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Backscattering of TE Waves by
Periodical Surface with Dielectric Cover

Jean-Fu Kiang,Member, IEEE

Abstract—Several types of periodical surfaces are studied on
their backscattering to a normally incident TE plane wave. The
surfaces are perfect conductor and are covered with dielectric ma-
terials to make a flat surface due to aerodynamic consideration.
The effects of frequency, surface profile shape, period-to-depth
ratio, and cover permittivity are analyzed. It is observed that
a sawtooth profile can be used to reduce the backscattering at
high frequencies and elliptical profiles can be used to reduce the
backscattering at certain low frequencies when a cover material
is filled in the grooves.

Index Terms—Electromagnetic scattering, periodic structures.

I. INTRODUCTION

PERIODICAL structures have been widely studied for
applications such as filters and leaky wave antennas [1],

wave transmission and reflection [2], scattering [3], diffraction
by a Fourier grating [4], scattering from conductive surfaces
with a sinusoidal height profile [5], [6], reflection and trans-
mission by conductive or dielectric gratings embedded in a
dielectric slab [7], etc.

When a plane wave is incident upon a periodical surface,
higher order (Floquet) modes other than the specularly re-
flected mode are scattered in directions determined by the
periodical boundary conditions. The higher order modes carry
away part of the incident power, hence, reduce the specularly
reflected power. In [5] and [6], it is observed that the profile
depth of the surface affects the ratio between the specularly
reflected power and the power carried by the first-order Floquet
modes. This property can be used to reduce the radar cross
section of moving objects of which the grooves need be filled
by dielectric materials to have an aerodynamically smooth
surface. Thus, the effects of the dielectric cover on the
backscattering cross section need to be considered.

In this paper, we develop a mode-matching method by
which periodical surfaces of arbitrary profiles filled with
layered dielectric can be analyzed. The mode-matching method
is formulated in the next section, followed by the numerical
results with the sinusoidal, sawtooth, convex elliptical, and
concave elliptical surface profiles.

Manuscript received November 19, 1996; revised July 9, 1997. This work
was supported by the National Science Council, Taiwan, under Contract
NSC86-2221-E005-021, the Chunghwa Telecommunications Laboratory, Tai-
wan, under Contract NSC86-2209, and the Chung-Shan Institute of Science
and Technology, Taiwan, under Contract CS86-0210-D005-001.

The author is with the Department of Electrical Engineering, National
Chung-Hsing University, Taichung, Taiwan, 402 ROC.

Publisher Item Identifier S 0018-926X(98)01485-9.

II. FORMULATION

Fig. 1 shows a TE plane wave incident upon a perfectly
conducting surface which is uniform in they direction and
is periodical in thex direction with the period ofP . The
periodical surface is modeled as a cascaded step function and
the medium in the groove belowz = 0 is modeled as a layered
medium. Thè th layer starts atx = x`, its width isa`, and it
contains a medium of permittivity�`. The fields in layer (0)
can be represented as a superposition of Floquet modes [8]
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wherekx = ko sin � and kz = ko cos � are the wave vector
components of the incident plane wave,kxn = kx + 2n�=P
is the x component of the wave vector of thenth Floquet
mode, k0zn =

p
k2o � k2xn with Im(k0zn) � 0, and ~Rn is

the amplitude of thenth reflected Floquet mode when the
incident wave has a unity amplitude. The fields in layer(`)
of the groove can be expanded in terms of the parallel plate
waveguide modes as [9]
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where z` = z + d`, 
`m = m�=a`, and k`zm =p
!2�`�` � 
2

`m
with Im(k`zm) � 0. To obtain a more

compact representation, define coefficient vectors��` =
[�`1; �`2; � � �]t; ��` = [�`1; �`2; � � �]t, and diagonal matrices
��K` = diagfk`z1; k`z2; � � �g. At z = �d`, define a reflection
matrix ��R \` such that ��` = ��R\` � ��`, which means that
the amplitudes of the downward-propagating wave modes
multiplied by the downward reflection matrix give the
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Fig. 1. Periodical surface profiles. (a) Sinusoidal profile. (b) Sawtooth pro-
file. (c) Concave elliptical profile. (d) Convex elliptical profile. (Hatching
represents dielectric cover.) (e) Cascaded layers model of the periodical
surface.

amplitudes of the upward wave modes. An upward reflection
matrix can be defined atz = �d`�1 in a similar way as
e�i
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Substitute the field expressions in (2) into (3), multiply the
resulting equation by(2=a`) sin[
`n(x � x`)], then integrate
over x` � x � x` + a` to obtain
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From (4) and (7), a recursive formula of the reflection matrices
is obtained

��R\` =

�
��C
`(`+1)

�
�
ei

��K`+1h`+1 � ��R \(`+1) � e
i ��K`+1h`+1 + ��I

�
�
�
ei

��K`+1h`+1 � ��R \(`+1) � e
i ��K`+1h`+1 � ��I

�
�1

�
�`+1
�`

��K
�1

`+1 �
��D
(`+1)`

� ��K` �
��I

�
�1

�

�
��C
`(`+1)

�
�
ei

��K`+1h`+1 � ��R \(`+1) � e
i ��K`+1h`+1 + ��I

�
�
�
ei

��K`+1h`+1 � ��R \(`+1) � e
i ��K`+1h`+1 � ��I

�
�1

�
�`+1
�`

��K
�1

`+1 �
��D
(`+1)`

� ��K` +
��I

�
: (9)

Since the tangential electric field atz = �dN vanishes,
we have ��R \N = ���I . The reflection matrices atz =
�dN�1; � � � ; z = �d1; z = 0 can be obtained from (9) starting
from ��RN .

The continuity of tangential electric fields atz = 0 implies

E0y =

�
E1y; 0 � x� x1 � a1
0; elsewhere.

(10)

Substitute the field expressions in (1) and (2) into (10), mul-
tiply the resulting equation by(1=P )e�ikxnx, then integrate
over 0 � x � P to obtain
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where �R = [� � � ; R�1; R0; R1; � � �]t is the vector consisting of
all the reflection coefficientsfRng; �I1 = [� � � ; 0; 1; 0; � � �]t is
the incident wave vector in which the only nonzero element
corresponds to the incident wave and the(n;m)th element of
��T is

Tnm =
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The continuity of tangential magnetic fields atz = 0 implies

H0x = H1x; 0 � x� x1 � a1: (13)
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Substitute the field expressions in (1) and (2) into (13),
multiply the resulting equation by(2=a1) sin[
1n(x � x1)],
then integrate overx1 � x � x1 + a1 to obtain
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The refelection coefficients of all the Floquet modes are
obtained by solving (16).

III. RESULTS AND DISCUSSIONS

When a plane wave is normally incident upon a periodical
surface, the backscattering direction is the same as that of
the specular reflection. At oblique incidence, backscattering
occurs only when the incident direction is opposite to that of
a certain Floquet mode. For moving objects with periodical
surfaces, the oblique incidence is of less concern because it
rarely happens.

In Fig. 2, we show the reflection coefficient of the ze-
roth order mode at normal incidence to a periodical surface
with sinusoidal profile. The results from [5] without cover
material match reasonably well with ours ath = 0:25�o.
It is observed that ash either increases or decreases from
0:25�o, the reflected power increases compared with that of
h = 0:25�o. The reflected power curve has more oscillations
with frequency as the profile heighth is increased from
0:125�o to 0:5�o because reflections from different portions of
a deeper groove experience larger phase difference variation
as frequency changes.

In Fig. 3, we show the effects of cover permittivity on
the reflected power. As the cover permittivity increases, the
wavelength in the cover is scaled by the squared root of
the relative permittivity. As ferquency is increased such that
j2n�=P j becomes less thankf (the wavenumber of the cover
material), the�nth Floquet modes are excited as propagating
modes in the cover. At the air–dielectric interface, these
propagating Floquet modes except the zeroth order one are

Fig. 2. Magnitude-squared ofR0 with a sinusoidal profiley = �h+ h cos
(2�x=P ), �f = �o , : h = 0:25�o, – – –: h = 0:5�o, � � �:
h = 0:125�o, �: [6] with h = 0:25�o.

Fig. 3. Magnitude-squared ofR0 with a sinusoidal profiley = �h + h
cos(2�x=P ), h = 0:25�o, : �f = �o , – – –: �f = 2�o, –�–�–:
�f = 4�o, – –�– –: �f = 9�o.

totally reflected back to the groove due to phase matching.
Surface waves are thus formed and propagate in the�x
directions. This mechanism is similar to that of the surface
wave modes in slab waveguides [9]. Quantitatively, with
�f = �fr�o, the surface waves start to propagate whenP=�o =
1=
p
�fr . This implies that for the same periodical surface, the

reflected power curve starts to oscillate with frequecy at lower
P=�o value if a higher permittivity cover is used. It is also
observed that the reflected power also decreases atP=�o > 2

when the cover permittivity is larger than4�o.
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Fig. 4. Magnitude-squared ofR0 with a sawtooth profiley = �(4h=P )x
when 0 � x � P=2; y = (4h=P )(x� P ) whenP=2 � x � P , :
�f = �o; h = 0:25�o, – – –: �f = �o, h = 0:125�o, –�–�–: �f = 4�o,
h = 0:25�o, – –�– –: �f = 9�o , h = 0:25�o.

Fig. 4 shows the reflected power of a periodical surface
with a sawtooth profile. This profile withh = 0:25�o reflects
smaller amount of power in the backward direction when
P=�o > 1:5 except that a resonance peak occurs around
P=�o = 4 when �f = 9�o. The reflected power in this
frequency band is much lower than that with a sinusoidal
profile. However, a shallower profile withh = 0:125�o
increases the reflected power significantly at higher values
of P=�o. As was mentioned, the cover material reduces the
frequency at which surface waves start to be guided in the
�x directions. Thus, the reflected power is reduced at certain
frequencies in the0 < P=�o < 1 band in which the reflection
coefficient is unity when without cover.

Fig. 5 shows the reflected power by convex elliptical pe-
riodical surfaces. The profile withh = 0:125�o gives a
much higher reflected power than that withh = 0:25�o.
The reflected power withh = 0:25�o in the frequency band
P=�o � 2 is higher compared with that of the sinusoidal
profile. The reflected power can be reduced when the cover
permittivity is increased. Also notice that in the range0:5 <
P=�o � 1 and with �f = 4�o, the reflected power is
significantly reduced compared with those of the sinusoidal
and sawtooth profiles.

Fig. 6 shows the reflected power with a concave elliptical
profile. The variations are similar to those in Fig. 5 except that
the reduction of reflected power withP=�o is smoother in the
range1 < P=�o < 2.

IV. CONCLUSION

A mode-matching method has been developed to study the
backscattering properties of periodical surface with dielectric
cover when a TE plane wave is incident upon the surface
normally. The use of dielectric cover reduces the frequency
at which surface waves start to be guided, hence, reduces the

Fig. 5. Magnitude squared ofR0 with a convex elliptical profile
y = �2h + 2h(1 � 4x2=P 2)1=2 when �P=2 � x � P=2, :
�f = �o, h = 0:25�o, – – –: �f = �o , h = 0:125�o, –�–�–: �f = 4�o,
h = 0:25�o, – –�– –: �f = 9�o , h = 0:25�o.

Fig. 6. Magnitude squared ofR0 with a concave elliptical profile
y = �2h[1 � 4(x � P=2)2=P 2]1=2 when 0 � x � P , : �f = �o ,
h = 0:25�o, – – –: �f = �o, h = 0:125�o , –�–�–: �f = 4�o, h = 0:25�o,
– –�– –: �f = 9�o ; h = 0:25�o.

reflected power at certain low frequencies in the0 � P=�o � 1

band at which total reflection occurs when without cover. The
sawtooth profile withh = 0:25�o reflects very little power at
P=�o � 2 with or without cover. The sawtooth, concave, and
convex elliptical profiles withh = 0:125�o reflect a much
higher power whenP=�o � 1. For the sinusoidal, concave,
and convex elliptical profiles, the addition of cover tends to
reduce the backscattering power. The results obtained can be
applied to reduce radar cross section of moving objects.
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