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Inverse Scattering of Inhomogeneous
Biaxial Materials Coated on a Conductor

Chien-Ching Chiu

Abstract—The inverse scattering of inhomogeneous biaxial
materials coated on a perfectly conducting cylinder with known
cross section is investigated. A group of unrelated incident waves
is used to illuminate the cylinder. By properly arranging the di-
rection and polarization of various unrelated incident waves, the
difficulties of ill-posedness and nonlinearity were circumvented
and the permittivity tensor distribution can be reconstructed P 3
through simple matrix operations. For theoretical formulation
based on the boundary condition, a set of integral equations
is derived and solved by the moment method as well as the
unrelated illumination method. Numerical results show that the
permittivity tensor distribution of the materials can be success-
fully reconstructed even when the permittivity is fairly large. '
Good reconstruction has been obtained both with and without A
Gaussian noise in measured data. In addition, the effect of noise
contamination on imaging is also examined.

Index Terms—Electromagnetic scattering, inverse problems. .. Measurement
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[. INTRODUCTION N
DVANCED composite materials are increasingly popular \

in industrial and military application due to their superior
properties in strength, stiffness, fatigue resistance, and low
thermal expansion. Laminated composite materials are Wid(le:l LG v of th blem in t |
used to coat on the metal and the aircraft. The electromagnetI ;1. Geometry of the problem in tife:, v) plane.
inverse scattering of advanced composite materials coated on _
conductors has been a subject of considerable importancdd#f o decades. Nest al. [1] and Caorsiet al. [2] use the
various area of technology. However, the solution of thi§verse source method and the pseudo-inverse transformation

problem is very complicated and difficult due to the followind€chnique to solve the inverse problem. Some modification
reasons. of inverse source method with basis functions expansion for
1) The inverse scattering problem is nonlinear in natunonradiating current was proposed by Habashy and Oristaglio
because it involves the product of two unknowns tl'jeg]' Note that the major difficulty of the inverse source method
electrical property of the object, and the electric ;‘iell the ill-posedness in inverting the matrix corresponding

within the object. This problem is also ill-posed due td e integral of the Green function. Based on the idea that
' sufficient information may be obtained by arranging various

;Hﬁ;ﬁ;ﬁ that the kernel of the integral is a Smoothmgnrelated incident waves. An “unrelated illumination method”

2) Advanced composite materials are electricall A1, [ was proposed by Wang and Zhang [4] on thg inverse

. : L . . cattering problem. In their method, the only matrix being
anisotropic. The permittivity of this materials depend . . T

inverted is the one corresponding to the incident waves.

on the chosen coordinates. Thus, this problem is mo{'%us, the difficulties of the ill-posedness and nonlinearity

difficult and complex than that of isotropic materials. are circumvented. Good reconstruction was obtained through
3) This problem involves both conductor and biaxial di-. ' 9

: . : imple matrix operations. An iterative algorithm based on the
electric materials at the same time. To our knowledg : . : o

s . . ewton—Kantorovitch method with Tikhonov regularization
there is still no rigorous algorithm for such cases.

was proposed by Joachimowiczt al. [6]. The simulated

i Rigorous a'go“thms’ which solved the exact mtegral' €qURsults show that ill-posedness can be reduced by enforcing
tion by numerical method, have been developed during the, -onvergence with priori information. Some algorithms
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Fig. 2. Original relative permittivity tensor distribution for example 1. faf=, v). (b) =2 (=, v). (C) ea(=, v).
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efficient algorithm is proposed to recover the permittivity dishiaxial materials are inhomogeneousiny plane, i.e., only
tribution of the materials by using the knowledge of the shap&o-dimensional (2-D) case is considered. The permeability
of the conductor and the scattered field measured outside. Téfighe materials arg:, and the relative permittivity tensors
algorithm is based on the unrelated illumination method [4]. of the materials are represented by diagonal matrix in the
and the moment method [10]. In Section Il, the theoretic@lartesian coordinate system

formulation for electromagnetic scattering is presented. We

introduce some techniques to overcome ill-posedness. Numer-

ical results for biaxial cylinders of different permittivities and _ iz, y) 0 0
different cross sections are given in Section lll. Finally, some & (x,y) = 0 ea(x, y) 0
conclusions are drawn in Section IV. 0 0 es(, y) -

Il. THEORETICAL FORMULATION = . . .
The elements i, are dimensionless and are complex in the

) general case. Here, the permittivity tensargr) are to be
A. Direct Problem constructed in our inverse scattering problem wattpriori
Let us consider a cylindrical complex object which consistenowledge of the conductor’'s shape. The object is illuminated
of inhomogeneous biaxial dielectric materials and the perfday the following two different polarized incident waves.
conductor in free-space, as shown in Fig. 1. Assume that thel) TM Waves:Let £/ = £’z denote the incident wave.
complex object is infinitely extended in thedirection and the Then the integral equation for the internal total field inside the
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Fig. 3. Reconstructed relative permittivity tensor distribution for example le{(&), ). (b) =2 (=, ¥). (C) e3(z, y).
biaxial materials can be expressed by [11] The boundary condition states that the total tangential
electric field must be zero on the surface of the perfectly
—Ei(F) = / G(7, Pk [e3(F) — 1|E.(F)ds conducting cylinder and this yields the following equation:
' _E(m) = | GF 7k 1 ds’
_jw/«L() / G(F, F/)Jg(F/) dl/ _ EZ(F) (1) Z(r) /g (TJ 7”) 0[63( ) ] ( ) 5
’ ~ jupte / G(F, 7)J, (7 )dr. @)
where k, denotes the free-space wavenumbér.is the in- e

duced electric surface current density which is proportiondhe external scattered field is given by

to the normal derivative of the electric field on the conductor s e o
surface.S represents the area of the dielectric materials@nd HGE [ G(7, T)kolea(T) — 1E.(T') ds
is the contour of the conductat(7, 7) is 2-D Green function . .
for free-space and can be expressed as — Jwito / G(F, 7)J,(7)dl. (3)
S J 0@ = 2) TE Waves:
G, 7)== Hy (ko [T = 7)) Incident wavesE? = Eiz + Eiy are incident upon the

object. Owing to the coupling betweéen), and £, the equa-

WhereHSQ) is the Hankel function of the second kind of ordetions governing the result total field in the TE case are more
zero. complicated than those in the TM case. By equivalent induced
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Fig. 4. Original relative permittivity tensor distribution for example 2. éaj=, v). (b) =2 (=, ¥). (C) e2 (=, v).

current concept and Hertz vectorial potential techniques [11fe » direction. According to the boundary condition on the

the integral equation for the internal total fieli= £, i+ I, § surface of the conductor, the following integral equation is

inside the biaxial materials can be express as follows: obtained:

0= (2 8){ [ o e ) - e )dS/}nxix([2E+E+(/:){/Gr e ) D7) )

PE » N g
@{/ G(rm)[m(r)-lJEy(r)dS} +6f@y{/ G(r, T)[ea(7) = 1]y (7 MS’}
+ 5 [/ G(T, F')Jsm(ﬁ)dl/] “EO @ / 7, 7) dl’)
—E;W):af;y{/ G(r, 7)len () — 115, st’} +( {/ G, T)len (T >—1]Ef(7')d5/}
+(m + ) [ 60 P - 18, ) 0 PN
3 + (W + k%) {1 G(7, 7)[ea (') — HE?/(F/)CIS/}

- a% [/ G(7, 7 )Jsm(F’)dl’] —E(m 6 0

where J,,,, is equivalent magnetic surface current density in O

) G(7, 7)) (7) dl’> y] (6)
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Fig. 5. Reconstructed relative permittivity tensor distribution for example 2=+1(&), ). (b) =2 (=, ¥). (C) ea(z, y).

wheren is the outward unit vector normal to the surface of For the direct problem, the scattered field is computed by
the conductor# and ¢ are unit vectors aligned along the giving the permittivity distribution of the biaxial materials and
andy axes in positive directions. The external scattered fietde shape of the conductor. This can be achieved by using (1),

can be expressed by (2), and (4)—(6) to solve the total field inside the materials
E, the induced electric surface current densfty and the
EL(7) = <— + kz) {/ G(r — 1 E(7 )dsl} equivalent magnetic surface density,, and then calculating
0 E* by (3), (7), and (8). For numerical implementation of the
+ M{/ G, 7)[e2(F) — 1]E, (7 )dS/} direct problem, the dielectric materials are divided i
9 ’ sufficient small cells. Thus, the permittivity and the total field
+ %{/ G, 7)em(7) dl'} (7)  within each cell can be taken as constants. Similarly, we divide
5 ‘ the contour of the conductor int¥, sufficient small segments
By (7) = 92 oy {/ G(F, 7)e (7)) — 1]Em(71)d5/} so that the induced electric and equivalent magnetic surface

o current density can be considered constant over each segment.
4+ <_2 + k2 {/ G(F, 7)[ea(F) — 1]Ey(7’)ds’} Let €y, €2,, and e;, denote thez, y, and z component
dy 5 of the relative permittivity in thenth cell. In application of
_ ﬂ{/ G(F, F’)ng(F’)dl’}. (8) the moment method, pulse functions for expansion and point
dz /. o matching for testing [10] are used to solve (1)—(8). Thus, the
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following matrix equations can be obtained:

—(B2) = (][] = [(E.) + [Ga](J,) (9)
—(£,) =[Gs][7s](E:) + [Ga](Js) (10)
(E2) = [Gs][ms](£:) + [Ge](Js) (11)

(2 ={[% Gl o[ )

(5 )+ [ ]m a2

—(ffi) =[Gia][n1] + [Gra][r] + [Gral(Jsm) (13)
(2)=leg el el @)

+ ng :”(Jsm) (14)

where (E..), (E,), and(E.) represent theV; element total
field column vectors andE?), (E;), and (E’) are the/N;
element incident field column vectorsZ’ ) and (E} ) are the
N5 element column vectors.E}), (E;), and (£7) denote
the M element scattered field column vectors. He#é, is
the number of measurement pointd,) and (J,,,,) are the
N, element column vectors. The matricgs:], [G7], [Gs],
and [G1,] are N; x N; square ones|Gz], [Go], and [G11]
are N1 x N, matrices.[Gs], [G12], and[G13] are Na x Ny
matrices.[G4] and [G14] are N5 x N, square matriced(s],
[G15], [Gi6], and [Ghs] are M x Ny matrices.[Gs], [G17],

and [G45] are M x N> matrices. The elements in matrices
[G;]—i=1,2---19—can be obtained by tedious mathematic

manipulation][r ], [r2], and[3] are N, x N diagonal matrices,
their diagonal elements are given as follows:

[Ti]nn = (‘:in(x;y) - 1; 1= 17 27 3
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Fig. 6. Reconstructed error as a function of SNR for Example 1.

For solving the inverse problem, we first calculéfe) by
(10) and(J,,,,) by (13), and then substituig/;) into (9) and
(11) as well agJ,,,,) into (12) and (14). Next}N; different
incident column vectors for the TM case and/;2different
incident column vectors for the TE case are used to illuminate
the object, the following equations can be obtained:

—[E] = ((Gpi)ms] = [[E.] (15)
[E}] = [Gpa][ms] [ £] (16)
—[E]] =([Gnllm] — [L])[E] (17)
(7] = [Gro] ][ E4] (18)

and [[] is a Ny x N; identity matrix. We can solve the where given in the equation at the bottom of the page.
direct problem for the TM case by using (9)—-(11). Similarly, Here, [E]] is a N; x N; square matrix andZ;] is a
the direct problem for the TE case can be solved by usidd x Ny matrix. [E?] and[E?] are2N; x 2N; and M x 2N,

(12)—(14).

matrices, respectively. Note that the matri¢és] and [G14]

2) Inverse Problem:Now, we consider the following in- are diagonally dominant and always invertible. It is worth
verse problem; given the shape of the conductor and theentioning that other than the matricgs,.] and [G;»], the
scattered field measured outside, determine the permittiviatrices[G,1][ma] — [I] and [Gi][n] — [1:] is always well-

distribution of the biaxial materials. Note that the only unposed ones in any case. Therefore, by first solifig] in

known permittivity in the TM case iss(7), ande; (7) as well
as¢»(7) in the TE case.

(15) as well as[F;] in (17), and substituting into (16) and
(18), respectively. Thefr;] and[r:] can be found by solving

[£,] = [E2] = [Go]lGa] ™ B [

[Gpr] =[Gh] = [Go][Ga] ™ [G]

= E; - [G9][G14]_ E;L
2] = | g - [G11][G14]—1((E;;))]
[Gn] = [G7] = [GT]([;(S 471G
[Gﬂ] = [G1 5] B [GEg;]1[g14]_1 [G1 2]
_ -[7'1] 0 B [[]
(7] = 0 [7'2]] [I}] = [0

] = [E2] + [Gel[Ga] ™' [E]
[Gm]

[G5] — [Ge][Ga] ™' [Gs]
aq_ | B+ [Gial[Gha] = (E))
[Ed = [E§ + [Gho][Gra] ™! (EZ)]
[Gs] ]

[Gho] = [G11][Gra] ' [Gh]

[G16] ]
[Ghs] = [Gho][Gra] ™' [Gh3]

a w7
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©.50 1 number of measurements and on top of that make them all
1 independent. As a result, the condition numbelfgf] and[ £
is very large, i.e., the inversion ¢£/] and [E}] is ill-posed.
D:@A@é In such a case, some regularization method must be used to
2 overcome the ill-posedness. For examples, the technique of
& ] pseudo-inverse transformation [1] can be applied for solving
" 2.30 [Ei]= and [£i]~t.
n ]
2_@_2@5 I1l. NUMERICAL RESULTS
o<t 5 . L .
] The reconstruction of biaxial materials coated on a perfectly
. conducting cylinder illuminated by the beam focusing irradia-
.10+ tion scheme is presented. Note that the shape of the conductor
. is given and the unknown is the permittivity distribution of the
] I T e materials. The incident waves are generated by many groups
8-88{8 T T T T R i of radiators operated outside the scatterers simultaneously. The

STGNAL TO NOISE RATIO (dB) incidentwave from each group of radiators are to be restricted
to a narrow bandwidth and this narrow bandwidth pattern can
be implemented by antenna array techniques. Moreover, the
beam sweeping for each group of radiators can be made by

Fig. 7. Reconstructed error as a function of SNR for Example 2.

the following equations: mechanical control or phase control. By changing the beam
directions and tuning the phase of each group of radiators,
[¥s][7] =[] (19)  one can focus all the incident beams in turn at each cell of

(V][] = [¢:] (20) the object. Plainly, an incident matrix formed in this way

is diagonally dominant and its inverse matrix exists. This

where procedure is called the beam-focusing scheme [4]. Note that

[¢3] = [ES][EL] this focusing should occur when the scatterer being absent.
(W3] = [E;][E;]” [Goi] + [Gyo] Some simulated results of twp qllfferent exa_mples are il-
(BB lustrated. The frequency of the incident wave is set to be 3
(o =[] ?] GHz and the number of illuminations is the same as cell's
[W,] = [EN[E] (Gl + (Gl number. Four measurement points taken on a circle of radius

. . ) 0.1 m at equal space are chosen for each illumination. Here
From (19), all the diagonal elements in matfix] can be . : . S .
we wish to emphasize that in order to avoid trivial inversion

\(jlv?wtiiLmrI:aed EZ ;%meiungftzite!h/??z:wgq the same SUbSCrIBFSfinite-dimensional problems, it is crucial that the synthetic
y y 3 3 data generated through a direct solver are not alike to those

(Fa)om = (62 )mn obtained by the inverse solver. In our numerical examples, the
Ajan = (Y2 )mn discretization number for the direct problem is four times as
similarly, from (20) that for the inverse problem.
Y In the first examples, the circular cross-section perfectly
(&1)mn conducting cylinder coated with the circular cross-section
(T1)nn:7; n<N1 . . . . .
(41 )mn - penetrable inhomogeneous biaxial materials is presented. The
(@) mn radius of the conductor and the dielectric materials are 1 and
(P2 )n-win-pin) = (Vt)mn’ nzM+l. 2.5 cm, respectively. The dielectric materials are discretized

into 90 cells and their relative permittivities are plotted in
Then the permittivities of each cell can be obtained as foIIowgig_ 2. The model is characterized by simple step distribution
in = (T)an +1, i=1,23. of permittivities. Fig. 3 shows the reconstructed results. It
is obviously that the reconstruction is good. The root mean
Note that there are a total af/ possible values of eachsquare (rms) error is about 1.33, 2.03, and 0.83% for the
element ofr, m, and r3. Therefore, the average value ofpermittivitiese;, €2, andes, respectively. The required CPU
theseM data is computed and chosen as final reconstructitime for this examples is about 10 min on a SUN SPARC 20.
result in the simulation. In the above derivation, the key In the second example, the rectangular cross section of the
problem is that the incident matric{aE;;] and [F!] must not composite materials coated on a rectangular cross-section con-
be singular matrices, i.e., all the incident column vectors thatictor is discretized into 72 cells. The model is characterized
form the [E]Z;] and [E!] matrices, must be linear unrelatedby simple step distribution of permittivity in the direction,
Thus, if the object is illuminated by a group of unrelatefive layer constant of permittivity in thg direction, and step
incident wave, it is possible to reconstruct the permittivitdistribution of permittivity in thez direction, as shown in
distribution of the materials. Note that when the number &fig. 4. Each cell has 0.5 cnrx 0.5 cm cross section. The
cells becomes very large, it is difficult to make such a greegconstructed permittivity tensor distribution of the object are
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plotted in Fig. 5. The rms error is about 1.85, 1.26, and 0.22%2] S. Caorsi, G. L. Grangnani, and M. Pastroino, “Redundant electro-

for the permittivitiess;, €2, andes, respectively. We can see magnetic data for microwave imaging of three-dimensional dielectric
that the reconstruction is also gOOd objects,”IEEE Trans. Antennas Propagatol. 42, pp. 581-589, May

. - . 1994.
In practice, the scattered field may be contaminated by rar[':§] T. M. Habashy and M. L. Oristaglio, “Simultaneous nonlinear recon-

dom noise. For simulating the effect of noise, two independent  struction of two-dimensional permittivity and conductivityigadio Sci,
values of Gaussian noise with zero mean are added to the real vol. 29, pp. 1101-1118, July/Aug. 1994.

and imaginary part of the measured data, respectively. THA&l W. Wang and S. Zhang, “Unrelated illumination method for electro-
- oA . . . magnetic inverse scattering of inhomogeneous lossy dielectric bodies,”
signal-to-noise ratio (SNR) is defined as IEEE Trans. Antennas Propagatiol. 40, pp. 1292-1296, Nov. 1992.

_ Tos (=) ]2 2 [5] C. C. Chiuand P. T. Liu, “Image reconstruction of a complex cylinder
S/N =10 log[||E (T)H /| |N|| ] (dB)' illuminated by TE waves,|EEE Trans. Microwave Theory Techiol.

. : o 44, pp. 1921-1927, Oct. 1996.
The value of SNR used in the simulation includes 10, 20, 30&6] N. Joachimowicz, C. Pichot, and J. P. Hugonin, “Inverse scattering: An

40, a_nd 59 dB' The numerical reS_U|tS for Examples 1 and iterative numerical method for electromagnetic imagingEE Trans.
are given in Figs. 6 and 7, respectively. It shows the effect of antennas Propagatyol. 39, pp. 1742— 1752, Dec. 1988.

noise is tolerable for SNR above 30 dB. [7]1 D. Colton and P. Monk, “A modified dual space method for solving
the electromagnetic inverse scattering problem for an infinite cylinder,”

Inverse Problemsyol. 10, pp. 87-107, 1994.
IV. CONCLUSIONS [8] R.E. Kleinman and P. M. van den Berg, “A modified gradient method

An efficient algorithm for reconstructing the permittivity for two-dimensional problems in tomographyl,’ Comput. Appl. Math.,
tensor distribution of the inhomogeneous biaxial material vol. 42, pp. 17-35, 1992. cemp 9AR At .

; ] S. Barkeshli and R. G. Lautzenheiser, “An iterative method for inverse
coated on a given shape conductor has been proposed. BY scattering problems based on an exact gradient seaRetulib Sci. vol.
properly arranging the direction and the polarization of various 29, pp. 1119-1130, July/Aug. 1994.
unrelated incident waves, good reconstructed results have b8€h s- F. T”inilﬁg‘;”é':ie'd Computation by Moment MethodsNew York:
Obtame_d through simple mat_rlx operf’;\tlons_and the CIIﬁlcunélll] A.al(;ri?ilma;r;ij,Elect.romagnetic Wave Propagation, Radiation and Scatter-
of the ill-posedness and nonlinearity is avoided. The moment” ;,y  englewood Cliffs, NJ: Prentice-Hall, 1991.
method has been used to transform a set of integral equation
into matrix forms. Then these matrix equations are solved by
the unrelated illumination method. Numerical simulation for
imaging the permittivity distribution of materials has bee
carried out and good reconstruction has been obtained e
in the presence of Gaussian noise in measured data. Since

iteration is required, this algorithm is very efficient.

Chien-Ching Chiu was born in Taoyuan, Taiwan,
ROC, on January 23, 1963. He received the B.S.C.E.
degree from National Chiao Tung University,
Hsinchu, Taiwan, in 1985 and the M.S.E.E. and
Ph.D. degrees from National Taiwan University,
Taipei, Taiwan, in 1987 and 1991, respectively.
From 1987 to 1989, he served in the ROC Army
Force as a Communication Officer. In 1992 he
« = Joined the faculty of the Department of Electrical
[1] M. M. Ney, A. M. Smith, and S. S. Stuchly, “A solution of electromag- Engineering, Tamkang University, where he is now
netic imaging using pseudoinverse transformatid&EE Trans. Med. a Professor. His current research interests include
Imaging, vol. MI-3, pp. 155-162, Dec. 1984. microwave imaging and indoor wireless communications.

REFERENCES




