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Computation of Electromagnetic Waves
Diffraction by Spectral Moments Method
Driss Chenouni, Zakia Lakhliai, Claude Benoit, G´erard Poussigue, and Abdallah Sakout

Abstract—In this paper, we solve, for the first time, electro-
magnetic wave propagation equations in heterogeneous media
using the spectral moments method. This numerical method, first
developed in condensed matter physics, was recently successfully
applied to acoustic waves propagation simulation in geophysics.
The method requires the introduction of an auxiliary density
function, which can be calculated by the moments technique.
This allows computation of the Green’s function of the whole
system as a continued fraction in time Fourier domain. The
coefficients of the continued fraction are computed directly from
the dynamics matrix obtained by discretization of wave propaga-
tion equations and from the sources and receivers. We illustrate
this method through the study of a plane wave diffraction by
a slit in two-dimensional (2-D) media and by a rectangular
aperture in three-dimensional (3-D) media. Comparison with
analytical results obtained with the Kirchhoff theory shows that
this method is a very powerful tool to solve propagation equations
in heterogeneous media. Last, we present a brief comparison with
other computing methods.

I. INTRODUCTION

M ODELING wave propagation in heterogeneous media
requires the development of high-performance numer-

ical algorithms. Over the past several years, many modeling
techniques have been proposed to solve Maxwell’s equations.
Finite-element and finite-difference methods can be used as
references to model electromagnetic scattering problems [1].
In all these methods, absorbing boundary conditions play
a key role: several techniques were recently proposed to
solve these problems [2]–[4]. We could also mention the so-
called “moment of methods” (MoM) [5], [6]. These latter
methods involve inversion of large full matrices, limiting the
discretization fineness of the system under consideration. In
this paper, we present the application of a method called the
“spectral moments method” to electromagnetic wave prop-
agation simulation in heterogeneous media. This method is
based on determination of the exact Green functions of the
system. For all frequencies, the system response (electric or
magnetic field) to a given source is obtained from the Green
functions. Direct determination of the Green functions requires
computation of all eigenvalues and eigenvectors of matrices
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limiting the size of these matrices. These difficulties can be
avoided by using the spectral moments method (SMM), which
allows management of very large matrices. Indeed, in the
MoM, the matrices are full and their dimensions are usually
about (2000 to 4000� 2000 to 4000). In the SMM the matrices
are sparse and we are now able to deal matrices (20 000 000�
20 000 000). Of course, in the examples presented in the paper,
the part of the discretization grid occupied by source, slit and
receiver is very small. But, in other diffraction simulations this
part is greater and, with the introduction of absorbing boundary
conditions, it may reach a few percents.

For harmonic solids, the moments method was first intro-
duced by Montroll [7] to calculate the density of one-phonon
state and was improved by Blumstein and Wheeler [8] and
Wheeler [9]. In the dynamics of condensed matter, the exact
evaluation of the response was developed by Benoit [10], [11]
and applied to the study of fractals as the Sierpinski’s gasket
by Benoit [12], percolating networks by Royer [13], [14],
silica aerogels by Rahmani [15], [16], dynamical properties
of polymers by Poussigue [17], quasi-crystals by Benoit [18]
and Poussigue [19], and to damped systems by Benoit [20]. In
solid-state physics, the moments method has been developed
to study electronic properties by Gaspard and Cyrot-Lackmann
[21], Lambin and Gaspard [22], Turchi [23] and Jurczek [24].
These methods are mathematically equivalent to Lanczos [25]
or the recursion procedure of Haydock [26] and, in many
aspects, Jurczek [24] and Benoit [27]. In fact, the moments
method is much more general than the Lanczos procedure and
was solved by Stieltjes [28]. The spectral moments method
was recently successfully applied to the propagation simulation
of acoustic waves in geophysics by Rousseau [29]. The
first application of this method to the electromagnetic waves
propagation simulation in anisotropic media was presented in
Benoit [30].

In this paper, we first present the general propagation
equations. Then, the main features of SMM are described
along with the procedure to compute Green functions. In the
last section, SMM is applied to the simulation of wave prop-
agation in two-dimensional (2-D) and in three-dimensional
(3-D) heterogeneous media.

II. M OTION EQUATIONS

In macroscopic form, electromagnetic waves satisfy the
following Maxwell’s equations [31]:

@ ~D

@t
� ~r� ~H = � ~J0(~r; t) (1)
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and

~r � ~D = �0(~r; t) (2)

where�0(~r; t) and ~J0(~r; t) are, respectively, the free charges
and current density. With time-harmonic fields, we can write
directly

~D = ["]~E (3)

and
~B = [�] ~H (4)

where["] and[�] represent dielectric and permeability tensors,
respectively. In this work, we assume that the media are
isotropic and heterogeneous so that["] and [�] are diagonal
3 � 3 tensors depending on spatial coordinates and frequency
!.

Introducing the vector potential~A(~r; t) and the scalar po-
tential V (~r; t), we find that the vector potential satisfies the
inhomogeneous wave equation

r ~A+ �(r)~r��1(r)(~r ~A)� �(r)~r��1(r)� (~r� ~A)

� "�1(r)(~r ~A)~r"(r) � �(r)"(r)
@2 ~A

@2t
= ��(r) ~J0: (5)

Now, if we are dealing with nonferromagnetic material, we
can assume that permeability is constant. Thus, (5) becomes

r ~A� "�1(r)~r"(r)~r � ~A� �"(r)
@2 ~A

@2t
= �� ~J0: (6)

The scalar potential will be obtained from the Lorentz
relation. It is very convenient to introduce a discrete base
or site representation. Let us consider the vector field~u(~r; t)
taking the value~u(~rn; t) = ~u(n; t) in point ~rn, we introduce
in Dirac notation the column vectorjU i of the discrete space
such that

jU (t)i =
X

�n

u�(n; t)j�ni: (7)

j�ni is the base in the real space or site representation, with
�;� = (x; y; z). This base is assumed to be orthogonal and
complete

h�n j �n0i = ����nn0 and
X

�n

j�nih�nj = I: (8)

j�ni is equivalent to~e�(n) a vector of the canonical base.~e�
is a three component vector (for the three components of the
vector potential) at every siten of the lattice.

In a discrete space, using the finite-difference scheme, (6)
leads to the motion equation

@2j �Ai
@t02

= �Dj �Ai � j �Ji (9)

with t0 = ct; �A�(n) =
p
"r(n)�rA�(n) and

h�n j �Ji = �J0�(n) = �
r

�r

"(n)
�0J0�(n): (10)

In heterogeneous media, it is necessary to take into ac-
count the gradient term in (6). Then matrixD is sometimes
nonsymmetrical. Its elements are given by

D��(n; n
0) =

�
2�nn0 � �nn0+1(�) � �nn0

�1(�)

�
� ���

1

��2

1p
"r(n)�r"r(n0)�r

+
�
�nn0

�1(�) � �nn0+1(�)

��
"r
�
n+ 1(�)

�
� "r

�
n� 1(�)

�� 1

4����

1p
"3r(n)�r"r(n

0)�r
(11)

where�1(�) indicates a displacement of one step in the lattice
in the� direction.�� is the nodal interval in the� direction.

To solve (9), we introduce the Green matrix which satisfies

�G(t� t0) +DG(t � t0) = �I�(t� t0): (12)

UsuallyG(t� t0) is subject to certain boundary conditions.
These conditions have been taken into account in the evalu-
ation of matrixD. They can be described in such a way—if
in (11) n0 is outside the discretized box, then it is replaced
by n0T = n0 � N�(�) (N� being the dimension of the lattice
in the � direction) in such a way thatn0T is inside the box.
ThenD��(n; n0T ) is equal toD��(n; n0) (periodical boundary
conditions) orD��(n; n0T ) is equal to zero (free boundary
conditions).

Formally, the solution of (9) is given by

j �A(t)i =
Z
G(t� t0)j �J(t0)i dt0 (13)

so the Green matrix allows us to compute the response
function. Now, If we want to work with the electromagnetic
field with the help of

["(r)�]�
1
2 =

1p
"0�0

["r(r)�r ]
�

1
2 = c["r(r)�r ]

�
1
2 (14)

and

~E0 = ["r(r)�r]
1
2 ~E (15)

(1) becomes

@ ~E0

@(ct)
= ["r(r)�r]

�
1
2 (~r� (c ~B) � c�0["r(r)]

�
1
2 (�r)

1
2 ~J0:

(16)

Now, with ~B0 = c ~B, t0 = ct, and�r = 1 (nonmagnetic
materials), one obtains the following equations:

@ ~E0

@t0
= ["r(r)]

�
1
2 ~r� ~B0 � ~J 0 with ~J 0 = c�0["r(r)]

�
1
2 ~J0

(17)
and

@ ~B0

@t0
= �~r� �["r(r)]� 1

2 ~E0
�
: (18)
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The space discretization of (17) and (18), using the finite-
difference scheme, leads to the following motion equation:

d

dt0

0
BBBBBBBBBBBBBBBBBBBBBBB@
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�
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(19)

which can be written in matrix form

dj�i
dt0

= �Mj�i � jJ 0i: (20)

The vectorj�i is given by

h�n j �i = ��(n) (21)

where

��(n) = E0

�(n); if � = 1; 2;3 (1 = x; 2 = y; 3 = z)

(22)

and

��(n) = B0

�(n); if � = 4;5;6 (4 = x; 5 = y; 6 = z)

(23)

h�n j J 0i = J 0�(n) here represents a current density source.
j�ni is equivalent to~e�(n) a vector of the canonical base.
Now, ~e� is a six component vector (for the three components
of the electric field and the three components of the magnetic
field) at every siten of the lattice.

Matrix M is anti-symmetrical even under heterogeneous
conditions. As for the field potentials, we introduce the Green
matrix given now by

_G(t� t0) +MG(t� t0) = �I�(t � t0): (24)

The solution of (20) is given by

j�(t)i =
Z
G(t� t0)jJ 0(t0)i dt0: (25)

We now show how to calculate the Green matrix with SMM.
The mathematical aspect of this method has been developed
in previous papers [20], [27], [30], so we will just recall the
main points concerning application to electromagnetic wave
propagation.

III. T HE SPECTRAL MOMENTS METHOD

A. Method

Physical properties must not depend on the time origin,
so the Green matrix is only a function of the time interval
t � t0. So it is very convenient to work with the time Fourier
domain. Finally, the time dependence of the electromagnetic
field will be obtained, if it is necessary, by using the inverse
Fourier transform. So, introducing the Fourier transformG(!)
of G(t � t0)

G(t� t0) =
1

2�

Z
G(!)e�i!(t�t

0) d! (26)

the response to an external source is given by

j (!)i =G(!)jF (!)i (27)

which can be expressed in terms of components, using rela-
tions (8) and (27)

h�n j  (!)i =
X
�n0

h�njG(!)j�n0ih�n0 j F (!)i (28)

with j (!)i = jA(!)i if we work with vector potential or
j (!)i = j�(!)i if we work with electromagnetic fields. Let
us recall that

h�njG(!)j�n0i = G��(n; n
0; !) (29)

and

h�n j F (!)i = F�(n; !): (30)

The Fourier transform of the Green matrix is given by

G(!) = �((�i!)mI+K)�1 (31)

where m = 1 and K = M with the ( ~E; ~B) fields and
m = 2;K = D with the ~A field. From (28) and (31), we
see that determination of the response functionh�n j  (!)i
involves determination of the matrix element

h�njG(!)j�n0i = �h�nj((�i!)mI+K)�1j�n0i: (32)

We see that((�i!)mI + K)�1 exists only if �(�i!)m

differs from the eigenvalues of matrixK. The difficulty is
avoided by adding an imaginary part" such that"! 0+.

With the ~A field, we introduce the variablez = !2 +
i" = u + i", while with the (~E; ~B) fields we introduce
z = i(! + i"). In the absence of absorption, eigenvalues
of theD matrix are strictly real while eigenvalues of theM
matrix are purely imaginary. Introduction of the coefficient
" is the same as introducing a dissipation mechanism in the
media. This effect will play a key role afterwards. We call
�j = !2j and�j = i�0j the eigenvalues ofD andM matrices,
respectively.

Let us now present the main features of SMM which are
detailed in Benoit [20], [27], [30] and Royer [32].

Determination of the response function involves computa-
tion of the nondiagonal element (32). Introducing the eigen-
values and the left and right eigenvectors of the matrixK

KjjiR = �jjjiR (33)

LhjjK = Lhjj�j (34)
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where�j = �j or �j with m = 1 or 2. jjiR and jjiL are the
right and left eigenvectors of matrixK. They are distinct and
bi-orthogonal [33], [34]

Lhj j j
0iR = �jj0: (35)

If matrix K is simple, the eigenvectors are linearly inde-
pendent and one obtainsX

j

(jjiRLhjj) = I: (36)

This relation is equivalent to the closure relation with
the Hermitian matrix. We conjecture that relation (36) holds
for matrices involved in physical problems. The element
h�njG(z)j�n0i can be written [using (32) and (36)] as

h�njG(z)j�n0i =
X
j

h�n j jiRLhj j �n
0i

z � �j
(37)

which corresponds to the operatorG(z) given by

G(z) =
X
j

jjiRLhjj

z � �j
: (38)

We want to determine this element (37) without having to
compute the eigenvalues or eigenvectors of matrixK. First,
we introduce the following auxiliary function density:

g(x) =
X
j

hp j jiRLhj j qi�(x� �0j) (39)

wherex = u; �0j = �j with m = 2 or x = !; �0j = �0j with
m = 1. Vectors jpi and jqi are considered as data for the
problem

jpi =
X
�n

p�(n)j�ni and jqi =
X
�n

q�(n)j�ni (40)

p�(n)(q�(n)) are the Cartesian� components ofjpi(jqi) on
the nth site. Now, we consider the functionR(z)

R(z) =

Z
g(x)

z + (�i)mx
dx =

X
j

hp j jiRLhj j qi

z � �j
: (41)

It is clear thatR(z) = h�njG(z)j�n0i if jpi = j�ni and
jqi = j�n0i. It is easy to show that, with the help of (33),
(36), (38)

R(z) =
1X
l=0

�l

zl+1
(42)

where�l represents thelth moment ofg(x) given by

�l =

Z
g(x)xl dx = hpjKljqi (43)

which can be directly computed from the known dataK; jpi
and jqi. Equation (42) is not convergent. However, it can be
shown that ifjpi = jqi; R(z) can be developed in a continued
convergent fraction

R(z) =
b0

z � a1 �
b1

z�a2�
b2

z�a3����

(44)

where the continued fraction coefficients are obtained by (with
s � 0 and b0 = �00)

as+1 =
��ss
�ss

(45)

and

bs+1 =
�s+1s+1
�ss

(46)

with

�ss = Lhts j tsiR (47)

and

��ss = LhtsjKjtsiR (48)

�ss and ��ss are called the generalized moments. Vectors
jtsiR;L are obtained by the following recursion:

jts+1iR;L = (K � as+1)jtsiR;L � bsjts�1iR;L (49)

starting with jt�1iR;L = 0 and jt0iR;L = jpi. Nontrivial
formulas (44)–(49) are well known in moments problem theory
[35]. Equations (45)–(49) with the knowledge of dataK and
jpi (= jqi), permit us to compute the coefficientsas and bs
by iteration.

Our aim is to work with a large but finite-order matrix, so
the number of eigenvalues is not infinite. In practice, we only
calculate a few of the continued fraction coefficients. A test is
inserted and the computation normally stops whenbs=bs�1
is smaller than 10�4. If this value is quickly reached, the
calculation stops and the results are considered exact. There
are other strategies for problems with slow convergence [28].
Knowledge of (44) allows determination of Green functions
of the system. The continued fraction is convergent and
computation of coefficientsas and bs is stable if the density
functiong(x) is a positive function. In the general situation, the
positiveness ofg(x) is not rigorously established. However,
in many physical problems it is shown (in the Appendix)
that g(x) is closely related to the energy dissipation (equal to
zero if " is zero) and is a positive function. When the matrix
is symmetrical, the left and right eigenvectors are identical
(jjiR = jjiL) and g(x) is clearly positive.

Since development in the continued fraction is very stable
and convergent with functionR(z) such that g(x) given
by (39) with jpi = jqi is a positive function, it is very
convenient to compute the nondiagonal term (37) as a linear
combination of theR(z) functions (44), with the form of the
linear combination depending on the choice ofjqi vectors. For
instance, with a symmetrical real matrix we can choose

jpi = jqi = j�ni+ j�n0i (50)

obtainingR+(z) and

jpi = jqi = j�ni � j�n0i (51)

obtainingR�(z), then the Green function is given by

h�njG(z)j�n0i =
(R+(z) �R�(z))

4
(52)

with a matrix having complex eigenvectors, the choice of the
jpi and jqi vectors can be more complex [20].



CHENOUNI et al.: COMPUTATION OF EM WAVES DIFFRACTION BY SPECTRAL MOMENTS METHOD 169

B. Computing Aspects

Let us now consider how the dynamical matrices are ob-
tained. With the potential vector, the matrixD is given by
(11). With the electromagnetic field, after discretization of the
motion equations (17) and (18), the local physical properties of
a pointn of the media is represented by six small interaction
matricesm of (6 � 6) dimension. Indeed, in 3-D space, there
is one matrixm for every bound between siten and the
six neighboring sitesn0. These matricesm can be expressed
schematically as withN = (")

1

2

m =

�
0 N

�1
R

RN
�1 0

�
(53)

whereN�1
R andRN�1 arise, respectively, from the dis-

cretization of (17) and (18). Spatial derivatives inRN�1

take into account the heterogeneity of the media.R is a
(3 � 3) matrix corresponding to the discretized rotational
operator. Index matricesN of dimension (3� 3) represent the
local electromagnetic properties of the medium expressed in
the laboratory frame. Schematically, with the electromagnetic
field, the system can be seen as a cubic lattice of “particles”
of mass"(n), every particle having six degrees of freedom.
Interactions are between the particle and its first neighbors
only and can be represented by “spring” (every “spring” has
been characterized by a (6� 6) elastic tensor). In this scheme,
current source at siten is equivalent to a “force” applied
to the nth particle. Response at sitem are given by the
“displacement” of themth particle.

In practice, first we compute the dynamical matrixM (or
D) of the medium under consideration. This matrix is sparse
and we use special method of storage. Now we assume that
we have a source at siten0, polarized along the� axis and we
want to compute the� component of electric field created
by this source at siten. Then the 6N components of the
vector jpi = jt0i are equal to zero unless for the�n and�n0

components, which are set to one. Coefficients of the continued
fraction (44)R+(z) are obtained from the iterations shown at
the bottom of the page.
R�(z) is obtained starting fromjpi = jt0i where �n0

component equal to one and�n component is equal to�1.
Green function is obtained from (52).

Fig. 1. The 2-D model: dimension of the boxNx = Ny = 301, position
of the screen= 30, width of the aperture= 60. The incident plane wave
is simulated by introducing a uniform current density in the(yoz) plane
polarized parallel to thez axis. (o = sources,x = receivers.)

To simulate a plane electromagnetic wave propagating in
the x-axis direction (Fig. 1) with the electric field polarized
following a directionP in the y-z plane, we introduce, in this
plane, a uniform current density parallel to theP axis. It can be
easily shown that such a source is equivalent to a point source
at infinity in the direction perpendicular to theyz plane. The
receiver is located on the opposite side of the sample. Periodic
boundary conditions are taken along they direction (2-D) or
along they and z directions (3-D).

IV. A PPLICATIONS: DIFFRACTION

BY A RECTANGULAR APERTURE

In order to test our method, we have computed the elec-
tromagnetic field diffracted by a slit (2-D media) and a
rectangular aperture (3-D media) and we have compared
the computed values to the results of Kirchhoff’s diffraction

jt0i
. &

�00 = ht0 j t0i ��00 = ht0jMjt0i
& .

a1 = ��00
�00

#
jt1i =Mjt0i � a1jt0i

. &
�11 = ht1jt1i ��11 = ht1jMjt1i

& .
a2 = �11�11 ;b1 = �11

�00
#

jt2i =Mjt1i � a2jt1i � b1jt0i:
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theory. The computations were performed on an IBM SP2
computer.

To simulate our system, we consider a parallelepiped box of
sizeLx � Ly � Lz, which is discretized by theNx � Ny � Nz

lattice (Nx; Ny ; Nz are integers). The grid spacings�x;�y

and �z are determined through the relationsLx = Nx �
�x; Ly = Ny � �y and Lz = Nz � �z. We assume that
the electromagnetic plane waves propagate along thex axis
and that the electric field is polarized in thez direction. To
simulate the plane wave, we introduce, in the(yoz) plane, a
uniform current density parallel to thez axis. The receivers
are located on the opposite face of the grid. Periodic boundary
conditions are assumed in they direction with the slit and
y and z directions with the rectangular aperture. With these
boundary conditions, our system is equivalent to a diffraction
grating. We do not introduce any absorbing conditions at the
limit of the box.

To work with very large systems, i.e., with a high-order
matrix (about several millions), it is necessary to develop new
storage techniques. The method we used involved considering
the matrix as a system of sites, interacting with neighboring
sites only through a local interacting matrix. So, we only store
the different values of these local matrices and, for every
site, the type and number of neighboring sites. When we
solve Maxwell equations directly in terms of~E and ~B, the
elementary interaction matrices are (6� 6) anti-symmetrical
matrices. To resolve the equations using vector potential, for
isotropic media, local matrices are reduced to scalars.

We verify the accuracy of the SMM results by comparing
them to those obtained by the theoretical solution given by the
Kirchhoff approximation formula [36]

I(r) �

����
Z

[cos(~n; ~r 0)� cos(~n; ~r )]

j~r� ~r 0j
e�ikj~r�~r 0j d�0

�
�
�
�

2

(54)

where ~n is a unit vector normal to�0 and pointing to
diffraction region (see Fig. 1). The Kirchhoff approxima-
tion supposes that the frequency of the incident wave is
not too small (wide-wavelength limits) and not too high
(narrow-wavelength limits). In our computation, we work at
frequencies such as� � l, where l is the linear size of the
aperture and� > 10–20�x with �x = �y = �z being the
parameters of the grid. The periodic boundary conditions are
taken into account in the calculation of the Kirchhoff integral.
Absorption coefficient was also included in the Kirchhoff
formula where the wave vector was considered complex. In the
following, the frequencies are given in reduced units. To obtain
the frequency in hertz, it is necessary to multiply the value
given in reduced units by three 108 1

�x
(with �x = �y = �z

given in meters).

A. Diffraction of Plane Electromagnetic Waves by a Slit

There is no variation in the field quantities with respect toz
Cartesian coordinates. Our system is illustrated in Fig. 1. For
this case, we chooseNx = 301; Ny = 301. In the nodes range
I = Nx=10, we consider a screen characterized by a high
refractive index("2 = 106) with an aperture size of 20%Ny.

Fig. 2. Computation of the intensity diffracted by a slit for frequency
! = 0:1 and " = 0:05 versus receiver positionsn. The originn = 0 is
taken at the center of the edgeI = Nx, O vector potential,X electric field,
analytical values.

Fig. 3. Computation of the intensity diffracted by a slit for frequency
! = 0:3 and " = 0:05 versus receiver positionsn. The originn = 0 is
taken at the center of the edgeI = Nx, O vector potential,X electric field,
analytical values.

1) Vector Potential Results:The Green function of the sys-
tem is obtained from the difference betweenR+(z) and
R�(z). To compute the Green function, we have used 450
generalized moments. It is very important to note the ex-
ceptional stability of the method. The differencesa+

s
� a�

s

and b+
s
� b�

s
are null until the 200 range. Thus, if we stop

computation of the continued fractions before this value, the
difference betweenR+(z) andR�(z) will be equal to zero.
This means that coefficientsas andbs have a physical meaning
for larges, even up to 450. The SMM gives the response for
all frequencies between zero and!max where!max depends
on the discretization scheme. Here, we present results only
for some specific values of the frequency. The behavior of
the modulus squared of the vector potential obtained by
SMM versus the receiver positions are shown for frequencies:
! = 0:1 with " = 0:05 in Fig. 2, ! = 0:3 with " = 0:05
in Fig. 3, ! = 0:1 with " = 0:005 in Fig. 4, and! = 0:3
with " = 0:005 in Fig. 5. In these figures, we also provide the
analytical results obtained with the Kirchhoff formula. The
two results are clearly in very good agreement.
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Fig. 4. Computation of the intensity diffracted by a slit for frequency
! = 0:1 and " = 0:005 versus receiver positionsn. The origin n = 0

is taken at the center of the edgeI = Nx , O vector potential,X electric
field, analytical values.

Fig. 5. Computation of the intensity diffracted by a slit for frequency
! = 0:3 and " = 0:005 versus receiver positionsn. The origin n = 0

is taken at the center of the edgeI = Nx , O vector potential,X electric
field, analytical values.

2) Electromagnetic Field Results:Similarly, we have stud-
ied the diffraction of electromagnetic plane wave propagation
in a 2-D isotropic medium by an aperture using the motion
equation (19). We consider a lattice identical to that used in
the ~A study. We calculated 600 moments. In Figs. 2–5, we
also give the modulus squared of the electric field obtained
by SMM versus the receiver positions for the same frequency
and damping values, compared to previous results. We see
that there is excellent agreement with the results obtained
analytically and those obtained from the potential vector.

B. Diffraction by a Rectangular Aperture

In the following, we have easily extend SMM to compute
Green functions in 3-D space. To illustrate the problem, we
only present results obtained with the potential vector.

The calculation uses a (101� 101� 101) grid(Nx = Ny =
Nz = 101), which corresponds to (1 030 301� 1 030 301)
matrix. Here we solve vector potential (9). The opening is a
square with sidea = 20%Ny placed in the plane(yoz) at
I = Nx=10. We calculated 500 moments.

Fig. 6. Computation of the intensity diffracted by a rectangular aperture for
frequency! = 1 and" = 0:05 versus receiver positionsn. The originn = 0

is taken at the center of the faceI = Nx ,O vector potential, analytical values.

Fig. 7. Computation of the intensity diffracted by a rectangular aperture for
frequency! = 1 and" = 0:005 versus receiver positionsn. The originn = 0

is taken at the center of the faceI = Nx ,O vector potential, analytical values.

We present the results calculated by SMM and those ob-
tained analytically with the Kirchhoff approximation formula
for frequency! = 1 with " = 0:05 in Fig. 6 and! = 1 with
" = 0:005 in Fig. 7. There is excellent agreement between
theses results.

V. DISCUSSION AND CONCLUSION

In this work, we have reported two types of results: one uses
the potential vector and the other uses the(~E; ~B) field. Both
approaches give very good results. With the potential vector~A,
matrix dimensions are smaller than with the(~E; ~B) field and
the CPU time taken by the computer program was lower (with
~A the CPU time is 0.24 s per moment and with(~E; ~B) it is 1.22
s per moment for 2-D system). This permits us to work more
easily with larger systems, e.g., in three dimensions. However,
in anisotropic or heterogeneous media when using the(~E; ~B)
field, the matrices are strictly antisymmetrical (these matrices
can be easily transformed into symmetrical matrices), which is
a great advantage when using SMM. With the potential vector,
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Fig. 8. Variations in the electric field over time at the center of the faceI = Nx with " = 0:05. A source pulse is applied at timet0
0
= 100 in theyoz plane.

the matrices are not always symmetrical. Consequently, the use
of either method depends on the problem that has to be solved.

The second point concerns the absorption boundary condi-
tions. We did not insert any such conditions here. How can the
good results be explained? In SMM, we compute the Green
function between source points on theyoz surface atx = 0
and a point (receiver) in theyoz surface atx = Lx.

The Green functionhRjG(t� t0)jSi represents the response
of the receiverR at time t when a pulse (Dirac) has been
applied at the sourceS at time t0. This Green function
can be computed by taking the inverse Fourier transform
of hRjG(!)jSi. Applying a pulse at timet0 in the yoz

surface will produce a electromagnetic wave that, in the
absence of absorption in the box, will propagate from one
side to other side indefinitely. Thus, computation of the
electromagnetic field in theyoz plane at x = Lx will
include this effect and the results will not be in agreement
with the Kirchhoff theory. With the finite-difference method,
one usually introduces absorbing boundary conditions [2]–[4].
However, in SMM, coefficient" represents energy dissipation
(finite lifetime of photons), so it is possible to choose this
coefficient so that only one wave arrives on the opposite site
of the box and other reflections are weak or eliminated. To
illustrate this effect, we computed the time dependence of the
electric field in a receiver at the center of the arrival face
when a Gaussian source is applied in the source plane at time
t0
0
= 100. Figs. 8 and 9 show variations in the electric fields

with " = 510�2 and" = 510�3, respectively. It is clear that
with " = 510�2, only one wave reaches the receiver, while
with " = 510�3, several waves reach the receiver. However,
even with " = 510�3, the form of the diffracted pattern
is in good agreement with the analytical results, showing
that the contribution of the secondary waves is weak. The
form of the wave with" = 510�2 is in agreement with
the response of a 2-D media where the Green functions are
Hankel functions (in free-space). It is easy to verify that results

obtained with" = 510�3 do not markedly differ from those
obtained with nonabsorbing media(" = 0) and represent a
good approximation of free media. Now, we compare SMM
with other computing methods.

It is difficult to make comparisons with the usual moment
methods [5]. In this latter method, only the diffracting object
is discretized and free-space Green functions are used to
compute the diffracted field. In the usual moment methods,
it is necessary to invert full matrices limiting the size of the
diffracting object. Diffraction is also computed for a given
frequency. In SMM, all space is discretized and the exact
Green functions are computed for all frequencies.

There has been only one comparison until now, in electro-
magnetism, with the finite-difference method [37]. However,
the results obtained in the simulation of acoustic wave prop-
agation [29] provide some general information about both
methods. The same conclusions will be certainly true for
the simulation of electromagnetic wave propagation. In the
finite-difference method, values for the fields are obtained
for every point of the space, while with SMM computation
of the fields is performed separately for each point. This
is a substantial disadvantage of SMM in some applications.
Use of large parallel processing will certainly allow us to
improve the performance of SMM. The computing time for
the determination ofn generalized moments is about the same
as that necessary to computen steps with the finite-difference
method. In SMM, one works indirectly with the whole set
of eigenvalues and eigenvectors of matricesD or K. So, the
results are not very sensitive to the details of discretization
processes. For instance, it is not necessary to take into account
very precise boundary conditions at the corners of the box
in 2-D media or edges of the box in 3-D media. Simple
discretization schemes work very well. We think that this effect
arises because time is not discretized in SMM. Furthermore,
with SMM, knowledge of the Green functions allows one to
compute the response regardless of the form of the source,
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Fig. 9. Variations in the electric field over time at the center of the faceI = Nx with " = 0:005. A source pulse is applied at timet0
0
= 100 in theyoz plane.

while with the finite-difference method it is necessary to make
a run for every type of source.

In conclusion, we have presented simulations of electromag-
netic waves propagating in 2-D and 3-D media using SMM,
thus introducing a new approach for numerical resolution
of wave propagation problems. The method can be used
regardless of the number, nature, or form of the diffracting
objects. Comparison between the analytical solutions and
the spectral moments-method results proves the accuracy of
this method. Applications to the computation of radar cross
sections and propagation in anisotropic heterogeneous media
(such as liquid crystals [38]) are now being developed.

APPENDIX

Here we show that functiong(x) given by (39) (with
jpi = jqi) is always a positive (or semi-positive) function
even with nonsymmetrical matrix. To illustrate this situation
with (~E; ~B) fields, let us consider a volumeV and a discrete
set of point chargesqn located at the points~rn inside V .
The power of the electromagnetic field converted into thermal
energy (Joule effect) is given by Jackson [31]

W =

Z
~J0(~r; t) � ~E(~r; t)dv (A.1)

with
~J0(~r; t) =

X
qn~vn(t)�(~r � ~rn(t)): (A.2)

Now, with complex harmonic fields, the average dissipated
energy is given by

�W =
1

2
RP

Z
~J�

0
(~r) � ~E(~r) d3v: (A.3)

In site representation (A.3) can be written as

�W =
�V

2
RP

X
�n

J�

0�(n)E�(n) =
�V

2
RP hJ0 j Ei (A.4)

where�V is the volume element.

From (27), we know that with the electromagnetic field
(~E; ~B)

j�(!)i = G(!)jJ 0(!)i (A.5)

and considering only the electric components, one obtains from
(15) and (27)

jE0(!)i = ["r]
1

2 jE(!)i = G(!)jJ 0(!)i (A.6)

so that using (17)

�W =
�V

2c�0
RP hJ 0(!)jG(!)jJ 0(!)i: (A.7)

Taking into account the form of the Green operator (31) with
the (~E; ~B) field andz = i(! + i"), in the limit " ! 0+ one
obtains

�W = �
�V

2c�0
RP

2
4iX

j

hJ 0 j jiRLhj j J 0i

! + i" � �0

j

3
5

= �
�V

2c�0
RP

2
4X

j

hJ 0 j jiRLhj j J
0i"

(! � �0

j)
2 + "2

+ i
X
j

hJ 0 j jiRLhj j J 0i(! � �0

j)

(! � �0

j)
2 + "2

3
5

= �
�

2

�V

c�0

X
j

hJ 0 j jiRLhj j J
0i�(! � �0

j): (A.8)

�W is the energy loss by the electromagnetic field and must be
a negative function [32]. So the function

g(!) =
X
j

hJ 0 j jiRLhj j J
0i�(! � �0

j) (A.9)

must be a positive function regardless of the values of charges
qn in (A.2). Expression (A.9) has exactly the same form as
(39) with jpi = jqi. The same result could be obtained using
the potential vector.
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mécaniques,”Ann. Ecole Normale, 3� serie Tome 1, pp. 409–460, 1884.

[29] V. Rousseau, C. Benoit, R. Bayer, M. Cuer, and G. Poussigue, “Elastic
wave-propagation simulation in heterogeneous media by the spectral
moments method,”Geophys., vol. 61, no. 5, pp. 1269–1281, Sept. 1996.

[30] C. Benoit, G. Poussigue, V. Rousseau, Z. Lakhliai, and D. Chenouni,
“Determination of the Green functions with large nonsymmetric matrices
by moments method,”Modeling Simul. Mater. Sci. Eng., vol. 3, pp.
161–185, Apr. 1995.

[31] J. D. Jackson,Classical Electrodynamics. New York: Wiley, 1962.
[32] E. Royer, “Etude numerique de la m´ethode des moments spectraux

et application aux reseaux de percolation,” Ph.D. dissertation, Univ.
Montpellier, France, 1992.

[33] F. R. Gantmacher,Theorie des Matrices, J. Gabay, Ed. Paris, France:
Dunod, 1966.

[34] E. Isaacson and H. B. Keller,Analysis of Numerical Methods. New
York: Wiley, 1966.

[35] N. Akhieser,The Classical Moment Problem. Edinburg, U.K.: Oliver-
Boyd, 1965.

[36] M. Born and E. Wolf,Principales of Optics. Oxford, U.K.: Pergamon,
1956.

[37] G. Poussigue, C. Benoit, D. Chenouni, and Z. Lakhliai, “D´etermination
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