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Computation of Electromagnetic Waves
Diffraction by Spectral Moments Method

Driss Chenouni, Zakia Lakhliai, Claude Benoite@rd Poussigue, and Abdallah Sakout

Abstract—In this paper, we solve, for the first time, electro- limiting the size of these matrices. These difficulties can be
magnetic wave propagation equations in heterogeneous mediagyoided by using the spectral moments method (SMM), which
using the spectral moments method. This numerical method, first aj1ows management of very large matrices. Indeed, in the
developed in condensed matter physics, was recently successfully . L . ’
applied to acoustic waves propagation simulation in geophysics. MoM, the matrices are full and their dimensions are u§ually
The method requires the introduction of an auxiliary density ~about (2000 to 4008 2000 to 4000). In the SMM the matrices
function, which can be calculated by the moments technique. are sparse and we are now able to deal matrices (20 00& 000
This allows computation of the Green’s function of the whole 20000 000). Of course, in the examples presented in the paper,
system as a continued fraction in time Fourier domain. The ha part of the discretization grid occupied by source, slit and

coefficients of the continued fraction are computed directly from . . I But. in other diffracti imulati thi
the dynamics matrix obtained by discretization of wave propaga- receiver Is very small. but, in othér diffraction simufations this

tion equations and from the sources and receivers. We illustrate Part is greater and, with the introduction of absorbing boundary
this method through the study of a plane wave diffraction by conditions, it may reach a few percents.
a S”tt in _twot-hdime(;]_sional_ (Z-P)sngedia f(ijhd '(3:)’ a re_ctangul_?r: For harmonic solids, the moments method was first intro-
aperture In ree-dimensional - meaia. om H
aﬁalytical results obtained with t(he Izirchhoff theorypgﬁg\(/)vg tvr\::it duced by Montrpll [7] to calculate the_denSIty of one-phonon
this method is a very powerful tool to solve propagation equations state and was improved b_y Blumstein and Wheeler [8] and
in heterogeneous media. Last, we present a brief comparison with Wheeler [9]. In the dynamics of condensed matter, the exact
other computing methods. evaluation of the response was developed by Benoit [10], [11]
and applied to the study of fractals as the Sierpinski's gasket
by Benoit [12], percolating networks by Royer [13], [14],
silica aerogels by Rahmani [15], [16], dynamical properties
ODELING wave propagation in heterogeneous medig polymers by Poussigue [17], quasi-crystals by Benoit [18]
requires the development of high-performance numeind Poussigue [19], and to damped systems by Benoit [20]. In
ical algorithms. Over the past several years, many modelisglid-state physics, the moments method has been developed
techniques have been proposed to solve Maxwell's equatiofisstudy electronic properties by Gaspard and Cyrot-Lackmann
Finite-element and finite-difference methods can be used [2$], Lambin and Gaspard [22], Turchi [23] and Jurczek [24].
references to model electromagnetic scattering problems [fhese methods are mathematically equivalent to Lanczos [25]
In all these methods, absorbing boundary conditions play the recursion procedure of Haydock [26] and, in many
a key role: several techniques were recently proposed depects, Jurczek [24] and Benoit [27]. In fact, the moments
solve these problems [2]-[4]. We could also mention the sgrethod is much more general than the Lanczos procedure and
called “moment of methods” (MoM) [5], [6]. These latterwas solved by Stieltjes [28]. The spectral moments method
methods involve inversion of large full matrices, limiting thevas recently successfully applied to the propagation simulation
discretization fineness of the system under consideration.dh acoustic waves in geophysics by Rousseau [29]. The
this paper, we present the application of a method called it application of this method to the electromagnetic waves
“spectral moments method” to electromagnetic wave propropagation simulation in anisotropic media was presented in
agation simulation in heterogeneous media. This methodBgnoit [30].
based on determination of the exact Green functions of thein this paper, we first present the general propagation
system. For all frequencies, the system response (electricequations. Then, the main features of SMM are described
magnetic field) to a given source is obtained from the Greailong with the procedure to compute Green functions. In the
functions. Direct determination of the Green functions requirggst section, SMM is applied to the simulation of wave prop-
computation of all eigenvalues and eigenvectors of matricggation in two-dimensional (2-D) and in three-dimensional

(3-D) heterogeneous media.
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and In heterogeneous media, it is necessary to take into ac-
. . count the gradient term in (6). Then matdX is sometimes
VD= po(71) (2)  nonsymmetrical. Its elements are given by

where po (7, 1) andfo(F, t) are, respectively, the free chargesp, ,(n,n') = (28, — S b1y — 577’“’1_1(&))

and current density. With time-harmonic fields, we can write 1 1
directly X bep X2 e (M) prer (W),
D=[]E 3) + (Bnnr—1 i) = Onnisr o)) (&0 (R + 1)
and 1
o - —er(n—1¢,
B =[# (4) 0= 10)) TRass e o
(11)

where[¢] and[y] represent dielectric and permeability tensors,

respectively. In this work, we assume that the media aftheret1,) indicates a displacement of one step in the lattice
isotropic and heterogeneous so tfigtand [1] are diagonal in the o direction. A« is the nodal interval in the direction.

3 x 3 tensors depending on spatial coordinates and frequencyro solve (9), we introduce the Green matrix which satisfies
W.
Introducing the vector potentiak(,¢) and the scalar po- Gt —t)+ DGt —t')=-TI6(t - t). (12)
tential V (7, t), we find that the vector potential satisfies the
inhomogeneous wave equation Usually G(t — ') is subject to certain boundary conditions.
. . oL . I These conditions have been taken into account in the evalu-
VA+p(r)Vp= (m)(VA) = p(r) V= (1) x (V x A) ation of matrixD. They can be described in such a way—if
_ o o o 92A - in (11) »’ is outside the discretized box, then it is replaced
— e (N(VA)Ve(r) - “(T)E(T)W =—p(r)Jo. (9 by n/, = n’ £ N, (Na being the dimension of the lattice
) ) ) ) ) in the « direction) in such a way that/. is inside the box.
Now, if we are dealing V\_ll_th r_lonferromagnetlc material, W&hen Dy s(n, n}) is equal toDys(n, n') (periodical boundary
can assume that permeability is constant. Thus, (5) becom@énditions) or Do (n, n}) is equal to zero (free boundary
. . L. A . conditions).
VA— e (r)Ve(r)V - A — ue(r)W =—uly. (6) Formally, the solution of (9) is given by

The scalar potential will be obtained from the Lorentz |]1(t)> — /G(t—t’)|f(t’)> dt' (13)
relation. It is very convenient to introduce a discrete base

or site representation. Let us consider the vector fild ¢)
taking the valuei(r, ,t) = 4(n,t) in point 7,, we introduce
in Dirac notation the column vectd¥’) of the discrete space

so the Green matrix allows us to compute the response
function. Now, If we want to work with the electromagnetic
field with the help of

such that
11 1 —1
U@) =3 waln, )an), @ EOME = o] = e
|an) is the base in the real space or site representation, withd
o, = (z,y,2). This base is assumed to be orthogonal and - 1=
complet(e ) ? B =l (r)p.]2 B (15)

(an | Bn')y = 6,36, and Z lan){an|=1.  (8) (1) becomes

o 65/ 1 d gl 1 1 =
|an) is equivalent to7, (n) a vector of the canonical basé,  d(ct) e (M) ]2 (V % (eB) — cpo[en ()] 2 (pr)2 Jo.
is a three component vector (for the three components of the (16)
vector potential) at every site of the lattice.

In a discrete space, using the finite-difference scheme, (6Now, with B’ = ¢B, ' = ct, andp, = 1 (nonmagnetic

leads to the motion equation materials), one obtains the following equations:
62|121> A 7 E/ 1= = = = 1 =
Sz = Dl =) ©) %7 = [e,(M]"FV x B =T with J' = cpole ()] ]y
- 17
with ¢/ = et, A,(n) = /e, (n)p. A, (n) and and a7
nN T _ /'Lr 85’ = _1 =
an [J) = Joaln) = = [y o doa(n). - (10) 5 =V x ([ (] E), (18)
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The space discretization of (17) and (18), using the finite- lll. THE SPECTRAL MOMENTS METHOD
difference scheme, leads to the following motion equation:
A. Method
! ! /
%f(i) lEaf(}) if(i) Physical properties must not depend on the time origin,
i',/( ) ;/( ) l;( ) so the Green matrix is only a function of the time interval
E1(1) (1) J:(1) ' So it | : K with the ti |
BL(1) BL(1) t—t ._So it is very convenient to work with the time Fourler_
e e domain. Finally, the time dependence of the electromagnetic
E’. E’. 7 ' field will be obtained, if it is necessary, by using the inverse
,f(n) ,f(n) f(n) Fourier transform. So, introducing the Fourier transfdgfw)
da | ) £y (n) 7y (n) of G(t —t')
| B [ =M 2m) [ | ) | a9) 1
B (n) B (n) Gt —1) = — / G =" dy  (26)
B, (n) B, (n) 27
B (n) B (n) the response to an external source is given by
[¥(w)) = G(w)|F(w)) (27)
» » : which can be expressed in terms of components, using rela-
B(N) B(N) : tions (8) and (27)
which can be written in matrix form (an | () =Y (an|G)[Bn')(Bn’ | Fw))  (28)
Bn’
dlq? = -M|®) — |J). (20) with |#(w)) = |A(w)) if we work with vector potential or
dt [¥(w)) = |®(w)) if we work with electromagnetic fields. Let
The vector|®) is given by us recall that
{an|G(w)[An') = Gap(n,n',w) (29)
fan | @) = @, (n) ey
where (an | F(w)) = Fu(n,w). (30)
_ The Fourier transform of the Green matrix is given by
,(n) = £, (n), ifa=123 (1=22=y3=2) . X
22) Gw) = —((—iw)"I+ K)~ (31)
and wherem = 1 and K = M with the (£, B) fields and

B.(n) = B.(n), fa=456 (d=25=y6=z m = 2K =D with the A field From (28) and (31), we
see that determination of the response function | 1 (w))
(23) e \
involves determination of the matrix element

(an | J') = J'(n) here represents a current density source. (an|G(w)|fn’) = —(an|((—iw)"I+K)™'[gn").  (32)
|an) is equivalent toe,(n) a vector of the canonical base. We see that((—iw)"I + K)=' exists only if —(—iw)™

Now, ¢, is a six component vector (for the three componentgers from the eigenvalues of matriK. The difficulty is
of the electric field and the three components of the magneggoided by adding an imaginary parsuch that: — 0+

field) at every siten of the lattice. With the A field, we introduce the variable = w? +
Matrix M is anti-symmetrical even under heterogeneoys _ . . .. \hile with the (E, B) fields we introduce

cond_ﬂmqs. As for the field potentials, we introduce the Green _ i(w + ic). In the absence of absorption, eigenvalues
matrix given now by

of the D matrix are strictly real while eigenvalues of thd
matrix are purely imaginary. Introduction of the coefficient

Gt —1') + MG(t — ') = —15(t = t'). (24) ¢ is the same as introducing a dissipation mechanism in the
media. This effect will play a key role afterwards. We call
The solution of (20) is given by A =w? andy; = iy} the eigenvalues db andM matrices,
respectively.
|B(1)) = /G(t — ) (@)) dt’. (25) Let us now present the main features of SMM which are
detailed in Benoit [20], [27], [30] and Royer [32].

o Determination of the response function involves computa-
We now show how to calculate the Green matrix with SMMyon of the nondiagonal element (32). Introducing the eigen-

The mathematical aspect of this method has been developgfies and the left and right eigenvectors of the malix
in previous papers [20], [27], [30], so we will just recall the

main points concerning application to electromagnetic wave K|j)r =nili)r (33)
propagation. (71K = 1.(jl9; (34)
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wheren; = p; or A; with m =1 or 2. |j)r and|j); are the where the continued fraction coefficients are obtained by (with
right and left eigenvectors of matri. They are distinctand s > 0 and b, = v4q)
bi-orthogonal [33], [34]

DSS
- - g4y = — (45)
(i 1ie =6 (35) Vss
and
If matrix K is simple, the eigenvectors are linearly inde- _ Vstis+1
: bsy1= ——— (46)
pendent and one obtains Vs
] ] I 36 with
Z]:(L])RL <]|) o ( ) Vss = L<ts | ts>R (47)
Thi lation i ivalent to the cl lati 'tﬁnd
is relation is equivalent to the closure relation wi _
a Das = 1{t|K[t)r (48)

the Hermitian matrix. We conjecture that relation (36) holds

for matrices involved in physical problems. The elemenj

, ' ¢ s and v;; are called the generalized moments. \Vectors
{an|G(z)|pn’) can be written [using (32) and (36)] as |t,)r.; are obtained by the following recursion:

{an|G(z)|pn") = Z lan |jzR_L7<7] L (37) [tsi1)rr = (K —asp1)|ts)rr — bsltsi)ror (49)
: j
_ ' _ starting with [t_1)r . = 0 and |to)r . = |p). Nontrivial
which corresponds to the operatGi(z) given by formulas (44)—(49) are well known in moments problem theory
|iVrL [35]. Equations (45)—(49) with the knowledge of dd€aand
G(z) = Z % (38) |p) (=1¢)), permit us to compute the coefficients and b,
i ! by iteration.

We want to determine this element (37) without having to Our aim is to work with a large but finite-order matrix, so
compute the eigenvalues or eigenvectors of makixFirst, the number of eigenvalues is not infinite. In practice, we only

we introduce the following auxiliary function density: calculate a few of the continued fraction coefficients. A test is
inserted and the computation normally stops whepb, _;
g(x) = Z(p | ) re{i | @)6(x —nj) (39) is smaller than 10". If this value is quickly reached, the
j calculation stops and the results are considered exact. There

are other strategies for problems with slow convergence [28].
é(nowledge of (44) allows determination of Green functions
of the system. The continued fraction is convergent and
computation of coefficients; andb; is stable if the density
Ip) = Zpa(n)|an> and |q) = Z go(n)|an)  (40) functiong(z) is a positive function. In the general situation, the
an an positiveness ofy(z) is not rigorously established. However,
in many physical problems it is shown (in the Appendix)
thatg(x) is closely related to the energy dissipation (equal to
zero if ¢ is zero) and is a positive function. When the matrix
R(z) = / Z+g(x) d Z AWNIAE q>. (41) is symmetrical, the left and right eigenvectors are identical

wherez = u,n} = A; with m = 2 or = w,n; = g} with
m = 1. Vectors|p) and |¢) are considered as data for th
problem

Pa(n)(g.(n)) are the Cartesian components ofp)(|¢)) on
the nth site. Now, we consider the functiof(z)

(—)ymz L - (I7Yr = 14)r.) andg(x) is clearly positive.
! Since development in the continued fraction is very stable
It is clear thatR(z) = {(an|G(z)|gn’) if |p) = |an) and and convergent with functior?(z) such thatg(z) given
l¢) = |Bn’). It is easy to show that, with the help of (33)by (39) with |[p) = |¢) is a positive function, it is very

(36), (38) convenient to compute the nondiagonal term (37) as a linear
o combination of theR(z) functions (44), with the form of the
R(z) = ’”’1 (42) linear combination depending on the choicdfvectors. For
=0 2 instance, with a symmetrical real matrix we can choose
wherey; represents théh moment ofg(z) given by Ip) = |g) = |an) + |Bn’) (50)
W= /g(x)xl dr = <p|[{l|q> (43) obtaining Rt (Z) and
_ _ _ /
which can be directly computed from the known d&a|p) ) = la) = lanm) —5n') (51)

and |¢). Equation (42) is not convergent. However, it can bSbtainingR‘ (2)
shown that if|p) = |¢), R(z) can be developed in a continued
convergent fraction Rt (z) — R (2
g b (niG (| = FEZIEE) gy
0
r—ay — — (44) with a matrix having complex eigenvectors, the choice of the
e |p) and |¢) vectors can be more complex [20].

, then the Green function is given by
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B. Computing Aspects N

y
Let us now consider how the dynamical matrices are ob-
tained. With the potential vector, the matrl is given by sources receivers ——>»
(11). With the electromagnetic field, after discretization of the 1

motion equations (17) and (18), the local physical properties of
a pointn of the media is represented by six small interaction
matricesm of (6 x 6) dimension. Indeed, in 3-D space, there
is one matrixm for every bound between site and the
six neighboring sites’. These matrices can be expressed

schematically as witilN = (¢)z

w=(pa- ") 9

where N~'R. and RN~" arise, respectively, from the dis-
cretization of (17) and (18). Spatial derivatives RN~!
take into account the heterogeneity of the medi.is a
(3 x 3) matrix corresponding to the discretized rotational
operator. Index matriced of dimension (3x 3) represent the
local electromagnetic properties of the medium expressed in Ny
the laboratory frame. Schematically, with the electromagnetity 1 The 2-D model: dimension of the b, = N, — 301, position
field, the system can be seen as a cubic lattice of “particlas’the screen= 30, width of the aperture= 60. The incident plane wave
of masse(n), every particle having six degrees of freedonis simulated by introducing_ a uniform current dens_ity in the=z) plane
. . . . . olarized parallel to the axis. ¢ = sourcesz = receivers.)
Interactions are between the particle and its first ne|ghb(5)rs
only and can be represented by “spring” (every “spring” has
been characterized by a §66) elastic tensor). In this scheme, To simulate a plane electromagnetic wave propagating in
current source at site is equivalent to a “force” applied the xz-axis direction (Fig. 1) with the electric field polarized
to the nth particle. Response at sitee are given by the following a direction? in the y-z plane, we introduce, in this
“displacement” of themth particle. plane, a uniform current density parallel to tHeaxis. It can be
In practice, first we compute the dynamical mathk (or easily shown that such a source is equivalent to a point source
D) of the medium under consideration. This matrix is sparse infinity in the direction perpendicular to the plane. The
and we use special method of storage. Now we assume tteteiver is located on the opposite side of the sample. Periodic
we have a source at sité, polarized along the axis and we boundary conditions are taken along thelirection (2-D) or
want to compute ther component of electric field createdalong they and z directions (3-D).
by this source at sitex. Then the & components of the
vector |p) = |to) are equal to zero unless for the: and 5n’
components, which are set to one. Coefficients of the continued
fraction (44)R*(z) are obtained from the iterations shown at
the bottom of the page. In order to test our method, we have computed the elec-
R~ (z) is obtained starting fromp) = |t;) where an’ tromagnetic field diffracted by a slit (2-D media) and a
component equal to one arith component is equal te-1. rectangular aperture (3-D media) and we have compared

IV. APPLICATIONS DIFFRACTION
BY A RECTANGULAR APERTURE

Green function is obtained from (52). the computed values to the results of Kirchhoff's diffraction
[60)
7 N\
von = (to | to) Voo = (to[M|tg)
N\ i 7
a| = %
l
|t1) = Mto) — ai [to)
7 N\
vir = (ti]tq) v = (6 [ M]ty)
N\

— — Y11
as = V11yu;b1 = Yoo

[to) = M[t1) — as[t1) — bq[to).
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theory. The computations were performed on an IBM SP2 4 . | ] . . T T
computer. I
To simulate our system, we consider a parallelepiped box of |
size L, * L, * L., which is discretized by th&/, + N, « N, 3
lattice (v, N,, N, are integers). The grid spacingst, Ay [
and Az are determined through the relatiods = N,
Az, L, = N, * Ay and L, = N, * Az. We assume that
the electromagnetic plane waves propagate alongrtlaeis
and that the electric field is polarized in thedirection. To
simulate the plane wave, we introduce, in thez) plane, a 1
uniform current density parallel to the axis. The receivers
are located on the opposite face of the grid. Periodic boundary

I(a.u.)
N

conditions are assumed in thedirection with the slit and o L 1 L :

y and z directions with the rectangular aperture. With these 0 20 40 60 80 100 120 140 160
boundary conditions, our system is equivalent to a diffraction n

grating. We do not introduce any absorbing conditions at tif@. 2. Computation of the intensity diffracted by a slit for frequency
limit of the box. w = 0.1 ande = 0.05 versus receiver positions. The originn = 0 is

. . . . taken at the center of the edge= N.., O vector potential X electric field,
To work with very large systems, i.e., with a high-ordegnayytical values. g P X

matrix (about several millions), it is necessary to develop new
storage techniques. The method we used involved considering
the matrix as a system of sites, interacting with neighboring
sites only through a local interacting matrix. So, we only store
the different values of these local matrices and, for every ,. [
site, the type and number of neighboring sites. When we
solve Maxwell equations directly in terms df and B, the I
elementary interaction matrices are £66) anti-symmetrical 7 17
matrices. To resolve the equations using vector potential, fér i
isotropic media, local matrices are reduced to scalars. I

We verify the accuracy of the SMM results by comparing o0.85
them to those obtained by the theoretical solution given by the I
Kirchhoff approximation formula [36]

3.4 T T T T T T T

0 1 1 1
9 0 20 40 60 80 100 120 140 160

I(?“) ~ ‘/ [COS(ﬁ, 7?/) — COS(ﬁ,F)] e—ik|F—F'| a3 (54) n

=/

|7?— r Fig. 3. Computation of the intensity diffracted by a slit for frequency
w = 0.3 ande = 0.05 versus receiver positions. The originn = 0 is

oo . s taken at the center of the edge= V;, O vector potential X electric field,
/ x
where i is a unit vector normal toX’ and pointing t0 ,patical values.

diffraction region (see Fig. 1). The Kirchhoff approxima-

tion supposes that the frequency of the incident wave is ) _
not too small (wide-wavelength limits) and not too high 1) Vector Potential ResultsThe Green function of the sys-

(narrow-wavelength limits). In our computation, we work a{eM is obtained from the difference betweét(z) and
frequencies such ak ~ [, where! is the linear size of the 1t (). To compute the Green function, we have used 450
aperture andh > 10-20Ax with Az = Ay = Az being the generalized moments. It is very important to note the ex-

parameters of the grid. The periodic boundary conditions aq@pti(lnal s_tability of the method. The differences — a;
taken into account in the calculation of the Kirchhoff integrafnd 03 — b; are null until the 200 range. Thus, if we stop
Absorption coefficient was also included in the Kirchhoffomputation of the continued fractions before this value, the

. H + — .
formula where the wave vector was considered complex. In tiifference betweerf?" () and R~ (z) will be equal to zero.

following, the frequencies are given in reduced units. To obtajffiS means that coefficienis andb, have a physical meaning
es, even up to 450. The SMM gives the response for

the frequency in hertz, it is necessary to multiply the vald@" larg

given in reduced units by three™1@= (with Az = Ay = Az all frequencies between zero ang ., Wwherew,,,x depends
given in meters). ’ on the discretization scheme. Here, we present results only

for some specific values of the frequency. The behavior of
the modulus squared of the vector potential obtained by
SMM versus the receiver positions are shown for frequencies:
There is no variation in the field quantities with respecttow = 0.1 with ¢ = 0.05 in Fig. 2,w = 0.3 with ¢ = 0.05
Cartesian coordinates. Our system is illustrated in Fig. 1. For Fig. 3,w = 0.1 with ¢ = 0.005 in Fig. 4, andw = 0.3
this case, we choos¥, = 301, V, = 301. In the nodes range with £ = 0.005 in Fig. 5. In these figures, we also provide the
I = N, /10, we consider a screen characterized by a higimalytical results obtained with the Kirchhoff formula. The
refractive index(e, = 10%) with an aperture size of 20%,. two results are clearly in very good agreement.

A. Diffraction of Plane Electromagnetic Waves by a Slit
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0.28 T T T T T T T 6T T i T T T
0.21 -

0.14

I{a.u.)
I(a.u.)

0 20 40 60 80 100 120 140 160

60

n

Fig. 4. Computation of the intensity diffracted by a slit for frequency

w = 0.1 ande = 0.005 versus receiver positions. The originn = 0 Fig. 6. Computation of the intensity diffracted by a rectangular aperture for
is taken at the center of the edge= N, , O vector potential X electric frequency. = 1 ande = 0.05 versus receiver positions. The originn = 0
field, analytical values. is taken at the center of the fate= N, O vector potential, analytical values.

0.14

0.10

I(a.u.)

0.035

N

20 40 60 80 100 120 140 160

0
0

i i ] o ) 0 10 20 30 40 50 60
Fig. 5. Computation of the intensity diffracted by a slit for frequency n
w = 0.3 ande = 0.005 versus receiver positions. The originn = 0
is taken at the center of the edge= N, O vector potential X electric
field, analytical values.

Fig. 7. Computation of the intensity diffracted by a rectangular aperture for
frequencyw = 1 ands = 0.005 versus receiver positions The originn = 0
is taken at the center of the fate= N, O vector potential, analytical values.

: 2) Elegtromggnenc Field Results_SlmllarIy, we have StUd-. We present the results calculated by SMM and those ob-
ied the diffraction of electromagnetic plane wave propagatl(?n. g Itically with the Kirchhoff approximation formula
in a 2-D isotropic medium by an aperture using the motioﬁm],_.e analy —yl th e — ot app do = 1 with
equation (19). We consider a lattice identical to that used i(r)lr_requengyw - with & _.0'05 in Fig. 6 andw = 1 wit
the A study. We calculated 600 moments. In Figs. 2-5, wWe ™ 0.005 in Fig. 7. There is excellent agreement between
also give the modulus squared of the electric field obtainézdBses results.
by SMM versus the receiver positions for the same frequency
and damping values, compared to previous results. We see
that there is excellent agreement with the results obtained
analytically and those obtained from the potential vector. In this work, we have reported two types of results: one uses
the potential vector and the other uses thz 5) field. Both
) _ approaches give very good results. With the potential vetior

B. Diffraction by a Rectangular Aperture matrix dimensions are smaller than with thg, 5) field and

In the following, we have easily extend SMM to comput¢he CPU time taken by the computer program was lower (with
Green functions in 3-D space. To illustrate the problem, wé the CPU time is 0.24 s per moment and wiffy B) itis 1.22
only present results obtained with the potential vector. s per moment for 2-D system). This permits us to work more

The calculation uses a (164101 101) grid(N, = N, =  easily with larger systems, e.g., in three dimensions. However,
N, = 101), which corresponds to (103030%¢ 1030301) in anisotropic or heterogeneous media when using #eB)
matrix. Here we solve vector potential (9). The opening is feeld, the matrices are strictly antisymmetrical (these matrices
square with sidezx = 20%AN, placed in the planéyoz) at can be easily transformed into symmetrical matrices), which is
I = N;/1. We calculated 500 moments. a great advantage when using SMM. With the potential vector,

V. DiscussiON AND CONCLUSION
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Fig. 8. Variations in the electric field over time at the center of the fase N, with = = 0.05. A source pulse is applied at tintg = 100 in theyoz plane.

the matrices are not always symmetrical. Consequently, the aggained with: = 510~* do not markedly differ from those
of either method depends on the problem that has to be solvebtained with nonabsorbing media = 0) and represent a
The second point concerns the absorption boundary congood approximation of free media. Now, we compare SMM
tions. We did not insert any such conditions here. How can thdth other computing methods.
good results be explained? In SMM, we compute the Greenlt is difficult to make comparisons with the usual moment
function between source points on the: surface at: = 0 methods [5]. In this latter method, only the diffracting object
and a point (receiver) in thgoz surface atr = L. is discretized and free-space Green functions are used to
The Green functiofR|G(t —1')|S) represents the responsecompute the diffracted field. In the usual moment methods,
of the receiverk at timet when a pulse (Dirac) has beenit is necessary to invert full matrices limiting the size of the
applied at the sourced at time ¢'. This Green function diffracting object. Diffraction is also computed for a given
can be computed by taking the inverse Fourier transforfrequency. In SMM, all space is discretized and the exact
of (R|G(w)]S). Applying a pulse at timet’ in the yoz Green functions are computed for all frequencies.
surface will produce a electromagnetic wave that, in the There has been only one comparison until now, in electro-
absence of absorption in the box, will propagate from omeagnetism, with the finite-difference method [37]. However,
side to other side indefinitely. Thus, computation of ththe results obtained in the simulation of acoustic wave prop-
electromagnetic field in thejoz plane atz = L, will agation [29] provide some general information about both
include this effect and the results will not be in agreementethods. The same conclusions will be certainly true for
with the Kirchhoff theory. With the finite-difference methodthe simulation of electromagnetic wave propagation. In the
one usually introduces absorbing boundary conditions [2]-[4inite-difference method, values for the fields are obtained
However, in SMM, coefficient represents energy dissipatiorfor every point of the space, while with SMM computation
(finite lifetime of photons), so it is possible to choose thisf the fields is performed separately for each point. This
coefficient so that only one wave arrives on the opposite sitkea substantial disadvantage of SMM in some applications.
of the box and other reflections are weak or eliminated. Tdse of large parallel processing will certainly allow us to
illustrate this effect, we computed the time dependence of timeprove the performance of SMM. The computing time for
electric field in a receiver at the center of the arrival facihe determination of generalized moments is about the same
when a Gaussian source is applied in the source plane at tiasethat necessary to computesteps with the finite-difference
t, = 100. Figs. 8 and 9 show variations in the electric fieldsethod. In SMM, one works indirectly with the whole set
with ¢ = 510-2 ande = 5 10~3, respectively. It is clear that of eigenvalues and eigenvectors of matrif2or K. So, the
with ¢ = 51072, only one wave reaches the receiver, whileesults are not very sensitive to the details of discretization
with ¢ = 51073, several waves reach the receiver. Howeveprocesses. For instance, it is not necessary to take into account
even withe = 51073, the form of the diffracted patternvery precise boundary conditions at the corners of the box
is in good agreement with the analytical results, showirig 2-D media or edges of the box in 3-D media. Simple
that the contribution of the secondary waves is weak. Tliscretization schemes work very well. We think that this effect
form of the wave withe = 51072 is in agreement with arises because time is not discretized in SMM. Furthermore,
the response of a 2-D media where the Green functions avigh SMM, knowledge of the Green functions allows one to
Hankel functions (in free-space). It is easy to verify that result®@mpute the response regardless of the form of the source,
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Fig. 9. Variations in the electric field over time at the center of the fase NV with = = 0.005. A source pulse is applied at tinfg = 100 in theyoz plane.

while with the finite-difference method it is necessary to make From (27), we know that with the electromagnetic field
a run for every type of source. (E, E?)

In conclusion, we have presented simulations of electromag- 1B(w)) = G(w)|J(w)) (A.5)
netic waves propagating in 2-D and 3-D media using SMM,
thus introducing a new approach for numerical resoluticknd considering only the electric components, one obtains from
of wave propagation problems. The method can be us€b) and (27)
regardless of the number, nature, or form of the diffracting |E'(w)) = [ET]%IE(W)) = G(w)|J' (@) (A.6)
objects. Comparison between the analytical solutions and
the spectral moments-method results proves the accuracys@fthat using (17)
this method. Applications to the computation of radar cross - AV
sections and propagation in anisotropic heterogeneous media W= Q—RPU/( w)|G(w)|J (w)). (A.7)

(such as liquid crystals [38]) are now being developed. Taking into account the form of the Green operator (31) with

the (E, B) field andz = i(w + i), in the limit ¢ — 0+ one

APPENDIX
) ) _ Obtains
Here we show that functioy(z) given by (39) (with -
lp) = |¢)) is always a positive (or semi-positive) function o AV op iy (J' VeI
even with nonsymmetrical matrix. To illustrate this situation T 2epy , wtic— pf
with (£, B) fields, let us consider a volunié and a discrete L
set of point chargeg, located _at _the points’, in_side V. _ AV PP ' | DrrlG | Je
The power of the electromagnetic field converted into thermal T 2ep Z (w— ) +¢°
energy (Joule effect) is given by Jackson [31] L7 !
Y B =P J|JRrJ|J>(“_N])
W_/Jo(r,t) -E(F,t)dv (A.1) + 7 Z e
with AV
. T . .
Jo(F 1) =) quity (O6(7F = 7 (1)), (A.2) = _§W_OZ<J/ | D pr (G | T)6(w — ). (A8)
Now, with complex harmonic fields, the average dissipated !
energy is given by W is the energy loss by the electromagnetic field and must be
1 a negative function [32]. So the function
W =—-RP | J:(7) - E(7) dv. A.3 . .
g OB "3 o) = S D G176 — 1) (A9)
In site representation (A.3) can be written as J
- AV must be a positive function regardless of the values of charges
W= —RPZ Jia(n = TRP<J0 | £) (A4) ¢, in (A.2). Expression (A.9) has exactly the same form as

(39) with |p) = |¢). The same result could be obtained using
where AV is the volume element. the potential vector.
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