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Abstract—A full-wave method to analyze probe-fed infinite
phased arrays of arbitrarily shaped microstrip patches residing
in a cavity is proposed. The method is based on a combination
of the mode matching and finite-element methods (MM-FEM)
and provides a rigorous characterization of the coaxial feed.
The radiated field to the half space is expressed as a Floquet’s
harmonic expansion reducing the analysis to a single elementary
cell of the periodic antenna. The unit cell is analyzed as an
open-ended succession of homogeneous waveguides of diverse
cross sections. Each transition between waveguides is solved by a
hybrid MM-FEM procedure to obtain its generalized scattering
matrix (GSM). Finally, the GSM of the structure, which char-
acterizes the array, is obtained from the individual GSM’s by a
cascading process. The method is also extended to the analysis of
conventional probe-fed microstrip arrays by using the waveguide
simulator model. Several prototypes, implemented and measured
in waveguide simulator, have been analyzed to prove the validity
and efficiency of the proposed method.

Index Terms— Finite-element methods, microstrip arrays,
mode-matching, scattering matrices.

I. INTRODUCTION

T HE attractive advantages of the microstrip antennas are
widely known, as well as their increasing number of

applications [1]. However, they possess intrinsic limitations
as the narrow impedance bandwidth or the excitation of
the surface waves. A straightforward and effective means
of improving the bandwidth performance is to employ thick
substrates between the microstrip antenna and the ground plane
or to add parasitic stacked patches. However, as the substrate
becomes thicker, the surface waves generation rises. In the
case of arrays, the mutual coupling between elements also
increases and it is more difficult to obtain a good impedance
matching between the radiant elements and the feed lines as
the array is scanned. In addition, scan blindness may occur in
large arrays. In the last years, a method of preventing surface
wave modes by insertion of metallic baffles between the patch
elements has been investigated [2]–[5]. Microstrip patch arrays
residing in a cavity allow to use thicker substrates without the
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limitation in the scanning range [2]. To analyze these structures
simple approaches become inefficient and full-wave analyses
are required such as integral-equation (IE) formulation [2],
finite-element method (FEM) [3], or hybrid techniques [4]–[6].

On the other hand, for coaxially fed microstrip antennas,
a rigorous modeling of the excitation is also required, both
for conventional and cavity-backed patches, particularly when
these are printed on thick dielectric substrates or when the
size of the probe and coaxial aperture are not negligible.
Simplified models of the probe coaxial feed based on a current
filament [4], [7] (only applicable to thin substrates) and a
finite width surface current [2], [3] are commonly employed.
However, with these simplifications the current variations
and the probe radius are not taking into account. A more
precise model proposed in [8] and [9] includes the effect of
the probe by using an additional attachment mode, derived
from the corresponding cavity model solution, although the
coaxial aperture on the ground plane is not considered. Other
formulation for the attachment mode has been proposed in
[10] with a more rigorous model consisting of imposing also
a magnetic current on the aperture. However, it does not take
into account the alteration of the aperture fields. To include the
effect of the probe radius, the cavity model has been employed
with magnetic walls [11] or boundary admittances at the edges
[12]. The mode-matching (MM) technique is used in [11]
to analyze the junction cavity-coaxial probe, but it is only
valid for canonical geometries, moderate thick substrates, and
isolated radiant elements.

Purely numerical techniques such as the finite-difference
time-domain (FDTD) method [13] have been used to analyze
more rigorously the excitation, but they show others limitations
such as the employ of very fine meshes for an accurate probe
modeling and tri-dimensional meshing with suitable boundary
conditions. In the context of three-dimensional (3-D) FEM,
complex feed-modeling procedures with similar computation
time and storage limitations have also been proposed [5], [6].

In this paper, we present a full-wave method for the analysis
of probe-fed infinite phased arrays of arbitrarily shaped mi-
crostrip patches residing in a cavity that provides an accurate
modeling of the coaxial feed. It is based on a hybrid numerical
procedure that combines the MM, generalized scattering ma-
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Fig. 1. Unit cell of a multilayer microstrip array of arbitrarily shaped stacked
patches with probe feed and backed by rectangular cavities.

trix (GSM) techniques, and the two-dimensional (2-D) FEM.
In the next section, the description of this method is accom-
plished. The procedure is extended and applied in Section III
to the analysis of infinite arrays of conventional probe-fed
microstrip patches by using the waveguide simulator model.
Section IV contains input impedance and scan performance
results for cavity-backed patch arrays and comparisons with
measurements and other numerical predictions.

II. A NALYSIS METHOD

A general problem of a multilayer microstrip array of
arbitrarily shaped patches in stacked configuration, backed by
rectangular cavities, and probe-fed by the center conductor
of a coaxial transmission line is considered. The unit cell
geometry of the periodic array is depicted in Fig. 1. The
patches, cavities, and ground plane are assumed perfect con-
ductors. The infinite array approach is assumed so that the
periodic symmetry of the structure allows to use the Floquet’s
theorem in order to limit the analysis to a single element in
a unit cell. The analysis method is based on the considera-
tion of the elementary cell as an open-ended succession of
homogeneous waveguides of diverse cross sections, with the
same direction of propagation (z axis), radiating into half-
space. The procedure is divided into two connected blocks: a
multistepped waveguide structure and a transition between an
infinite array of rectangular apertures and the free half-space.
In the following subsections, the procedures to analyze these
blocks are described.

A. Analysis of the Elementary Cell by Cascading GSM’s

The elementary cell, excluding the rectangular aperture
problem, is divided into simple discontinuities between ho-
mogeneous waveguides of different cross sections. The MM
technique is applied to solve each individual transition using
a modal representation for the fields, either analytical or
numerical, in each side of the discontinuityi andj. Matching

the electric and magnetic tangential field components by means
of a Galerkin testing procedure and after some algebraic
manipulations results in the GSM of the discontinuity�
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whereAi, Bi, Aj, andBj are column matrices containing
complex amplitudes of incident(A) and scattered(B) modes
to/from the discontinuity in thei and j waveguide sections.
The expressions used to obtain the submatricesSij in (1)

S21 = 2[X(Di)�1Xt +Dj ]�1X

S22 = [X(Di)�1Xt +Dj ]�1[Dj
�X(Di)�1X t]

S11 = (Di)�1XtS21 � I

S12 = (Di)�1Xt(I + S22)

(2)

require the previous computation of the related MM-field
coupling integral matrix,X, and the diagonal complex power
matricesDi andDj . I is the identity matrix. The elements
of X are

X(n;m) =

Z
Sc

�
~e
j
n �

~him
�
d~s: (3)

The integral is defined over the common cross sectionSc of
the implicated waveguides and~e jn and~him are the normalized
transversal components of the electric and magnetic field of
thenth andmth modes in thej andi waveguides, respectively.
The elements ofDi andDj are

Dr(n) =

Z
Sr

�
~e rn �

~hrn
�
d~s; r = i; j (4)

whereSr is the section of ther waveguide.
For canonical regions, as the coaxial line or the rectangular

waveguide corresponding to the dielectric layers above the
fed patch, the transversal mode components are derived ana-
lytically. However, waveguides without or with complicated
analytical solution (as the transmission lines associated to the
substrate with probe or to the patch geometry) are charac-
terized numerically. In this case, the FEM is employed as
described in Section II-B. A cascade connection process for
the GSM’s of the different discontinuities leads to the GSM
of the first considered block.

B. MM at Interfaces with Noncanonical Waveguides

The analysis of discontinuities that involve homogeneous
waveguides of arbitrary cross section is performed by a hybrid
MM-FE procedure developed previously [14] and [15]. The
technique requires the numerical computation of the modes
for the noncanonical waveguides. The FEM is applied to the
discretization of the appropriate functionals using a Galerkin
procedure. The axial field components for TE and TM modes
and the scalar electric potential for TEM modes are computed
in the nodes of a mesh performed on the waveguide cross
sections. Next, MM is applied to obtain the GSM of the
considered discontinuity computing numerically the integrals
(3) and (4) from the FE solution. This step is performed in
an efficient way by using perfectly overlapped meshes for the
waveguides in the FE implementation. This procedure will
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allow to obtain the integralsX(n;m) over the total common
section as a summation of elemental integrals on each of the
L finite elementsScl , which compose the mesh ofSc

X(n;m) =
LX
l=1

Z
Scl

�
~e jn �

~him
�
d~s (5)

Dr is also computed as a summation of elemental integrals
on Sr . More details about the computation of this coefficients
are given in the Appendix.

For interfaces between canonical and noncanonical waveg-
uides, both numerical and analytical modes may be employed.
In contrast to other works, the FEM is only applied to compute
numerical modes in noncanonical regions. Moreover, an ap-
propriate field normalization leads to a frequency-independent
internal product computation, allowing an efficient analysis
over a wide bandwidth.

C. Interface: Array of Apertures-Free Half Space

The GSM computation of the interface—array of rectan-
gular apertures half space—has also been accomplished by
the MM method developed previously [16]. The technique
is analogous to the standard MM procedure for waveguide
discontinuities, but in this case, the fields in the half space are
expressed as a Floquet’s harmonic expansion and the analytical
modal representation is used for the rectangular waveguide.
The enforcement of the continuity condition on tangential
electric and magnetic fields over the interface plane and the
application of orthogonality properties of harmonics in the half
space and modes in the waveguide allows us to obtain the
GSM of the transition. Now, the field-coupling integral matrix
(3) is composed of expressions that relate space harmonics
and modes and are computed analytically over the aperture
surface.Ai, Bi, andAj , Bj in (1) are column matrices of
complex coefficients of the rectangular waveguide modes and
space harmonics, respectively.

The full-wave procedure is also applicable to arrays with
arbitrarily shaped cavities since the modes in each region are
computed numerically by FEM. In this case, the aperture array
half-space transition is fragmented in two fictitious discontinu-
ities by inserting an imaginary rectangular waveguide of zero
length between the real cavity and the half space, as described
in [17].

D. The Solution of the Overall Structure

A cascade connection process for the GSM’s of the mul-
tistepped and the aperture problems, obtained as described
in Sections II-B and C, respectively, provides the GSM of
the overall structure, which relates modes in the coaxial line
and Floquet’s harmonics in the half space. The reflection
coefficient for the TEM mode in the coaxial lineS11 gives
the active reflection coefficient of the infinite array. From
the Floquet’s harmonics coefficients, the field distribution on
the aperture is directly obtained and, from this, the radiation
patterns of the array. Thus, a full-wave analysis of the coaxial
feed for infinite microstrip arrays residing in a cavity is
performed, and an accurate prediction of the active input
impedance is possible.

Fig. 2. Conventional infinite array of probe-fed rectangular microstrip
patches (a = b = 10 cm; l = 6 cm; h = 4 cm; s = t = 1 cm; �r = 4:32;
d = 0:8 mm; coaxial feed:�rx = 1:951; ri = 0:64 mm; ro = 2:05 mm).

The technique takes into account the real thickness of the
metallizations and will be applicable to patches with arbitrary
shape because this region is considered as a short length of an
irregular shaped transmission line. Moreover, it will allow the
inclusion of stacked patches and several dielectric layers by
considering suitable waveguide or transmission line sections.

The scan performance array may be characterized by the
normalized active element patternG(�; ') or the active re-
flection coefficient. Both are related for a lossless array when
no grating lobes are present in the visible range byG(�; ') =
(1 � jS11(�; ')j2)cos �, as described in [18].

III. RESULTS OF AN ARRAY IN A WAVEGUIDE SIMULATOR

The preceding theory for the analysis of cavity-backed
microstrip arrays is adapted in this section to the conven-
tional arrangement of microstrip patch arrays on an infinite
dielectric substrate (see Fig. 2). The procedure is based on
the application of the waveguide simulator model (WGS),
which reproduces the electromagnetic behavior of an infinite
array in one or more periodic cells in a housing rectangular
waveguide [19]. If a WGS is used to analyze an infinite
microstrip array fed by a probe from a coaxial line placed on
the ground plane, the initial radiating problem is converted
into a physically bounded one. Fig. 3 shows the resultant
structure for an array of circular patches. It can be considered
as a transverse multidiscontinuity problem between different
homogeneous waveguides of arbitrary cross sections, similar
to the structure analyzed in Section II without the aperture
discontinuity and ended in a matched rectangular waveguide.
This computational model avoids building a new simulator
for each frequency or scan angle and allows consideration
of magnetic walls in order to extend the analysis to dual or
circular polarization.

To validate this procedure, two different arrays have been
analyzed. The first example (reported in [9]) is an infinite
array of circular patches. The simulator is a standard S-
band rectangular waveguide operating in the TE10 mode that
simulates a scanning of the array in theH plane. In the
reference, only the probe radius is specified and modeled.
For our analysis, a semirigid coaxial model RG-.402/U (50

) with the same inner radius has been chosen and all the
dimensions and dielectric constant considered. The analysis
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Fig. 3. Waveguide simulator for an infinite array of circular patches with
coaxial feed (r = 1:429 cm; s = 0:5 cm; a = 3:4 cm; 2b = 7:22 cm;
d = 0:079 cm; �r = 2:33� 0:02; coaxial feed:�rx = 2:024; ri = 0:456
mm; ro = 1:492 mm).

by the MM-GSM procedure of the kind of structure shown
in Fig. 3 requires an appropriate ratio of number of modes at
each discontinuity to obtain convergent results.

The asymmetric transition coaxial line-circular rectangular
coaxial line (substrate geometry) is not solved directly because
the notable size difference between their cross sections. This
solution would lead to considering a very large number of
modes in the substrate. The insertion of intermediate fictitious
sections of coaxial lines with very small or null lengths and
different outer radii (as shown in Fig. 4) allows reduction
of the number of modes to be employed and enhancement
accuracy avoiding numerical instabilities [20]. In Fig. 5, the
convergence of the TEM mode-reflection coefficient for this
transition, solved with two intermediate steps with zero length
(w = 0), is illustrated. The graphs represent lines with the
same magnitude of this parameter by varying the number of
modes in the substrate(S) and coaxial lines. In they axis,
(C) represents the modes in the first coaxial and the number of
modes in the fictitious sections are obtained by fixing the same
angular variation in all of them and taking the radial variations
equal to the ratio of radii for each single discontinuity. The
figure shows a region fromS = 150 with aroundC = 7
modes where the fluctuations are not significant. The same
behavior has been observed for the equal-phase curves. For the
step approach, convergent results are obtained with a smaller
number of modes in the substrate than in the direct junction
case where a greater modal ratio (substrate/coaxial) is required.

On the other hand, the small thickness of metal patches,
which leads to closely separated discontinuities, may be a
source of numerical instabilities. A study of the convergence
behavior for the transitions substrate-patch-rectangular wave-
guide has been carried out by varying the number of modes
in the regions corresponding to the substrate(M ) and the

Fig. 4. Insertion of fictitious stepped sections of coaxial lines with very small
or null lengths(w � 0) in the transition coaxial line substrate.

Fig. 5. Convergence study of the TEM mode-reflection coefficient(S11) in
the first coaxial line for the transition coaxial substrate solved with fictitious
steps. The magnitude ofS11 versus the number of modesS andC in the
corresponding modal series is represented.

patches(N ), but assuming the same number of modes in
the rectangular waveguide and the substrate because they
have practically the same cross sections. The results in Fig. 6
represent the reflection coefficient for the TEM mode in the
substrate at 4.1 GHz. Only the magnitude is shown in the
figure, but a similar behavior is exhibited for the phase curves.
It can be established that with a modal ratio(M=N ) greater
than 1.5 times the ratio of the respective cross sectionsRa and
from a threshold(N � 25) in the patch geometry, the figure
shows a spacious region where the convergence is achieved.
This behavior is similar to that reported in [21] for numerical
methods involving equation systems that relate two truncated
series. Numerical studies have stated that when the modal
ratio exceeds a value, the results converge taking a sufficient
number of terms in the modal series. We have found that this
criterion gives good convergence in all studied geometries for
this double transition.

Fig. 7 compares the results for the active reflection coef-
ficient in [9] with our predictions. The agreement with the
measured data was achieved in the reference and with the
proposed technique by correcting the substrate permittivity
from the nominal value�r = 2:33 to 2:28 and 2:29, respec-
tively. To illustrate the effect of the coaxial size, the analysis
has been reproduced with different values of the outer radius
and permittivity of the coaxial line, but retaining its initial
characteristic impedance. The results in Fig. 8 show how the
resonant frequency shifts down and the impedance matching
changes lightly when the coaxial aperture is increased. This is
due to the field alteration in the transition that must be taken
into account when the coaxial dimensions are not negligible.
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Fig. 6. Convergence study of the TEM mode reflection coefficient (�) in the
substrate transmission line for the double transition substrate-patch-rectangular
waveguide. The magnitude of� versus the number of modesM andN in
the corresponding modal series is represented.

(a)

(b)

Fig. 7. Reflection coefficient(S11) of the infinite array of circular patches
in S-band waveguide simulator defined in Fig 3. (a) Magnitude. (b) Phase.
(��): measured in [9]; (oo): simulated in [9] with�r = 2:28; (—): simulated
here with �r = 2:29.

In the next example, an infinite array of square patches
is considered. A prototype has been implemented and mea-
sured in a WGS, constituted by a matched standardC-band
rectangular waveguide. The experiments were done on a
tetrafluorethylen (PTFE) substrate. The patch element is fed
by the center conductor of a SMA connector of 50
.
Fig. 9 presents the measured active reflection and transmission

Fig. 8. Calculated reflection coefficient magnitude of the infinite array of
circular patches inS-band waveguided simulator defined in Fig. 3 for varying
the outer radius (ro) of the coaxial feed line. (- - -):ro = 1:492 mm; (���):
r0

o = 0:7 ro ; (—): r00

o = 1:47 ro; (— – —): r000

o = 2:25 ro.

coefficients together with the results obtained by the method
presented here. An excellent agreement has been achieved
with a permittivity correction(�r = 2:61) and substrate
thickness (d = 2:42 mm), both inside the tolerances. The
proposed technique allows accurate predictions not only for
the resonant frequency, but also for the reflection coefficient
values because the feed is modeled without approximations.
The measures show a spurious resonant frequency at 4.85
GHz that is reproduced, however, like a total reflection in
the simulation. The measured transmission coefficient from
coaxial to rectangular waveguide indicates the loss dissipation
at this frequency, which is not included in the theoretical
model.

IV. RESULTS OFCAVITY -BACKED ARRAYS

To illustrate the usefulness of the full-wave method (devel-
oped in Section II) applied to the analysis of cavity-backed
microstrip arrays, in this section, numerical results for the
active reflection coefficient are compared with measurements
in waveguide simulator. Scan performance results are also
presented and compared with other numerical predictions.
All conclusions obtained in Section III related to the ratio
of modes selection have been applied now for analogous
waveguide transitions. The ratio space harmonics modes em-
ployed to solve the rectangular aperture array half-space
discontinuity is the ratio of areas between the periodic cell
and the rectangular aperture in each case, [16].

The unit cell of the first considered array is depicted in
Fig. 10. The substrate and feed coaxial line are the same as in
the previous example and, therefore, the same corrected values
of �r1 and d are used. The measurements were performed
with the sameC-band waveguide simulator but now placed
on only one periodic cell. In this way, the structure to
be measured will be the unit cell in Fig. 10 ended with a
matched rectangular waveguide with dimensionsa and b in
agreement with the array periodicity. This disposition models
an infinite array excited to have a main and grating lobes
radiating in opposite angles. Theoretical predictions assuming
both WGS and infinite array are shown in Fig. 11, together
with the measured active reflection coefficient. Two different
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(a)

(b)

Fig. 9. Magnitude of the measured and calculated reflection(S11) and
transmission(S21) coefficients of an infinite array of square patches in
C-band waveguide simulator (a = 2:215 cm; b = 2:378 cm; l = 1:8
cm; s = 0:48 cm; �r = 2:58� 0:04; d = 2:362 mm� 0:076; coaxial feed:
�rx = 1:951; ri = 0:64 mm; ro = 2:05 mm).

situations are considered: 1) recessing the patches into the
cavity (e 6= 0) and 2) with the convectional disposition of the
patches and cavity aperture over the same plane (e = 0). The
figure shows a practical coincidence between the WGS and
array predictions. This fact validates the WGS as a suitable
model for infinite arrays. Besides, in both cases measurements
and predictions show a good agreement with some deviation
attributable to losses and mechanic tolerances.

Results for an array with identical radiant elements, but with
a new periodicity inx direction (b = 2:378 cm) are shown in
Fig 12. TheC-band WGS is placed now on two periodic cells.
The comparison of Figs. 11(a) and 12(b) indicates that when
the patches are recessed into the cavity the active reflection
coefficient is practically the same for both periodicities. As it
could be expected for this configuration, the array characteris-
tics are determined fundamentally by the patch geometry into
the cavity and not for the array configuration.

To illustrate the effect of the feed coaxial size in the
scan performance, the broadside-matched active reflection
coefficient of the former cavity-backed array has been com-
puted for three different coaxial outer radii, maintaining the
same characteristic impedance. The results in Fig. 13 show
how the variation of the input impedance versus scan is
altered. TheE-plane scan performance is lightly deteriorated

Fig. 10. Elementary cell of an infinite array of cavity-backed square patches
fed by coaxial lines (l = 1:35 cm; h = 1:815 cm; d = 2:362 mm�0:076;
s = 1:75 mm; �r1 = 2:58� 0:04; �r2 = 1:0; a = 2:215 cm; b=4:756
cm; coaxial feed:�rx = 1:951; ri = 0:64 mm; ro = 2:05 mm).

(a)

(b)

Fig. 11. Measured and simulated active reflection coefficient magnitude in
C-band waveguide simulator of the infinite cavity-backed microstrip array
defined in Fig. 10. Simulated with�r1 = 2:61, d = 2:42 mm. (a)e = 2:6
mm, �r2 = 1:0. (b) e = 0 mm.

as the coaxial aperture increases. On the contrary, in theH
plane it is clearly improved. The effect will be noticeable
when the coaxial aperture is not negligible, for example it
may appear for the use of microstrip antennas at millimeter
frequencies.
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(a)

(b)

(c)

Fig. 12. Measured and calculated active reflection coefficient magnitude in
C-band waveguide simulator of the infinite cavity-backed microstrip array
described in Fig. 10, withb = 2:378 cm (simulated with�r1 = 2:61,
d = 2:42 mm). (a) Measured structure. (b) Results withe = 2:6 mm,
�r2 = 1:0. (b) Results withe = 0 mm.

The scan performance of a conventional microstrip array
when thin substrates are employed (d � 0:02�o) is not very
different to the same array of cavity-backed patches, as is
demonstrated in [2] for circular patches and cavity cross
sections. Based on this behavior, the active element pattern of
an infinite array of conventional rectangular patches analyzed
in [22] (see Fig. 2) with a substrate thickness of 0.003�o has
been reproduced with the technique proposed in Section II
after inserting thin metallic walls between the adjacent cells
of the array. The results forE andH planes are depicted in
Fig. 14 at 1.21 GHz and a very good agreement with numerical
results in the reference is observed.

V. CONCLUSION

A hybrid MM-GSM-FE numerical technique for the analysis
of infinite arrays of microstrip patches with arbitrary geometry

(a)

(b)

Fig. 13. Calculated magnitude of the broadside-matched active reflection
coefficient versus the scan angle of the infinite cavity-backed microstrip array
defined in Fig. 10 (b = 2:378 cm) for different outer radii of the coaxial feed
line. (a)E plane. (b)H plane. (—):ro = 2:05 mm; (— – —): r0

o = 1:7ro;
(- - -): r00

o = 2:31 ro.

Fig. 14. Normalized active element pattern of the infinite array of rectangular
microstrip patches described in Fig. 2.

and backed by metallic cavities has been presented in this
paper. The method is combined with the waveguide simulator
concept to analyze conventional arrays on an infinite dielectric
substrate. To validate the analysis procedure, it has been
applied to the characterization of different infinite arrays
with circular, square, and rectangular patches. Results includ-
ing active reflection coefficients and active element patterns
have been obtained and compared with measurements from
prototypes implemented on waveguide simulator and other
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experimental and theoretical data available in the literature.
The proposed method provides a rigorous characterization
of the coaxial feed and allows accurate predictions of the
active input impedance, particularly in the analysis of cavity-
backed arrays involving thick substrates and/or coaxial feed
with nonnegligible dimensions, where other methods fail. In
contrast to other 3-D numerical techniques, a more efficient
2-D FEM combined with the MM technique is used to analyze
the coaxial feed and cavity region.

APPENDIX

If ~e jn and ~him in (5) are expressed as a function of the
derivatives of the axial field componentsAz for TE and TM
modes and the scalar electric potential� for TEM modes, the
coupling integrals may be expressed in a general form as

X(n;m) =
LX

l=1

Z
Sc

l

F

�
@ jn
@p

;
@ jn
@q

;
@�im
@p

;
@�im
@q

�
dS (6)

where  and � representEz, Hz or � according to the
different modal combination possibilities in (3), and(p; q) are
the transversal local coordinates. A Gauss quadrature rule for
the numerical computation of these integrals may be applied
because of coherent meshes are employed. In this way, (6)
may be expressed as

X(n;m)

=
LX
l=1

"
KX
k=1

Wk �F

�
@ jn
@p

;
@ jn
@q

;
@�im
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�����
(pk;qk)

#
l
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where (pk; qk) and Wk are the integration points and the
corresponding weights, respectively.

For canonical waveguides, analytical expressions of j and
�i may be employed to compute (7) but numerical solutions
must be obtained for any other arbitrarily shaped homogeneous
waveguides.

To obtain a numerical mode representation, the FEM is
used for the discretization with second order quadrangular
and triangular isoparametric elements of Lagrange kind of
the associated functionals for scalar Helmholtz and Laplace
equations. These functionals are known to be

F (Az) =
1

2

Z
S

�
(rtAz)

2 � k2cA
2
z

�
ds (8a)

and

F (�) =
1

2

Z
S

"(rt�)2ds (8b)

for TE and TM modes (wherekc is the cutoff wave number)
and for TEM modes, respectively. The formulation (8a) leads
to an eigenvalue problem of the form

[K]fAzg = ��2[M ]fAzg (9)

where fAzg are column matrices containing the values of
Az in the nodes of the mesh and� is the phase constant.
This eigensystem is solved by the subspace iteration method,
composed of a sequence of inverse iterations and Rayleight

Ritz analysis on each subspace. The eigenvalues and eigenvec-
tors in this subspace are calculated by the generalized Jacobi
method [23].
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Miguel A. González de Azawas born in Madrid,
Spain. He received the Ing. Telecomunicaci´on and
Ph.D. degrees from the Universidad Polit´ecnica de
Madrid, Spain, in 1989 and 1997, respectively.

From 1990 to 1992, he has been with the Departa-
mento de Electromagnetismo y Teor´ıa de Circuitos
at the Universidad Polit´ecnica de Madrid on a
research scholarship from the Spanish Ministry of
Education and Science. He became an Assistant
Professor and an Associate Professor in 1992 and
1997, respectively, at the same university. His main

research interests include analytical and numerical techniques for the analysis
and characterization of waveguide structures and microstrip antennas.
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