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Inverse Scattering of Inhomogeneous
Biaxial Materials Coated on a Conductor

Chien-Ching Chiu

Abstract—The inverse scattering of inhomogeneous biaxial
materials coated on a perfectly conducting cylinder with known
cross section is investigated. A group of unrelated incident waves
is used to illuminate the cylinder. By properly arranging the di-
rection and polarization of various unrelated incident waves, the
difficulties of ill-posedness and nonlinearity were circumvented
and the permittivity tensor distribution can be reconstructed
through simple matrix operations. For theoretical formulation
based on the boundary condition, a set of integral equations
is derived and solved by the moment method as well as the
unrelated illumination method. Numerical results show that the
permittivity tensor distribution of the materials can be success-
fully reconstructed even when the permittivity is fairly large.
Good reconstruction has been obtained both with and without
Gaussian noise in measured data. In addition, the effect of noise
contamination on imaging is also examined.

Index Terms—Electromagnetic scattering, inverse problems.

I. INTRODUCTION

A DVANCED composite materials are increasingly popular
in industrial and military application due to their superior

properties in strength, stiffness, fatigue resistance, and low
thermal expansion. Laminated composite materials are widely
used to coat on the metal and the aircraft. The electromagnetic
inverse scattering of advanced composite materials coated on
conductors has been a subject of considerable importance in
various area of technology. However, the solution of this
problem is very complicated and difficult due to the following
reasons.

1) The inverse scattering problem is nonlinear in nature
because it involves the product of two unknowns, the
electrical property of the object, and the electric field
within the object. This problem is also ill-posed due to
the fact that the kernel of the integral is a smoothing
function.

2) Advanced composite materials are electrically
anisotropic. The permittivity of this materials depends
on the chosen coordinates. Thus, this problem is more
difficult and complex than that of isotropic materials.

3) This problem involves both conductor and biaxial di-
electric materials at the same time. To our knowledge,
there is still no rigorous algorithm for such cases.

Rigorous algorithms, which solved the exact integral equa-
tion by numerical method, have been developed during the
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Fig. 1. Geometry of the problem in the(x; y) plane.

last two decades. Neyet al. [1] and Caorsiet al. [2] use the
inverse source method and the pseudo-inverse transformation
technique to solve the inverse problem. Some modification
of inverse source method with basis functions expansion for
nonradiating current was proposed by Habashy and Oristaglio
[3]. Note that the major difficulty of the inverse source method
is the ill-posedness in inverting the matrix corresponding
the integral of the Green function. Based on the idea that
sufficient information may be obtained by arranging various
unrelated incident waves. An “unrelated illumination method”
[4], [5] was proposed by Wang and Zhang [4] on the inverse
scattering problem. In their method, the only matrix being
inverted is the one corresponding to the incident waves.
Thus, the difficulties of the ill-posedness and nonlinearity
are circumvented. Good reconstruction was obtained through
simple matrix operations. An iterative algorithm based on the
Newton–Kantorovitch method with Tikhonov regularization
was proposed by Joachimowiczet al. [6]. The simulated
results show that ill-posedness can be reduced by enforcing
the convergence witha priori information. Some algorithms
based on the optimization procedure that avoid the necessity
of solving a direct problem at each step of iteration have also
been proposed [7]–[9].

In this paper, the inverse scattering of advanced composite
biaxial materials coated on a conductor is investigated. An
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Fig. 2. Original relative permittivity tensor distribution for example 1. (a)"1(x; y). (b) "2(x; y). (c) "3(x; y).

efficient algorithm is proposed to recover the permittivity dis-
tribution of the materials by using the knowledge of the shape
of the conductor and the scattered field measured outside. This
algorithm is based on the unrelated illumination method [4]
and the moment method [10]. In Section II, the theoretical
formulation for electromagnetic scattering is presented. We
introduce some techniques to overcome ill-posedness. Numer-
ical results for biaxial cylinders of different permittivities and
different cross sections are given in Section III. Finally, some
conclusions are drawn in Section IV.

II. THEORETICAL FORMULATION

A. Direct Problem

Let us consider a cylindrical complex object which consists
of inhomogeneous biaxial dielectric materials and the perfect
conductor in free-space, as shown in Fig. 1. Assume that the
complex object is infinitely extended in thez direction and the

biaxial materials are inhomogeneous inx–y plane, i.e., only
two-dimensional (2-D) case is considered. The permeability
of the materials are�0 and the relative permittivity tensors
"
r

of the materials are represented by diagonal matrix in the
Cartesian coordinate system

"r(x; y) =

2
4"1(x; y) 0 0

0 "2(x; y) 0
0 0 "3(x; y)

3
5
xyz

:

The elements in"r are dimensionless and are complex in the
general case. Here, the permittivity tensors"r(r) are to be
constructed in our inverse scattering problem witha priori
knowledge of the conductor’s shape. The object is illuminated
by the following two different polarized incident waves.

1) TM Waves:Let Ei = Ei
z ẑ denote the incident wave.

Then the integral equation for the internal total field inside the
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Fig. 3. Reconstructed relative permittivity tensor distribution for example 1. (a)"1(x; y). (b) "2(x; y). (c) "3(x; y).

biaxial materials can be expressed by [11]

�Ei
z(r) =

Z
s

G(r; r0)k20["3(r
0) � 1]Ez(r

0) ds0

� j!�0

Z
c

G(r; r0)Js(r
0) dl0 �Ez(r) (1)

where k0 denotes the free-space wavenumber.Js is the in-
duced electric surface current density which is proportional
to the normal derivative of the electric field on the conductor
surface.S represents the area of the dielectric materials andC

is the contour of the conductor.G(r; r0) is 2-D Green function
for free-space and can be expressed as

G(r; r0) = �
j

4
H

(2)
0 (k0jr � r0j)

whereH(2)
0 is the Hankel function of the second kind of order

zero.

The boundary condition states that the total tangential
electric field must be zero on the surface of the perfectly
conducting cylinder and this yields the following equation:

�Ei
z(r) =

Z
s

G(r; r0)k20["3(r
0)� 1]Ez(r

0) ds0

� j!�0

Z
c

G(r; r0)Js(r
0) dl0: (2)

The external scattered field is given by

Es
z(r) =

Z
s

G(r; r0)k20["3(r
0)� 1]Ez(r

0) ds0

� j!�0

Z
c

G(r; r0)Js(r
0) dl0: (3)

2) TE Waves:
Incident wavesEi = Ei

xx̂ + Ei
yŷ are incident upon the

object. Owing to the coupling betweenEx andEy, the equa-
tions governing the result total field in the TE case are more
complicated than those in the TM case. By equivalent induced
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Fig. 4. Original relative permittivity tensor distribution for example 2. (a)"1(x; y). (b) "2(x; y). (c) "3(x; y).

current concept and Hertz vectorial potential techniques [11],

the integral equation for the internal total fieldE = Exx̂+Ey ŷ

inside the biaxial materials can be express as follows:

�Ei
x(r) =

�
@2

@x2
+ k20

��Z
s

G(r; r0)["1(r
0) � 1]Ex(r

0) ds0
�

+
@2

@x @y

�Z
s

G(r; r0)["2(r
0) � 1]Ey(r

0) ds0
�

+
@

@y

�Z
c

G(r; r0)Jsm(r
0) dl0

�
� Ex(r) (4)

�Ei
y(r) =

@2

@x @y

�Z
s

G(r; r0)["1(r
0)� 1]Ex(r

0) ds0
�

+

�
@2

@y2
+ k20

��Z
s

G(r; r0)["2(r
0)� 1]Ey(r

0) ds0
�

�
@

@x

�Z
c

G(r; r0)Jsm(r
0) dl0

�
� Ey(r) (5)

whereJsm is equivalent magnetic surface current density in

the z direction. According to the boundary condition on the
surface of the conductor, the following integral equation is
obtained:

�n̂� [Ei
x(r)x̂+Ei

y(r)ŷ]

= n̂ �

���
@2

@x2
+ k20

��Z
s

G(r; r0)["1(r
0)� 1]Ex(r

0) ds0
�

+
@2

@x @y

�Z
s

G(r; r0)["2(r
0)� 1]Ey(r

0) ds0
�

+
@

@y

Z
c

G(r; r0)Jsm(r0) dl0
�
x̂

+

�
@2

@x @y

�Z
s

G(r; r0)["1(r
0) � 1]Ex(r

0) ds0
�

+

�
@2

@y2
+ k20

��Z
s

G(r; r0)["2(r
0)� 1]Ey(r

0) ds0
�

�
@

@x

Z
c

G(r; r0)Jsm(r
0) dl0

�
ŷ

�
(6)
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Fig. 5. Reconstructed relative permittivity tensor distribution for example 2. (a)"1(x; y). (b) "2(x; y). (c) "3(x; y).

where n̂ is the outward unit vector normal to the surface of
the conductor.̂x and ŷ are unit vectors aligned along thex
andy axes in positive directions. The external scattered field
can be expressed by

Es
x(r) =

�
@2

@x2
+ k20

��Z
s

G(r; r0)["1(r
0)� 1]Ex(r

0) ds0
�

+
@2

@x @y

�Z
s

G(r; r0)["2(r
0) � 1]Ey(r

0) ds0
�

+
@

@y

�Z
c

G(r; r0)Jsm(r0) dl0
�

(7)

Es
y(r) =

@2

@x @y

�Z
s

G(r; r0)["1(r
0)� 1]Ex(r

0) ds0
�

+

�
@2

@y2
+ k20

��Z
s

G(r; r0)["2(r
0)� 1]Ey(r

0) ds0
�

�
@

@x

�Z
c

G(r; r0)Jsm(r0) dl0
�
: (8)

For the direct problem, the scattered field is computed by
giving the permittivity distribution of the biaxial materials and
the shape of the conductor. This can be achieved by using (1),
(2), and (4)–(6) to solve the total field inside the materials
E, the induced electric surface current densityJs, and the
equivalent magnetic surface densityJsm and then calculating
Es by (3), (7), and (8). For numerical implementation of the
direct problem, the dielectric materials are divided intoN1

sufficient small cells. Thus, the permittivity and the total field
within each cell can be taken as constants. Similarly, we divide
the contour of the conductor intoN2 sufficient small segments
so that the induced electric and equivalent magnetic surface
current density can be considered constant over each segment.
Let "1n, "2n, and "3n denote thex, y, and z component
of the relative permittivity in thenth cell. In application of
the moment method, pulse functions for expansion and point
matching for testing [10] are used to solve (1)–(8). Thus, the
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following matrix equations can be obtained:

�(Ei
z) = ([G1][�3]� [I])(Ez) + [G2](Js) (9)

�(Ei
v) = [G3][�3](Ez) + [G4](Js) (10)

(Es
z) = [G5][�3](Ez) + [G6](Js) (11)�

�Ei
x

�Ei
y

�
=

��
[G7] [G8]
[G8] [G10]

��
[�1] 0
0 [�2]

�
�

�
[I] 0
0 [I]

��

�

�
Ex

Ey

�
+

�
[G9]
[G11]

�
(Jsm) (12)

�(Ei
h) = [G12][�1] + [G13][�2] + [G14](Jsm) (13)�

Es
x

Es
y

�
=

�
[G15] [G16]
[G16] [G18]

��
[�1] 0
0 [�2]

��
Ex

Ey

�

+

�
[G17]
[G19]

�
(Jsm) (14)

where (Ex), (Ey), and (Ez) represent theN1 element total
field column vectors and(Ei

x), (E
i
y), and (Ei

z) are theN1

element incident field column vectors.(Ei
v) and(Ei

h) are the
N2 element column vectors.(Es

x), (Es
y), and (Es

z) denote
the M element scattered field column vectors. Here,M is
the number of measurement points.(Js) and (Jsm) are the
N2 element column vectors. The matrices[G1], [G7], [G8],
and [G10] areN1 � N1 square ones.[G2], [G9], and [G11]
areN1 � N2 matrices.[G3], [G12], and [G13] areN2 � N1

matrices.[G4] and [G14] areN2 � N2 square matrices.[G5],
[G15], [G16], and [G18] are M � N1 matrices.[G6], [G17],
and [G19] are M � N2 matrices. The elements in matrices
[Gi]— i = 1;2 � � �19—can be obtained by tedious mathematic
manipulation.[�1], [�2], and[�3] areN1�N1 diagonal matrices,
their diagonal elements are given as follows:

[�i]nn = "in(x; y) � 1; i = 1; 2; 3

and [I] is a N1 � N1 identity matrix. We can solve the
direct problem for the TM case by using (9)–(11). Similarly,
the direct problem for the TE case can be solved by using
(12)–(14).

2) Inverse Problem:Now, we consider the following in-
verse problem; given the shape of the conductor and the
scattered field measured outside, determine the permittivity
distribution of the biaxial materials. Note that the only un-
known permittivity in the TM case is"3(r), and"1(r) as well
as "2(r) in the TE case.

Fig. 6. Reconstructed error as a function of SNR for Example 1.

For solving the inverse problem, we first calculate(Js) by
(10) and(Jsm) by (13), and then substitute(Js) into (9) and
(11) as well as(Jsm) into (12) and (14). Next,N1 different
incident column vectors for the TM case and 2N1 different
incident column vectors for the TE case are used to illuminate
the object, the following equations can be obtained:

�[Ei
p] = ([Gp1][�3]� [I])[Ez] (15)

[Es
p] = [Gp2][�3][Ez] (16)

�[Ei
t] = ([Gt1][�t]� [It])[Et] (17)

[Es
t ] = [Gt2][�t][Et] (18)

where given in the equation at the bottom of the page.
Here, [Ei

p] is a N1 � N1 square matrix and[Es
p] is a

M �N1 matrix. [Ei
t] and [Es

t ] are2N1 � 2N1 andM � 2N1

matrices, respectively. Note that the matrices[G4] and [G14]
are diagonally dominant and always invertible. It is worth
mentioning that other than the matrices[Gp2] and [Gt2], the
matrices[Gp1][�3] � [I] and [Gt1][�t] � [It] is always well-
posed ones in any case. Therefore, by first solving[Ez] in
(15) as well as[Et] in (17), and substituting into (16) and
(18), respectively. Then[�3] and [�t] can be found by solving

[Ei
p] = [Ei

z]� [G2][G4]
�1[Ei

v] [Es
p] = [Es

z ] + [G6][G4]
�1[Ei

v]

[Gp1] = [G1]� [G2][G4]
�1[G3] [Gp2] = [G5]� [G6][G4]

�1[G3]

[Ei
t] =

�
Ei
x � [G9][G14]�1(Ei

h)
Ei
y � [G11][G14]�1(Ei

h)

�
[Es

t ] =

�
Es
x + [G17][G14]�1(Ei

h)
Es
y + [G19][G14]�1(Ei

h)

�

[Gt1] =

�
[G7]� [G9][G14]

�1[G12] [G8]
[G8] [G10]� [G11][G14]

�1[G13]

�

[Gt2] =

�
[G15]� [G17][G14]�1[G12] [G16]

[G16] [G18]� [G19][G14]�1[G13]

�

[�t] =

�
[�1] 0
0 [�2]

�
[It] =

�
[I] 0
0 [I]

�
[Et] =

�
Ex

Ey

�
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Fig. 7. Reconstructed error as a function of SNR for Example 2.

the following equations:

[	3][�3] = [�3] (19)

[	t][�t] = [�t] (20)

where

[�3] = [Es
p][E

i
p]
�1

[	3] = [Es
p][E

i
p]
�1[Gp1] + [Gp2]

[�t] = [Es
t ][E

i
t]
�1

[	t] = [Es
t ][E

i
t]
�1[Gt1] + [Gt2]:

From (19), all the diagonal elements in matrix[�3] can be
determined by comparing the element with the same subscripts
which may be any row of both[ 3] and [�3]

(�3)nn =
(�z)mn

( z)mn

similarly, from (20)

(�1)nn =
(�t)mn

( t)mn

;

(�2)(n�N1)(n�N1) =
(�t)mn

( t)mn

;

n �N1

n �N1 + 1:

Then the permittivities of each cell can be obtained as follows:

"in = (�i)nn + 1; i = 1; 2; 3:

Note that there are a total ofM possible values of each
element of�1, �2, and �3. Therefore, the average value of
theseM data is computed and chosen as final reconstruction
result in the simulation. In the above derivation, the key
problem is that the incident matrices[Ei

p] and [Ei
t] must not

be singular matrices, i.e., all the incident column vectors that
form the [Ei

p] and [Ei
t] matrices, must be linear unrelated.

Thus, if the object is illuminated by a group of unrelated
incident wave, it is possible to reconstruct the permittivity
distribution of the materials. Note that when the number of
cells becomes very large, it is difficult to make such a great

number of measurements and on top of that make them all
independent. As a result, the condition number of[Ei

p] and[Ei
t]

is very large, i.e., the inversion of[Ei
p] and [Ei

t] is ill-posed.
In such a case, some regularization method must be used to
overcome the ill-posedness. For examples, the technique of
pseudo-inverse transformation [1] can be applied for solving
[Ei

p]
�1 and [Ei

t]
�1.

III. N UMERICAL RESULTS

The reconstruction of biaxial materials coated on a perfectly
conducting cylinder illuminated by the beam focusing irradia-
tion scheme is presented. Note that the shape of the conductor
is given and the unknown is the permittivity distribution of the
materials. The incident waves are generated by many groups
of radiators operated outside the scatterers simultaneously. The
incident wave from each group of radiators are to be restricted
to a narrow bandwidth and this narrow bandwidth pattern can
be implemented by antenna array techniques. Moreover, the
beam sweeping for each group of radiators can be made by
mechanical control or phase control. By changing the beam
directions and tuning the phase of each group of radiators,
one can focus all the incident beams in turn at each cell of
the object. Plainly, an incident matrix formed in this way
is diagonally dominant and its inverse matrix exists. This
procedure is called the beam-focusing scheme [4]. Note that
this focusing should occur when the scatterer being absent.

Some simulated results of two different examples are il-
lustrated. The frequency of the incident wave is set to be 3
GHz and the number of illuminations is the same as cell’s
number. Four measurement points taken on a circle of radius
0.1 m at equal space are chosen for each illumination. Here
we wish to emphasize that in order to avoid trivial inversion
of finite-dimensional problems, it is crucial that the synthetic
data generated through a direct solver are not alike to those
obtained by the inverse solver. In our numerical examples, the
discretization number for the direct problem is four times as
that for the inverse problem.

In the first examples, the circular cross-section perfectly
conducting cylinder coated with the circular cross-section
penetrable inhomogeneous biaxial materials is presented. The
radius of the conductor and the dielectric materials are 1 and
2.5 cm, respectively. The dielectric materials are discretized
into 90 cells and their relative permittivities are plotted in
Fig. 2. The model is characterized by simple step distribution
of permittivities. Fig. 3 shows the reconstructed results. It
is obviously that the reconstruction is good. The root mean
square (rms) error is about 1.33, 2.03, and 0.83% for the
permittivities "1, "2, and"3, respectively. The required CPU
time for this examples is about 10 min on a SUN SPARC 20.

In the second example, the rectangular cross section of the
composite materials coated on a rectangular cross-section con-
ductor is discretized into 72 cells. The model is characterized
by simple step distribution of permittivity in thex direction,
five layer constant of permittivity in they direction, and step
distribution of permittivity in thez direction, as shown in
Fig. 4. Each cell has 0.5 cm� 0.5 cm cross section. The
reconstructed permittivity tensor distribution of the object are
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plotted in Fig. 5. The rms error is about 1.85, 1.26, and 0.22%
for the permittivities"1, "2, and"3, respectively. We can see
that the reconstruction is also good.

In practice, the scattered field may be contaminated by ran-
dom noise. For simulating the effect of noise, two independent
values of Gaussian noise with zero mean are added to the real
and imaginary part of the measured data, respectively. The
signal-to-noise ratio (SNR) is defined as

S=N = 10 log[jjEs(r)jj2=jjN jj2] (dB):

The value of SNR used in the simulation includes 10, 20, 30,
40, and 50 dB. The numerical results for Examples 1 and 2
are given in Figs. 6 and 7, respectively. It shows the effect of
noise is tolerable for SNR above 30 dB.

IV. CONCLUSIONS

An efficient algorithm for reconstructing the permittivity
tensor distribution of the inhomogeneous biaxial materials
coated on a given shape conductor has been proposed. By
properly arranging the direction and the polarization of various
unrelated incident waves, good reconstructed results have been
obtained through simple matrix operations and the difficulty
of the ill-posedness and nonlinearity is avoided. The moment
method has been used to transform a set of integral equation
into matrix forms. Then these matrix equations are solved by
the unrelated illumination method. Numerical simulation for
imaging the permittivity distribution of materials has been
carried out and good reconstruction has been obtained even
in the presence of Gaussian noise in measured data. Since no
iteration is required, this algorithm is very efficient.
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