along with
the corresponding subset of unknown coefficientsfAi(k)g

Nl

k=1.
Cast the coefficientsfAi(k)g

Nl

k=1 into a column vector~Al and
construct a matrix[Zl], comprising thefi(k)gNl

k=1 columns of
the impedance matrix[Z].

Step 3—Determination of~A
l

: Solve [Zl]~A
l

= ~B for the

vector of coefficients~A
l

. The dimensions of[Zl], ~A
l

, and ~B
areM � Nl, Nl � 1, andM � 1, respectively.
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Step 4—Error Computation:Once ~A
l

is known, the cur-
rent Jz may be approximated by

J
l

z
=

NlX

k=1

Ai(k)Wi(k): (8)

The field due toJ lz does not produce the exact scattered field.
Hence, the required boundary condition is not satisfied. This
fact manifests itself as an error in satisfying (6). This error
is given by

~e
l = ~B � [Zl] ~Al

: (9)

Since the right-hand side of (9) is expressed in terms of
wavelet basis functions, so is~e l. This implies that the bound-
ary condition error along the perimeter can be expressed as

E
l =

MX

i=1

e
l

i
Wi (10)

wherefel
i
gM
i=1 are the elements of~e l.

Step 5—Construct the Updated SubsetWl+1: Toward re-
ducing the boundary condition error along the perimeter (10),
we search for the largest (in terms of magnitude) element
of ~e l. If the basis function associated with this elementis
contained inWl, we pursue the next largest element of~e

l.
The above search is repeated until we find a preset number of
largest elements of~e l, whose associated basis functionsare
not in Wl. These basis functions are then added toWl to
form an updated subsetWl+1.

The idea is to deduce information as to which basis func-
tions will allow a more compact, yet accurate, representation of
the current from the error coefficient vector. The idea is based
on the apparent correlation between the wavelet expansion of
the error and the wavelet expansion of the unknown current.
This correlation is even more profound when we deal with
the rapidly varying parts of the error. The rapidly varying
parts are associated with wavelet expansion functions that are
spatially narrow and characterized by high spatial-frequency
content. Such wavelet functions radiate quite poorly and their
fields are, therefore, highly localized. Hence, by adding these
functions to the set used for spanning the current, one can
affect the error locally.

Step 6—Check Stopping Criteria:Two stopping rules are
checked. If either the norm of the error is smaller then a
predefined value� or the iteration count has exceeded a
predefined numberlstop the iterative process terminates and
we proceed directly to Step 8. Otherwise, the iterative process
continues to the next step.

Step 7—Prepare for Next Iteration:The iteration counter is
increased by one and we move on to begin a new iteration
(Step 2).

Step 8—Evaluation ofJz : This is the final step. An approx-
imation for the unknown currentJz can be obtained from (8).
We have

Jz = J
l

z
: (11)

B. Implementation Remarks

In the previous section, we have described the algorithm
in a somewhat concise manner. Following are a few issues
which are important for a successful implementation of the
algorithm.

First, one should note that the computational burden in-
volved in the solution of the matrix equation in Step 3 can be
lessened by applying a conventional thresholding procedure to
[Zl]. Since[Zl] is not only compressed but also localized, it
will be rendered sparse and allow the use of a sparse matrix
solver for solving[Zl] ~Al = ~B.

A second issue related to Step 3 is the possibility of deduc-
ing knowledge from the previous iteration for the solution of
the matrix equation in the current one. There are basically two
ways to solve the matrix equation. One is by a direct inversion
using the pseudo-inverse of[Zl] [11, p. 221] and the other is
by an iterative solution such as the conjugate-gradient [11, pp.
516–529]. If the direct inversion approach is applied, one can
exploit the knowledge of the inverse of[Zl�1] since[Zl�1] is
a submatrix of[Zl]. If an iterative solution is applied, one can
choose the vector~Al�1 as the initial guess for the solution.
Since this guess is presumably close to the solution~Al, the
iterative solution will converge faster.

The last issue concerns the compression of the impedance
matrix. As described in the algorithm (Steps 2 and 3), we first
construct the compressed impedance matrix[Zl] and, in turn,
solve[Zl] ~Al = ~B for the vector of unknown coefficients~Al in
the least-squares error sense. However, the determination of~A

l

in Step 3 can also be effected by solving[Z][TI ] ~Al = ~V in the
least-squares error sense. Clearly, these two matrix equations
are equivalent as far as~Al is concerned. Yet, the latter one can
be row reduced in a rather straightforward manner and solved
for an approximate~Al in a faster way. Hence, it is naturally
preferred. The thinning of the rows is done while ensuring
that the testing points corresponding to the rows retained are
equally distributed along the circumference of the scatterer and
it involves the following tradeoff: on one hand, as more rows
are omitted (as long as at leastNl rows are kept), the solution
becomes less computationally intensive. On the other hand,
solving an overdetermined set of equations offers stability by
rendering the solution less sensitive to the exact location of
test points. Based on our experience, keeping the number of
rows three times the number of unknowns strikes a via media
between efficiency and stability. Once the approximation of
~Al is found, the error in satisfying (6), which is given in Step
4 by (9), is obtained by

~e
l = [ ~TV ](~V � [Z][TI] ~A

l): (12)

IV. NUMERICAL RESULTS

In this section, we consider three scattering problems.
Representative computations are given to show how the it-
erative compression algorithm operates and to demonstrate its
merits.

The first problem analyzed is that of a TMz plane wave
scattering by a perfectly conducting circular cylinder. The
geometry of this scattering problem is depicted in Fig. 2. The
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Fig. 2. Scattering problem of a circular conducting cylinder excited by a
TMz incident plane wave. The length parameter along the perimeter is denoted
by s.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. Results obtained in the first four iterations of the iterative solution
for the scattering problem depicted in Fig. 2.

incident wave is of unit magnetic field. The radius of the
cylinder is equal to one wavelength. The circular perimeter
has been divided into 32 equally spaced pulses, which were,
in turn, transformed into a Haar wavelet basis. The Haar basis,
while very simple, is just right for conveying the main ideas of
the paper. It is quite possible though that the use of smoother
wavelets would have yielded more accurate results with fewer
basis function. The longest wavelet basis function is comprised
of 16 pulses and covers half of the cylinder circumference.
Results obtained in each of the first 11 iterations are depicted
in Figs. 3 and 4. The results obtained in each iteration are
divided into three data sets, which are represented separately
in three different figures:

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

Fig. 4. Results obtained in iterations 4–10 of the iterative solution for the
scattering problem depicted in Fig. 2.
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• The figures situated on the left (denoted (a), (d), (g),� � �)
display on a combined-space grid the pertinent setWl

of wavelet basis functions. The basis functions involved
are denoted by black rectangles. The horizontal axis in
these figures is the spatial location and the vertical axis
describes the spatial variation (for a detailed discussion
of such representations of the combined space see, for
example, [12], [13]). Note that there are 32 rectangles
corresponding to the 32 wavelet basis functions used,
partitioning the combined space. The two rectangles at the
bottom [one of them is colored black in (a)] correspond
to the two basis functions that, for the Haar basis, are
constant over half of the cylinder circumference. The left
half of these drawings pertains to wavelet functions that
are in the the lit region. The upper part corresponds to
wavelet functions suitable for describing the rapid spatial
variations of the current.

• The figures situated in the center (denoted (b), (e), (h),
� � �) describe the magnitude of the approximate current
J l

z
as evaluated in each iteration via (8). The currents are

given in values which are normalized to the magnitude
of the incident magnetic field. These figures demonstrate
best the progressive improvement of the approximation
for the currentJz achieved with this iterative scheme.

• The figures situated on the right (denoted (c), (f), (i),
� � �) describe the magnitude of the error in satisfying the

boundary condition~E
l

as evaluated in Step 4 of each
iteration by (10). The field-errors are given in values,
which are normalized to the magnitude of the incident
electric field.

Let us now review the iterative scheme in somewhat more
detail. Fig. 3(a) describes the initial setW0 employed. Here,
we start with only one basis function, which is of constant
amplitude over half of the cylinder (in the lit region). This
basis function is denoted by a black rectangle in (a). Fig. 3(b)
shows the approximation obtained after solving for the co-
efficient of the basis function described in (a). The error in
satisfying the boundary condition is displayed in Fig. 3(c).
The wavelet series coefficients of this error are evaluated and
this information is analyzed to determine two additional basis
functions which together with the initial setW0 form the
updated setW1 shown in Fig. 3(d). Similar explanation can
be extended to the rest of the figures. It is interesting to note
that due to the symmetry of the problem the basis functions
are chosen symmetrically as well. This is effectedwithoutany
outside intervention and is due to the fact that the symmetry of
the geometry and the excitation is reflected in the error vector.
Fig. 3 describes the first four iterations and the next seven
iterations are described in Fig. 4. The last iteration shown
is the tenth iteration, which involves 21 basis functions. A
reference solution is depicted for comparison in Fig. 5. The
reference solution is the one arrived at iteration 15 and which
involves 31 basis functions.

The second example considers the scattering of a TMz

plane wave by a perfectly conducting cylinder of square cross
section. The geometry of this scattering problem is depicted in
Fig. 6. The scatterer perimeter is divided in this case into 64

Fig. 5. Magnitude of current densityJz along the circular perimeter of the
scatterer for the scattering problem illustrated in Fig. 2, obtained with 31
basis functions.

Fig. 6. Scattering problem of a conducting cylinder of square cross section
excited by a TMz incident plane wave. The length parameter along the
perimeter is denoted bys.

equally spaced pulses and, as before, a Haar wavelet basis is
used. The longest wavelet basis function consists of 16 pulses
and covers one side of the cylinder. Shown in Fig. 7 are results
obtained in progressive numbers of iterations, describing how
the approximate current gradually approaches the correct one.
Note that after iteration 7 there is an error in satisfying the
boundary condition in the vicinity of the upper left edge of the
cylinder (s = 16). Projecting this error on the wavelet basis, a
spatially narrow wavelet function is automatically selected,
which, in the subsequent iteration (iteration 8), adequately
represents the singularity of the current distribution near the
upper left edge.

Now we turn to a brief comparison between the new
approach and the conventional one where the impedance ma-
trix undergoes thresholding, which renders the matrix sparse.
Comprehensive comparison between the thresholding method
and impedance matrix compression method can be found in
[9] and [10]. Fig. 8 describes the performance of the two
algorithms. The vertical axis describes�Ebc, the square of the
L2 norm of the error in satisfying the boundary condition. The
horizontal axis is the compression ratio. The compression ratio
is equal to one minus the ratio between the number of nonzero
elements of[Zl] in the last iteration performed and the number
of elements of the original matrix. Note that while we consider
the matrix[Zl] in the last iteration as a measure of complexity,
one must recall that other matrix equations, albeit smaller
in size, have been solved in the preceding iterations. The
advantage of the new algorithm is clearly seen in the figure.
Another perspective on the difference between the methods can
be gained from Fig. 9. The approximate current obtained based
on the thresholding procedure is shown in Fig. 9(a), while the
one obtained based on the new algorithm is shown in Fig. 9(b).
The fields due to these currents satisfy the boundary condition
to within the same average error level of�Ebc = 0:1%. It
is seen that the current shown in Fig. 9(a) has many rapidly
varying ripples. The wiggly behavior of the solution stems
from the fact that all the rapidly varying wavelets are actually
playing a part in the solution. In contrast, only part of these
wavelets are used to construct the solution shown in Fig. 9(b)
and, hence, this solution is smoother.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7. Results obtained in iterations 0, 1, 7, and 8 of the iterative solution
for the scattering problem depicted in Fig. 6.

Fig. 8. Boundary condition error versus compression of the impedance
matrix for the scattering problem illustrated in Fig. 6, obtained by two solution
methods. Cases considered are for the conventional approach of thresholding
the original impedance matrix (denoted by pluses) and for the iterative
compression algorithm proposed in this paper (denoted by crosses).

We will further exploit the above example to illustrate some
of the computational merits of the new method. In this case, a
total of 64 pulse-basis functions were originally used to expand
the unknown current and the boundary condition was imposed
in the least-square error sense at 128 testing points. Thus,
if one had pursued the solution using a standard method of
moments approach, the size of the resultant impedance matrix
would have been 128� 64, that is a matrix comprising 8192
complex entries. Moreover, the elements of this matrix would

(a) (b)

Fig. 9. Magnitude of current densityJz along the perimeter of the square
scatterer (depicted in Fig. 6) obtained by two solution methods: cases con-
sidered are for (a) the conventional method of thresholding the impedance
matrix and (b) the iterative compression algorithm proposed in this paper (at
iteration 9). Both solutions are subject to the same accuracy requirements in
terms of satisfying the boundary condition.

Fig. 10. Scattering problem of a conducting half circular shell excited by a
TMz incident plane wave.

have been comparable in magnitude, which implies that a
substantial reduction in the number of matrix elements would
not be achieved by means of a thresholding procedure without
suffering loss of accuracy. If instead of the pulse functions,
Haar wavelets are used to expand the unknown current and
Haar wavelet transform is applied to the testing points, the
resultant matrix will also comprise 8192 complex entries, but
the matrix will be more localized and a thresholding procedure
can render the matrix sparse without much degrading solution
accuracy. For example, applying a thresholding while allowing
an average error level of�Ebc = 0:1% resulted in 4712 zero
elements, which implies a sparseness level of4712

8192
= 0:5752.

Thus, the complexity here is that of solving a 128� 64
sparse matrix with 3480 nonzero elements. Finally, to arrive
at the same error level of 0.1% using the new compression
algorithm, only eight iterations were performed, which resulted
in 17 basis functions. As mentioned before, the number of
testing points can be reduced proportionately to the reduction
in the number of elements. In this example, the number of
testing points is approximately three times the number of basis
functions. It follows that the matrix arrived at in this case is
of size 64� 17, that is a matrix of 1088 complex elements,
and the compression level is thus

Compression= 1�
17� 64

64� 128
= 0:867: (13)

Again, it may be claimed that only the last iteration has been
taken into account, but one should keep in mind the fact that
the previous iterations involved much smaller matrices and
that they could be used as initial guesses for the solution of
the matrix equation.

As was mentioned previously, the correlation between the
wavelet expansion of the error and wavelet expansion of
the current plays a key part in the success of the suggested
algorithm, where the error is indicative of which elements
should be added to the current expansion. Clearly, it can
be argued that in the case of a concave body where the
correlation is not as obvious as it is in the case of a convex
body, the results will not be as good. The following example



232 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 2, FEBRUARY 1998

Fig. 11. Magnitude of current densityJz along the circular perimeter of the
scatterer for the scattering problem illustrated in Fig. 10, obtained with 64
basis functions.

Fig. 12. Boundary condition error versus compression of the impedance
matrix for the scattering problem illustrated in Fig. 10, obtained by two
solution methods. Cases considered are for the conventional approach of
thresholding the original impedance matrix (denoted by pluses) and for the
iterative compression algorithm proposed in this paper (denoted by crosses).

thus deals with the scattering by a concave body. The spe-
cific configuration considered is that of a half circular shell,
as depicted in Fig. 10. The perimeter was divided into 64
pulse-basis functions, which were, in turn, transformed into
a Haar wavelet basis. The resultant solution, when neither
compression nor thresholding is applied, is shown in Fig. 11.
A comparison between the two methods—that of thresholding
and that of compression—is given in Fig. 12. It is evident that
even in a case where internal reflections exist the iterative basis
construction works quite well. This is probably owing to the
fact that the correlation between the error and the current in the
small scale is conserved regardless of the shape of the scatterer.
Finally, Fig. 13 presents intermediate results obtained in the
course of the iterative process, which show how the iterative
solution for this scattering problem evolves.

V. SUMMARY AND CONCLUSIONS

In this paper, we proposed a new algorithm for the incor-
poration of wavelets into the solution of integral equations
arising in scattering problems. This algorithm utilizes the fact
that quite often only a few terms are needed to describe
the current on the scatterer to a good approximation. An
iterative procedure for the determination of these few terms
has been presented. The procedure is based on the apparent
correlation between the respective wavelet expansions of the
error and the unknown current. Numerical results have been
furnished, which demonstrated the applicability and features
of the algorithm.

Future research can proceed along two lines. An important
continuation can be extension of the approach to more complex
problems such as problems involving scattering by metallic
and penetrable finite-size bodies. It is quite obvious that many

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 13. Results obtained in iterations 4, 6, 8, 12, and 18 of the iterative
solution for the scattering problem depicted in Fig. 10.

of the ingredients of this two-dimensional solution can be read-
ily generalized to three-dimensional cases. Other efforts can be
devoted to dealing exclusively with the iterative algorithm. We
believe that by exploring the cases in which the algorithm falls
within the class of conjugate directions algorithms [14], one
can deduce how the computational efficiency of the algorithm
can be improved.
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