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Analysis and Characterization of Ultrawide-Band
Scalar Volume Sources and the Fields They Radiate:

Part II—Square Pulse Excitation
Edwin A. Marengo,Member, IEEE, Anthony J. Devaney,Member, IEEE, and Ehud Heyman,Senior Member, IEEE

Abstract—In a previous paper [1], we studied transient radia-
tion from scalar collimated volume source distributions subjected
to impulsive excitation. In this paper, we extend our analysis
and results to the case of nonimpulsive excitation, paying special
attention to the parameterization of the radiation pattern of
three-dimensional (3-D) ellipsoid source distributions driven by
square pulses of finite duration. We study the role both of the
source’s space distribution and of the square pulse duration on
the generation of well-collimated short-pulse fields. In particular,
we explore the source’s angular and range resolutions as func-
tions of the transverse and longitudinal dimensions of the source
(for a fixed source volume) and of the pulse duration.

Index Terms—Transient propagation.

I. INTRODUCTION

I N a previous paper [1] we investigated the radiation prop-
erties of scalar wave fieldsU (r; t) radiated by three-

dimensional (3-D) sources to the scalar wave equation�
r

2
�

1

c2
@2

@t2

�
U (r; t) = �4�Q(r; t) (1)

paying special attention to sourcesQ(r; t) having the space-
time separable form of a “traveling wave”

Q(r; t) = q0(r)G(t� ẑ � r=c) (2)

where, without loss of generality, the main beam direction was
chosen to be the positivez axis (ẑ) and the space distribution
q0(r) was normalized so thatZ

dr0q0(r
0) = 1: (3)

In order to compare the radiation performance for different
source parameters we have considered the source’s volumeV
as invariant.

The class of sources defined in (2) represents a distribution
of nondispersive isotropic point radiators, all of which radi-
ate the same time signatureG(t) but with space-dependent
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strengthq0(r). The source defined in (2) could represent a
discrete collection of point radiators (e.g., a 3-D antenna array
of isotropic radiating elements) or a spatially continuous distri-
bution of such radiators (note that in the discrete realization,
the spectral shaping of the far field is also affected by the
interelement spacings). A special case of such distribution is
a uniformly distributed source wherein all point radiators are
driven with the same strength: specific examples of uniform
parallelepiped source distributions have been considered in [1].

In the present paper, we explore uniform ellipsoidal source
distributions whose axis coincide with thez axis in (2)
for which closed-form expressions can be obtained for all
radiation directions and for all observation times. Furthermore,
since the ellipsoidal shape may be continuously changed
from a prolate to an oblate spheroidal shape, the closed-form
results explain the different radiation characteristics of both
elongated, quasi-linear traveling wave source distributions and
quasi-planar broadside pulsed distributions, as well as those
of 3-D sources with comparable longitudinal and transverse
dimensions. Finally, while the analysis in [1] has concentrated
on impulsive sources [i.e.,G(t) = �(t) in (2)], which gen-
erate near the beam axis singular field terms that cannot be
parameterized, the emphasis here is placed on finite pulses
(specifically on square pulses).

Our interest in the source distributions considered above
arises from the fact that they yield highly collimated pulse
beam fields with high degree of angular and range resolutions
when they are driven by very short pulsesG(t) [1]. Motivation
for the source structure in (2) is also provided by the possibility
of building 3-D pulsed antenna arrays composed of identical
electrically small photoconducting elements [2]–[4]. These
antennas, made of III–V compound semiconductor wafers,
radiate microwave pulses when triggered by short duration
(e.g., picosecond) optical pulses. A 3-D array of such pho-
toconducting elements can thus be realized using fiber optics
and optical splitters, the latter to control the excitation strength
associated with each element as dictated byq0(r) in (2)
(the excitation strength can also be controlled by the voltage
bias applied to each element [2], [3]). The progressive time
delay in (2) can be controlled either by a delay network or
simply by taking advantage of the propagation delay of the
exciting optical wavefront along thez axis [5]. In addition,
the antenna arrays described above are expected to have
reduced microwave interelement coupling due to the short
periods of photoconductivity associated with each element [5].
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The source model defined in (2) can thus be viewed as an
approximation to a 3-D distribution of electrically small (and
thereby quasi-isotropic) photoconducting elements excited by
a space-dependent amplitudeq0(r) and with progressive time
delay ẑ � r=c along the main beam direction̂z.

This paper generalizes our work in [1] by considering
transient radiation from volume source distributions excited by
finite duration square pulses. Our goal is to explore the role
both of the excitation pulse durationW and of the length-to-
width ratio ` � L=a (whereL and a are, respectively, the
longitudinal and transverse dimensions of the source distri-
bution) in establishing a highly collimated pulsed field with
a high degree of angular and range resolutions. The angular
resolution will be quantified from the directional properties of
the time-domain radiation patternF (r̂; t) characterized by the
peak amplitude and energy patterns while the range resolution
will be determined from the pulse duration ofF (r̂; t). Special
emphasis will be placed on the far-field properties near the
main beam direction.

The work reported here encompasses that of Harmuth [6]
where the peak amplitude, energy, and slope patterns of a lin-
ear (one-dimensional) array composed of elements that radiate
far-field square pulses are derived using simple geometrical
arguments. Also, the Radon transform radiation integral, which
is the starting point of the present analysis, is a special case
of the theory in [7] (formulated for electromagnetic sources)
that applies to any time-dependent source distribution [not
necessarily of the form in (2)]. We would also like to mention
that even though we restrict our attention to ellipsoidal volume
source distributions, the formulation presented here is rather
general and can be applied to any 3-D source configuration of
the form in (2). In what follows, we adopt the notation used
in [1].

II. REVIEW OF THE GENERAL THEORY

The time-domain radiation patternF (r̂; t) is obtained by
asymptotically evaluating the radiation fieldU (r; t) asr!1,
thus yielding [7], [8]

U (rr̂; t) �
1

r
F (r̂; t� r=c): (4)

For the special case of the source in (2),F (r̂; t) reduces to [1]

F (r̂; t) = G(t) � F0(r̂; t) (5)

where � is used to denote temporal convolution and where
the time-domain pulsed-radiation patternF0(r̂; t) (e.g., the
source’s impulse response) is given by [1]

F0(r̂; t) =
c

�
q0(�̂; s)

�
�
�
s=�ct=�

(6)

where� = ��̂ = r̂�ẑ (hence,� = 2 sin �=2) andq0(�̂; s) is the
Radon transform ofq0(r) evaluated at the planer��̂ = s. Thus,
for fixed r̂, the time-domain pulsed-radiation patternF0(r̂; t)
is defined by the projection ofq0(r) onto the line directed
along the unit vector̂�.

A schematization of (6) is depicted in Fig. 1, which shows
the planesr � �̂ = s that lie perpendicular to the unit vector

Fig. 1. Schematization of (6).q0(�̂; s) is the Radon transform along the
�̂ axis obtained by integratingq0(r) on surfaces orthogonal tô�. The
time-domain pulsed-radiation patternF0(r̂; t) is related toq0 via the scaling
in (6).

�̂ along which the projection is computed.q0(�̂; s) is shown
in the left portion of the figure as the plot of the area ofq0
computed along the planesr � �̂ = s with s being a parameter
along the�̂ axis. The time-domain pulsed-radiation pattern is
shown in the right portion of the figure and is obtained from
q0(�̂; s) by mappings !�ct=� and scaling the amplitude by
c=�. Referring to Fig. 1, we see that if the source dimension
in the �̂ direction is�(�̂), then the pulse duration ofF0(r̂; t)
along the observation direction̂r is

T (r̂) = ��(�̂)=c: (7)

Similarly, the temporal peak amplitude—defined as the max-
imum amplitude (over all timet) of the time-domain pulsed-
radiation patternF0(r̂; t) in a given direction—is given by

F0;max(r̂) = cjAmax(�̂)j=� (8)

whereAmax(�̂) is the maximum projection of the source’s
space distributionq0(r) onto the�̂ axis.

III. T IME-DOMAIN PULSED-RADIATION

PATTERN: ELLIPSOID DISTRIBUTIONS

We consider uniform volume-source distributionsq0(r) with
the shape of an ellipsoid that has rotational symmetry with
respect to thez axis and with radial and axial dimensionsa
andL, respectively. To comply with the source normalization
in (3), the source’s magnitude is taken to be

q0(r) =

�
1=V; x2+y2

a2
+ z2

L2 �
1

4

0; else
(9)

with V = �
6
a2L being the source’s volume. Henceforth, we

shall express the source dimensionsa and L in terms of
the volumeV and the length-to-width ratiò � L=a. Thus,
a = (6=�)1=3V 1=3`�1=3 andL = (6=�)1=3V 1`2=3. By doing
this we may now compare sources with the same volume
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Fig. 2. Peak amplitude pattern of ellipsoidal source distributions under
impulsive excitationF0;max as function of� (in degrees) for̀ = 0:2; 1;5.

V (and thereby the same input energy1) for different values
of the parameter̀. Furthermore, when comparing elongated
sources(` > 1) with flat sources(` < 1), we shall consider, in
particular, sources with the same maximum dimension defined
as the diameter of the smallest sphere completely enclosing
the source. Therefore, we shall compare the results for an
elongated source with, say,` = `e > 1 with those of a flat
source with` = `�2

e .
Using the general Radon transform relation in (6), it is

found in the Appendix that the time signature ofF0(r̂; t)
for the ellipsoidally shaped distribution in (9) has, at a given
observation direction̂r with polar angle�, the shape of a
parabola

F0(�; t) =

�
3

2T (�) �
6

[T (�)]3 t
2 jtj � 1

2
T (�)

0; else
(10)

where

T (�) = c�1(6=�)1=3`�1=3V 1=3 sin �
q
1 + `2 tan2(�=2)

(11)

is the time duration ofF0(�; t). The peak amplitudeF0;max(�)
is readily seen from (10) to be (see Appendix)

F0;max(�) = maxt[jF0(�; t)j] =
3

2T (�)
: (12)

Following the discussion in [1], we define the energy
radiation pattern

S(r̂) = �

Z
1

�1

dtjF (r̂; t)j2 =

Z
1

0

d!jf(r̂; !)j2 (13)

wheref(r̂; !) is the frequency-domain radiation pattern, i.e.,
the temporal Fourier transform ofF (r̂; t). Thus, the energy ra-
diation pattern of ellipsoid distributions subjected to impulsive
excitation is found to be

S(�) =
6�

5T (�)
(14)

1Valid for sources of the form (2) that are uniformly excited.

Fig. 3. Far-field pulse durationT of ellipsoidal source distributions under
impulsive excitation versus� (in radians) for` = 0:2; 1; 5.

hence, the peak amplitude radiation patternF0;max(�) and the
energy radiation patternS(�) under impulsive excitation are
identical within a multiplicative factor.

In the limit � ! 0 we obtain from (11)

T (�) � (6=�)1=3V 1=3`�1=3�=c (15)

hence,T (�) decreasesmonotonically with` (for fixed � ' 0),
while from (12), (14), (15), bothF0;max(�) andS(�) increase
monotonically with`. Under impulsive excitation, elongated
(large`) sources thus produce far-field pulses of higher ampli-
tude and shorter duration in the main-beam direction� ' 0.

Fig. 2 shows plots of the peak amplitude radiation pattern
F0;max(�) for ellipsoid source distributions with length-to-
width ratios ` = 5, 1, and0:2. These plots reveal that for a
given � ' 0, higher radiated energy and peak amplitude (and
thereby peak power) is available for larger` (i.e., elongated
distribution case). The presence of a secondary radiation lobe
at � = � for the small` (planar source) case is also observed.
Plots of the pulse durationT (�) for the cases̀ = 5; 1; and0:2
are shown in Fig. 3. We found that the� dependence of
the pulse duration is monotonic only for` � 1 and, more
importantly, that the pulse duration for a fixed� in the vicinity
of the main-beam axis (i.e.,� ' 0) is shorter for larger̀ .
For physical interpretation of the abovementioned effects, the
interested reader is referred to [1].

IV. TIME-DOMAIN RADIATION PATTERN

UNDER SQUARE-PULSE EXCITATION

In this section, we investigate the properties of the time-
domain radiation pattern generated by scalar ellipsoid source
distributions driven by unit amplitude square pulses having
time durationW , i.e.,

G(t) =

�
1; 0 � t � W
0; otherwise.

(16)

We shall present the results in terms of the normalized pulse
duration

�W = cW=V 1=3: (17)
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The time-domain radiation patternF (r̂; t) is now computed
by convolving the square pulseG(t) of (16) with the time-
domain pulsed-radiation patternF0(�; t) of (10) and (11). In
performing the convolution, one identifies two distinct angular
domains� � �c(`; �W ) and � � �c(`; �W ) where

�c(`; �W )

= 2 sin�1

"
�1 +

p
1 + (�=6)2=3`2=3(`2 � 1) �W 2

2(`2 � 1)

#1=2
:

(18)

For (�=6)2=3`2=3(`2 � 1) �W 2 � 1 this expression yields

�c(`; �W ) = 2 sin�1
�
1

2

��
6

�1=3
`1=3 �W

�
: (19)

This approximation also provides the limit of (18) at` = 1.
�c is defined by the condition that for� < �c, T (�) < W
while for � > �c, T (�) > W whereT (�) is defined in (11).
Accordingly, for � < �c there is a time interval denoted as
T=2 < t < W � T=2 where

G(t) � F0(�; t) =
Z

dt F0(�; t) =

Z
dr0q0(r

0) = 1 (20)

where we have also used the normalization in (3). By manip-
ulating the convolutionG(t) �F0(�; t) separately in these two
angular regions we obtain (21), shown at the bottom of the
page, for� � �c and (22), shown at the bottom of the page,
for � � �c. From (11),T (� = 0) = 0. Hence, from (21),
F (� = 0; t) = G(t) as expected.

A. Peak-Amplitude Pattern

The peak-amplitude radiation patternFmax(�) is found from
(21)–(22) to be

Fmax(�) = maxt[jF (�; t)j] =
8<
:
1 � � �c
3W
2T (�) � W 3

2[T (�)]3 � � �c:

(23)
Note that in the smallW limit, (23) yieldsFmax(�) � 3W

2T (�) ,
which agrees with the impulsive excitation result (12) (apart
from the factorW arising from the fact that in the square
pulse case

R
dt G(t) = W ).

Fig. 4(a)–(f) explores the combined role of the pulse width
W and of the radiator shape on the peak amplitude radiation
patternFmax(�). The figure shows plots ofFmax(�) for ` =
100, 10, 1 (sphere),0:1, and0:01 and for various normalized

pulse durations�W [see (17)]. Note the angular region near the
beam axis whereFmax = 1, which is more visible for the large
W case. As expected, high directivity is obtained in the large
or small` limits. This result is related, of course, to the overall
linear dimension of the source distribution (i.e., the diameter
of the smallest sphere completely enclosing the source), which
becomes increasingly larger for` � 1 and ` � 1. The plots
also provide insight into the need for excitation pulses of short
duration (relative to the source’s size) in order to achieve good
angular resolution.

B. Peak-Amplitude Beamwidth:�c

In order to explore the effect of̀and �W on the beamwidth,
we shall refer to the angle�c defined in (18). From (23) this
angle is readily identified as the 0-dB beamwidth. We have
also studied numerically the behavior of the 3-dB beamwidth
of the peak-amplitude radiation patternFmax(�), but the results
(not shown) where similar to those obtained for�c.

We consider first the limiting case�W � 1 (quasi-impulsive
excitation). In this case, we obtain from (18)

�c(`; �W )j �W!0 � (�=6)1=3`1=3 �W: (24)

For large planar sources(`� 1), this approximation is valid if
` �W 3 � 6=�, while for large elongated sources(` � 1), it is
valid if ` �W 3=4 � (6=�)1=4. Thus, under these conditions the
flat sources are seen to yield better peak amplitude directivity
than the elongated ones. Note also that the impulsive excitation
limit ( �W = 0) yields �c = 0 independently of̀ . This, of
course, is in agreement with results reported in [1], where
the normalized peak amplitude radiation patterns of elongated
and planar sources were found to exhibit identical angular
dependence in the vicinity of the main beam direction.

The condition in (24) applies for both elongated and flat
sources as long as the excitation pulse is short enough as
specified above. Another possible limit is for a large elongated
source(` � 1) excited by a relatively long pulse such that
` �W 3=4 � 1. In this case (19) yields

�c(`; �W ) '
p
2(�=6)1=6`�1=3 �W 1=2 (25)

which tends to zero as̀ ! 1 subject to the condition
` �W 3=4 � 1.

Fig. 5 shows plots of�c versus` and parameterized by
different values of�W . For a fixed �W , there is a value of̀ (say
`0) where�c reaches a maximum and the angular resolution
is poorest (for a source with a given volume and pulse length).

F (�; t) =

8<
:

1
2 +

3
2T t� 2

T3 t
3 �T=2 � t � T=2R

dt F0(�; t) = 1 T=2 � t � W � T=2
1
2 +

3
2T (W � t)� 2

T3 (W � t)3 �T=2 +W � t � T=2 +W
(21)

F (�; t) =

8<
:

1
2 +

3
2T t� 2

T3 t
3 �T=2 � t � W � T=2

3W
2T � 2

T3 (W 3 � 3W 2t+ 3Wt2) W � T=2 � t � T=2
1
2
+ 3

2T
(W � t)� 2

T3 (W � t)3 T=2 � t � W + T=2
(22)
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Note also that for large�W ’s, there is a range of̀ where�c

reaches its maximal possible value� so that the source does
not exhibit any peak-amplitude directivity.

We also explored analytically the variation of`0 with
�W using (18), thus finding that̀0 decreases monotonically

with �W . Moreover, `0 ! 1 as �W ! 0 (quasi-impulsive
case). Hence, optimal selection of the shape of the radiator is
accomplished in the quasi-impulsive case (�W ! 0) by using
the smallest possible value of` (i.e., a planar source).

C. Energy and Correlation Patterns

Next, we shall explore the directional dependence both of
the energy radiation pattern [defined in (13)] and of a radiation
characterization we shall call the “correlation” or “matched
filter” patternL(�), which we define as

L(�) =
maxt[jF (�; t) � F (� = 0; t)j]

maxt[jF (� = 0; t) � F (� = 0; t)j] (26)

where� denotes temporal convolution.L(�) provides a mea-
sure of the directional dependence of the (normalized) peak
amplitude at the output of a matched filter tuned to the far-
field pulse in the main-beam directionF (� = 0; t) = G(t)
(where a target or receiver may be expected to be located). This
characterization thus simulates the angular resolution available
in target detection or secure communication applications.

The normalized energy radiation pattern�S(�) =

S(�)=S (� = 0) = S(�)
�W is obtained from (13), (21), and

(22) and is given by

�S(�) = 1� 9

35W
T (27)

for � � �c, whereT (�) is given in (11), and by

�S(�) =
6

5

W

T
�
�
W

T

�3

+
3

5

�
W

T

�4

� 2

35

�
W

T

�6

(28)

for � � �c. (We normalizeS so as to be able to compare
sources excited by pulses of different duration.)

The “correlation pattern”L(�) is obtained from (26), (21),
and (22), giving

L(�) =

�
1� 3

16W
T (�); � � �cL

3
2T (�)W � 1

[T (�)]3W
3; � � �cL

(29)

where�cL is defined byT (�cL) = 2W .
1) Special Case: Quasi-Impulsive Excitation:Consider

first the limit �W � 1. We examine this case using the small
W limits of �S(�) andL(�) as computed using (27), (28), and
(29). Here,�c � 1 as described in (24). We use the small�
approximations ofT (�) from (15). For� � �c we therefore
obtain from (27), with (15) and (24)

�S(�) ' 1� 9

35

�
6

�

�1=3

`�1=3 �W�1� = 1� 9

35

�

�c
: (30)

This expression describes�S(�) near the beam axis for� � �c

but, as follows from the second expression in (30), it does not
describe the relevant range for� > �c where�S(�) may still be
nonnegligible [note that�S(�c) is about 0.75 of the value of�S
at� = 0]. Hence, the effective beamwidth of the energy pattern

will be found from the analysis of�S in the region� � �c

where �S is described by (28). The leading term (inW ) in this

expression is given by�S(�) ' 6W
5T ' 6

5

�
�
6

�1=3
`1=3��1 �W ,

where the second approximation follows from (15). The 3-dB
beamwidth obtained by solving�S(�) = 1

2
is therefore given by

�3dB =
12

5

��
6

�1=3
`1=3 �W =

12

5
�c (31)

and is smaller for flat sources (small`). One therefore con-
cludes that flat sources provide better energy focusing than
elongated sources of comparable volume. Note in addition that
sinceS(�) = �W �S(�) we haveS(�)jW!0 � 6�W 2

5T , which is
consistent with the impulsive source case in (14).

A similar analysis applies to the correlation pattern in (29).
Thus, for smallW and �

L(�) '
�
1� 3

16
( 6
�
)1=3`�1=3 �w�1�; � < �cL

3
2

W
T (�) ' 3

2(
�
6 )

1=3`1=3 �W��1; � > �cL
(32)

Thus, comparing (32) and (30) we note that the energy and
correlation patterns exhibit a similar behavior in the vicinity
of the main beam direction for sources with�W � 1.

In summary, the results above support the conclusion ob-
tained in connection with the peak-amplitude patternFmax(�),
namely, that in the quasi-impulsive limit flat broadside sources
provide narrower beamwidth than elongated sources.

2) General Case: Simulation Results:Plots of �S(�) for the
length-to-width ratios̀ = 100, 10, 1, 0:1, and0:01 and for the
normalized square-pulse durations�W = 0:1 and �W = 1:0 are
shown in Fig. 6(a) and (b). These plots are also very similar
to those ofL(�) (not shown here). Referring to Fig. 4, we also
find that �S(�) [and, thus,L(�), too] depends on�, �W , and`
essentially in the same manner as the peak-amplitude pattern
considered in Fig. 4. Furthermore, the numerical study also
revealed that the 3-dB beamwidths of both�S(�) and L(�)
depend oǹ and �W essentially in the same manner as the
peak-amplitude beamwidth�c considered in Fig. 5.

D. Pulse Duration and Range Resolution

The far-field pulse duration� (�) is given by [see (21) and
(22)]

� (�) =W + T (�) (33)

where T (�) of (11) is the pulse duration under impulsive
excitation (i.e.,� jW=0 = T ). Plots of the normalized pulse
duration �� (�) � � (�)c=V 1=3 for various values of̀ and �W
are shown in Fig. 7. Note that near the main-beam direction
�� (�) is mainly controlled by�W . The shape of the radiator (i.e.,
`) has, on the other hand, a significant effect away from the
main direction (for example, one can easily show that away
from the main direction,�� varies monotonically with� only
for ` � 1).

3) Range Resolution for Highly Directive Sources: For
highly directive sources we may consider only the angular
range near the beam axis. Specifically, we shall consider the
angular range� < �c where�c is peak amplitude beamwidth
in (18), which provides a reasonable figure of merit to the
relevant angular domain.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Peak-amplitude patternFmax versus � for ` = 0:01; 0:1;
1; 10; 100; and for various values of�W . (a) �W = 0:01. (b) Small angles
behavior of (a). (c)�W = 0:1. (d) Small angles behavior of (c). (e)�W = 0:5.
(f) �W = 1:0.

Fig. 5. �c versus` and parameterized by�W .

Using (33) together with (15) and (24) for small� and�c,
the normalized pulse duration reduces to

�� (�) ' �W + (6=�)1=3`�1=3� = �W (1 + �=�c): (34)

Next, we calculate the average pulse duration within the main-

(a) (b)

Fig. 6. Energy pattern�S versus� for ` = 0:01; 0:1; 1; 10; 100; and for
various values of�W . (a) �W = 0:1. (b) �W = 1:0.

(a) (b)

Fig. 7. Normalized far-field pulse duration�� versus � for ` = 0:01;
0:1; 1; 10; 100; and for various values of�W . (a) �W = 0:1. (b) �W = 1:0.

beam zone. Denoting this parameter ash�� i we find from
(34)

h�� i �
1

�c

Z
�c

0

d� �� (�) '
3

2
�W: (35)

Thus, for highly directive source distributions,h�� i is—apart
from an unessential factor—equal to the normalized pulse
width �W , thereby being independent of the source shape
parameter̀ .

A drawback of the above definition is that�c depends
both on ` and �W . Hence, the average value of the far-field
pulse duration is computed within different angular regions for
different source configurations. An alternative approach would
be to measure the average of�� within a fixed angular region
� � �0 where�0 is some fixed small angle in the vicinity of
the main direction. Analytical and computer-simulated results
obtained for this case (not shown here) revealed that elongated
sources provide better range resolution than planar sources of
comparable size in the quasi-impulsive excitation case.
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Fig. 8. Cross section of an ellipsoid volume source distribution used to
compute the time-domain pulsed-radiation patternF0(r̂; t) analytically.

V. CONCLUSION

This two-part sequence has dealt with the (far-field) radi-
ation characteristics of collimated pulsed-source distributions
having the “traveling-wave” form in (2). We have parame-
terized the radiation properties for sources of this class in
both frequency and time domains. The time-domain route is
based on radiation integrals in the form of planar projections of
the time-dependent source distributions along the observation
directions, thereby providing simple analysis and optimization
tools with direct physical (geometrical) interpretation.

The general analysis tools were developed in the first paper.
In that paper, we also considered explicitly the radiation
characteristics of canonical parallelepiped source distributions
under impulsive excitation. Such sources produce, however,
singular field solutions along the main beam axis and, there-
fore, cannot be properly parameterized. This paper has consid-
ered finite duration signals. We studied, analytically, canonical
source distributions with the shape of an ellipsoid whose
axis coincides with the main-beam direction. Furthermore, by
changing the ellipsoidal shape from a prolate to an oblate, we
have clarified the different radiation characteristics obtained by
an elongated quasi-linear traveling-wave source distribution or
by a quasi-planar broadside source distribution.

We have been mainly concerned with the role both of the
width of the excitation pulse and of the length-to-width ratio`

of the source for fixed-source volume. The source’s focusing
properties associated with the peak amplitude, energy, and
“correlation” patterns were found to be strongly affected by
both the excitation pulse width and the shape of the source.
High directivity is achieved using either large planar(`� 1)
or elongated(` � 1) sources and short-duration excitation
pulses (such that�W � 1).

We also found that the angular dependence of all patterns
studied (peak amplitude, energy, “correlation pattern,” etc.)
and, of the pulse duration, is monotonic only for` � 1 and that
this result is independent of the normalized excitation pulse
width �W . Planar broadside sources thus generate undesirable
backward radiation lobes, which are not produced by elongated
endfire sources.

We also explored the role of the length-to-width ratio on the
directivity of the source when the normalized pulse duration
is kept fixed. It was found that there is a breakdown region
(or point ` = `0) where the beamwidth reaches its maximum
(keeping �W fixed). Optimal selection of the shape of the
radiator is accomplished at any of the extremes` � `0
or ` � `0 (i.e., choosing` away from the breakdown
region). Moreover, we have also investigated the variation of
the suboptimal length-to-width ratiò0 as a function of the
width of the excitation pulse. Interestingly,`0 was found to
decreasemonotonicallywith the normalized pulse width�W .
Moreover,`0 !1 as �W ! 0. Hence, minimum beamwidth
is accomplished in the quasi-impulsive excitation case by using
the smallest possible value of` (i.e., a planar source).

The range resolution in the neighborhood of the main-beam
axis was found to be controlled mainly by the width of the
excitation pulse. For highly directive sources (such as quasi-
impulsively excited sources) the average range resolution as
computed within the peak amplitude beam region� � �c was
found to be independent of the shape of the radiator.

APPENDIX

We refer to the geometry in Fig. 8, which schematically
shows a cross section of the source in the direction�̂ =
cos �=2x̂ � sin �=2ẑ where, without loss of generality, thê�
axis is taken to be in the(x; z) plane. Denoting the point of
intersection of the cross-sectional plane with thex axis asx0
and the cross-sectional area byA(�;x0), we obtain from (6)

F0(�; t) =
c

�
q0A(�;x0)jx0 cos �=2=�ct=� (36)

where, from (3),q0 = 1=V = 6

�a2L and � = 2 sin(�=2).
The line that delimits the cross section shown is a second-

order polynomial with the shape of an ellipse with axesdA�A0

and dB�B0 given by

dA�A0 =
L
q
�(�) � 4x20

�
a2

�(�) cos(�=2)
(37)

dB�B0 = a

s
�(�) � 4x20

�
a2

�(�)
(38)

where�(�) = 1 + `2 tan2(�=2). The area of this ellipse is,
therefore, given by

A(�;x0) =
�

4

La
�
�(�) � 4x20

�
a2
�

[�(�)]3=2 cos(�=2)
: (39)

Substituting (39) in (36) yields (10). The peak amplitude
is calculated using (8) withAmax = q0A(�;x0 = 0) =
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�
4

La

cos �=2
p
�(�)

, thus yielding

F0;max(�) =
3c

2�

1

a cos �=2
p
�(�)

: (40)

The pulse duration is calculated using (7). The quantity
�(�̂) is obtained by finding the pointsQ and Q0 in Fig. 8
where the ellipsoid is tangent to the planex = tan �=2 z+x0
and later computing the projection of the distanceQ � Q0 in
the direction�̂, giving �(�) = a cos �=2

p
�(�).
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