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Abstract—This paper presents an integral equation that can
handle wire antennas on a semi-infinite dielectric material. The
integral equation is reduced to a set of linear equations by
the method of moments. For efficiency, the impedance matrix
elementZm;n is divided into two parts on the basis of weighted
Green’s function extractions. The far-zone radiation field, which
is formulated using the stationary phase method, is also de-
scribed. After the validity of the presented numerical techniques
is checked using a bow-tie antenna, a spiral antenna is analyzed.
The current distribution, radiation pattern, axial ratio, power
gain, and input impedance are discussed. It is found that the
radiation field inside a dielectric material is circularly polarized.
As the relative permittivity of the dielectric material increases,
the angle coverage over which the axial ratio is less than 3 dB
becomes narrower.

Index Terms—Millimeter-wave antennas, spiral antennas.

I. INTRODUCTION

PLANAR antennas coupled to millimeter-wave detectors
have been investigated for plasma diagnostics, astronomy,

and radar applications [1], [2]. These antennas and detectors
are made on a hyperhemispherical lens as a monolithic inte-
grated circuit. Since the hyperhemispherical lens is electrically
large, the antennas act as if they were located on a semi-infinite
dielectric material. Therefore, it is essential for us to know the
radiation from the antenna into the dielectric material [3].

In the first part of this paper, an integral equation is
derived for analyzing arbitrarily shaped wire antennas on a
semi-infinite dielectric material, where the Hertz vector for
an infinitesimal current element is expressed in reference
to a cylindrical coordinate system [4]. The derived integral
equation is recognized as an extended version of an equation
for “wire near an interface” in [5, Sec. B.] since it can
handle an arbitrary wire configuration (note that “wire near an
interface” in [5] is straight). Also, the derived integral equation
is recognized as a special one in the general expression for a
scatterer (whose surface is approximated by triangle patches)
penetrating the interface between dissimilar media [6].

The derived integral equation is transformed to a set of
linear equations by applying the method of moments (MoM).
The impedance matrix elementZm;n in the MoM, involving
triple integrals (unlike quadruple integrals in the Fourier
transform-domain MoM), is divided into two parts—Z�

m;n
and

Manuscript received March 19, 1996; revised December 2, 1996.
H. Nakano, I. Ohshima, and J. Yamauchi are with the College of Engineer-

ing, Hosei University, Koganei, Tokyo, 184 Japan.
K. Hirose is with the Tokyo Denki University, Hiki-gun, Saitama, 350-03

Japan.
Publisher Item Identifier S 0018-926X(98)01496-3.

�Zm;n—for more efficient calculation. These two parts are
based on the extraction of asymptotic values [7] that form
weighted free-space Green’s functions [8].

The radiation fields in the air and dielectric material regions
are also formulated by the stationary phase method [9], [10].
The formulation is carried out in such a way that the final re-
sults formally resemble those for a printed wire on a grounded
dielectric substrate [11]. This resemblance is helpful in writing
the analysis computer program since the same computational
flow for the printed wire on the grounded substrate can be
used.

In the second part of this paper, a computer program is
written on the basis of the formulation derived in this paper.
After confirming the fact that the program reproduces the
published data of a bow-tie antenna [12], the same computer
program is applied to a spiral antenna on a semi-infinite dielec-
tric material. Note that there have been few investigations of
spirals on a semi-infinite dielectric material [2], even though
investigations of spirals in various configurations have been
made: spirals in free space [13], spirals backed by a plane
reflector [14]–[17], spirals backed by a cavity [18], spirals in
a triplate transmission line [19], and spirals on a dielectric
substrate backed by a conducting plane reflector [11], [20].

This paper presents the numerical results of the spiral
on the semi-infinite dielectric material together with those
of a spiral antenna isolated in a homogenous medium (free
space). The current distribution, radiation pattern, axial ratio,
input impedance, and gain are revealed. The numerical results
show that the radiation field inside the semi-infinite dielectric
material is circularly polarized and that the angle coverage
over which the radiation field has an axial ratio of less
than 3 dB becomes narrower as the relative permittivity
of semi-infinite dielectric material increases. The frequency
responses of the radiation characteristics are also presented
and discussed.

II. FORMULATION

A. Integral Equation

Fig. 1 shows a wire antenna of arbitrary shape. The wire
(whose radius isa) is located on a semi-infinite dielectric
material with permittivity"r . It is assumed that the dielectric
material is lossless and the wire is perfectly conducting. It
is also assumed that the wire radius is much less than the
wavelength. This thin wire assumption ensures that the current
flows only in the axial direction of the wire.
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(a)

(b)

Fig. 1. A wire on a semi-infinite dielectric material.

We subdivide the wire of arbitrary shape into many el-
ements, each being regarded as a linear element of length
d. These wire elements are labeled0; 1;2; � � � ; i; � � � ; n � 1;
n; � � � ;N . Note that wire elementn is handled by thenth local
coordinate system, shown in Fig. 1, where thexn coordinate
is taken in such a way that it is parallel to the axis of wire
elementn. x̂n, ŷn, and ẑn are the unit vectors for thexn,
yn, andzn coordinates, respectively. Observation and source
points are expressed as(xn; yn; zn) and (x0

n
; y0

n
; z0

n
) in the

nth coordinate system. The rectangular coordinate system
(Xu; Yu; Zu; Ou) in Fig. 1 is the universal coordinate system,
of which the unit vectors arêXU , ŶU , and ẐU .

The total electric field due to the currentsI(x0

n
) (n =

0; 1;2; � � � ; N ) distributed along all wire elements is obtained
by summing the electric field from each wire element. The
tangential component of the total electric field on wire element
i has a relationship of

NX
n=0

Z
d

0

�
k20

Y(air)x

n

(x̂n � x̂i) +
@

@x0

n

@

@xi
G(air)
n

�
z
n
=0

� I(x0

n) dx
0

n = �Einc
tan (1)

where k0 = !
p
�0"0 � k(air);xi is the x variable in the

ith local coordinate system whose unit vector along thexi
coordinate isx̂i, Einc

tan is the tangential component of the
electric field incident or impressed on the wire surface,G

(air)
n

is defined asG(air)
n = �

Q(air)x
n

+
Q(air)

n
, where the Hertz

Fig. 2. ��x
i;j and

Q(air)x
j (zj = 0).

vector potential functions [4] are

Y(air)x
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= u(air)
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=2u(air)

1

k20
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J0(��)
� � �e�

k2=k20
�
� + �e
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(3)

The notations in (2) and (3) are defined asu(air) =
�j!�0=[4�(k(air))2], � = [�2 � (k(air))2]1=2, �e = [�2 �
(k(die))2]1=2 with k(die) = !

p
�0"0"r = k, and J0(��) is

the Bessel function of the first kind of order zero with an
argument��, where � is the distance between observation
and source points.

B. Impedance Matrix of Moment Method

The MoM is adopted for obtaining the current distribution
on the wire. We expand the currentI(x0n) in (1) using piece-
wise sinusoidal functionsI(x0n) = In sin k0(d�x0n)= sin k0d+
In+1 sin k0x0n=sink0d; (0 � x0n � d;n = 0; 1; 2; � � � ; N ),
where In and In+1 are the unknown expansion coefficients
to be determined (note:I0 = IN+1 = 0). Applying weighting
functions to (1) after this current expansion, we obtain a set
of linear equations[Zm;n][In] = [Vm], where [Zm;n], [In],
and [Vm] are the impedance, current, and voltage matrices,
respectively, for the MoM.

The impedance matrix elementsZm;n in this paper are for-
mulated using piecewise sinusoidal functions for the weighting
functions (Galerkin’s method). TheZm;n involve triple inte-
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grals, which lead to less computational burden, compared with
that of the impedance matrix element calculation in the Fourier
transform-domain MoM (quadruple integrals). TheZm;n are

Zm;n = Z�
m;n +�Zm;n (4)

where

Z�
m;n =

�
k0

sin k0d

�2�
g�m�1;n�1 + g�m�1;n

+ g�m;n�1 + g�m;n

�
(5)

�Zm;n =

�
k0

sin k0d

�2

(�gm�1;n�1 +�gm�1;n

+�gm;n�1 +�gm;n): (6)

Note thatg�i;j (i = m�1;m; j = n�1; n) in (5) are defined as

g�i;j = �m(i)

Z d
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h
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i;j + h

h3i
i;j

�
dxi

+ (x̂i � x̂j)

Z d

0

(sinxm(i))h
h2i
i;j dxi (7)

wherexm(i) is defined asxm(m�1) = k0xm�1 for i = m � 1
and xm(m) = k0(d � xm) for i = m. �m(i) is defined as
�m(m�1) = 1 for i = m � 1 and �m(m) = �1 for i = m.

h
h1i
i;j ; h
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where

�xi;j = u(air) e
�jk0�i;j

�i;j
(11)

�i;j = u(air) "r � 1

"r + 1

e�jk0�i;j

�i;j
: (12)

�gi;j (i = m � 1;m; j = n � 1; n) in (6) has the same form
asg�i;j in which h

hqi
i;j (q = 1; 2, and3) are replaced by�h

hqi
i;j .

This replacement is accomplished by transforming�xi;j and
�i;j to ��xi;j and��i;j, respectively, where
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Note that the pair of subscriptsi and j indicates that the
observation and source points are located on the wire elements
i and j, respectively.�i;j is the distance between these two
points. Equation (13) is the

Q(air)x
j (zj = 0) (2) from which the

free-space Green’s function�xi;j is extracted. Equation (14) is

the
Q(air)

j
(zj = 0) (3) from which the weighted free-space

(a)

(b)

Fig. 3. Coordinate system for radiation field formulation.

Green’s function�i;j is extracted. These extractions yield
values of one and("r � 1)=("r + 1) in the square brackets
within the integrands in (13) and (14), respectively.

Note that the values of one and("r � 1)=("r + 1) are
the asymptotic values of2�=(� + �e) and (2=k20)[(� �

�e)�2]=["r� + �e], respectively. Therefore, the integrals for
��xi;j and ��i;j quickly converge. The computing time of
��xi;j is approximately one-half of the computing time ofQ(air)x

j
(zj = 0). A similar reduction in computing time is

also found between��i;j and
Q(air)

j
(zj = 0).

Enormous integral calculations of��xi;j and��i;j which
vary with �i;j are required for filling the impedance matrix
[Zm;n]. Fortunately,��xi;j and��i;j show slow change with
respect to�i;j since they do not contain1=�i;j dependence
after the extraction operation (Fig. 2 illustrates this fact making
a comparison between��xi;j and

Q(air)x
j

(zj = 0). As �i;j

decreases toward zero, the change in
Q(air)x

j
(zj = 0) becomes

rapid). Hence, after��xi;j and��i;j are calculated for some
representative�i;j , they can be interpolated with respect
to �i;j instead of performing the time-consuming integral
calculations. This interpolation reduces the fill time forZm;n.
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For example, we can reduce the fill time for 11� 11 matrix
elementsZm;n by a factor of 60 using both the interpolation
and asymptotic extraction techniques for a half-wave dipole
on a dielectric substrate of"r = 2:55. Similar extraction
and interpolation are found in the numerical analysis of a
microstrip dipole antenna with a grounded dielectric substrate
[7], [8].

C. Far-Zone Fields

Fig. 3 is used for calculating the electric field at a far-field
point (RU ; �; �) in the spherical coordinate system whose unit
vectors are(R̂U ; �̂; �̂). �j is an angle between thejth x

coordinate and a line joining thejth coordinate originoj with
the projection of the far-field point into the universalXU�YU
plane.Qj is a vector directed to thejth local coordinate origin
oj from the universal coordinate originOU . For simplicity,
angle �(v) and relative permittivity"(v)r (v = air, die) are
used, which are defined as�(air) = �, �(die) = � (=� � �),
"
(air)
r = 1, and "(die)r = "r .
Using the stationary phase method [9], we obtain thep

component of the far-zone fields in the air and dielectric
regions,E(v)

p (v = air, die; p = �; �)

E
(v)
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= n
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(see (18) at the bottom of the page)
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The fact that (15) and (16) do not include any calculations of
integrals reduces the computational burden.

III. N UMERICAL VERIFICATION

Once the current distribution along an antenna arm is
determined, the input impedanceZin can be obtained from
Vin=Iin, whereVin and Iin are the voltage and current at the
input terminals, respectively. The power gain is defined as
G(�(v); �) = 4�U (�(v); �)=Pin, wherePin is the total input
power to the antenna and

U (�(v); �) =
1

2

s
"0"

(v)
r

�0
R2
U

h��E(v)
�

��2 + ��E(v)
�

��2i: (23)

When � = � = 0, (18) and (19) lead toC(die)
� =

p
"rC

(air)
�

andC(die)
� =

p
"rC

(air)
� and (20) and (21) lead to�(die)

j =

�
(air)
j (j = n�1; n). Therefore, the ratio of the power gains in

the�ZU directionsU (� = 0�; �)=U (� = 0�; �) is calculated
to be "1:5r using (15) and (16) [3].

A computer program has been written for obtaining the
current distribution, input impedance, and power gain. We
check the validity of the computer program by comparing the
published data of a flat conducting plate bow-tie antenna [12]
with those obtained by the program.

Fig. 4(a) shows the input impedance locus of a bow-tie
antenna when the length 2L is changed. The bow tie ap-
proximated by wire elements is fed from its center with a
�-gap generator. The parameters are as follows: wire radius
a = 0:001�0, bow-tie angle 2�bt = 60�, and relative
permittivity "r = 4:0. The input impedance is normalized to
152 
. The wire element lengths in terms of the free-space
wavelengthLele=�0 are given in a table for the corresponding
input impedance points. For comparison, the input impedance
calculated on the basis of the current-mode MoM by Compton
[12] is also shown in Fig. 4(a). It is seen that both results are
in good agreement.

Fig. 4(b) shows the normalized power pattern of a bow-
tie antenna of2L = 4�0, 2�bt = 60�, "r = 3:83, and
Lele=�0 = 0:1. The pattern (solid line) is obtained by the
present numerical analysis for the dielectric material region.
It is clear that the present numerical result agrees with Comp-
ton’s (dotted line). The critical angle, which is given by
�c = sin�1

p
1="r , is 30.7�.

IV. SPIRAL ANTENNA ANALYSIS

Experimental work [2] shows that a two-arm spiral antenna
with a detector successfully operates as a quasi-optical receiver
for submillimeter-wave astronomy. The spiral antenna has an

C
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�
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(a)

(b)

Fig. 4. Bow-tie antenna. (a) Input impedance. (b) Normalized power pattern.

advantage over a bow-tie antenna in that the spiral shows
nearly symmetricE- andH-plane patterns with low sidelobes.
In this section, the theoretical radiation characteristics of a
spiral antenna printed on a semi-infinite dielectric material
of relative permittivity "r (see Fig. 5) are presented and
discussed.

The spiral is Archimedean with feed wires of lengthest. The
radial distance from the origin (antenna center) to a point on
the spiral arm is given byrsp = asp�sp, whereasp is the spiral
constant and�sp is the winding angle. The antenna parameters
are chosen as follows:est = 0:04�0, asp = 0:0153�0/rad.,2:6
rad.� �sp � 36:5 rad., and wire radiusa = 0:006�0. Note that

Fig. 5. Two-wire spiral antenna on a semi-infinite dielectric material.

a spiral antenna with"r = 1 is used as a reference antenna
in the following analysis.

Fig. 6 shows the current distributions and their phase pro-
gressions for"r = 1; 2:55, and12:8. The currents have a
traveling wave form. The guided wavelength of each current
is close to �0=("av)1=2, where "av is an average relative
permittivity for air and the dielectric material:"av = (1 +
"r)=2.

The power patterns are shown in Fig. 7. The critical angles
are�c = 38:8� and16:2� for "r = 2:55 and12:8, respectively.
It is clear that, as the relative permittivity"r increases, the
radiation into the dielectric material becomes stronger in accor-
dance with the"1:5r power gain ratio. Further calculations show
that the radiation around the�ZU axis is circularly polarized.
The region over which the radiation is circularly polarized
with an axial ratio of less than 3 dB becomes narrower as
"r increases. This is illustrated in Fig. 8. Since knowing the
axial ratios in the dielectric material region is necessary for
practical applications such as dielectric hemispherical lenses
and earth radar, only the axial ratios in the dielectric material
region are shown in Fig. 8.

Fig. 9 shows the frequency response of the power gain
in the �ZU direction. The gains at frequencyf0 (giving a
wavelength of�0) are approximately 6, 8, and 9 dB for
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(a)

(b)

(c)

Fig. 6. Current distributions of spiral antennas.

"r = 1; 2:55, and12:8, respectively. It is seen that the gain
variation over a frequency range off0 to 1:5f0 is relatively
small.

The frequency response of the input impedanceZin (=
Rin + j Xin) is shown in Fig. 10. The input impedance is
relatively constant by virtue of the traveling-wave current
distribution. It is also found that the resistive value of the input
impedance decreases as the relative permittivity"r increases.
Fig. 11 shows the axial ratio in the�ZU direction versus
frequency. It can be said that the spiral’s radiation is circularly
polarized over a wide frequency range.

V. CONCLUSION

An integral equation for a wire of arbitrary shape on a semi-
infinite dielectric material of relative permittivity"r is formu-
lated. This equation is characterized by two terms—

Q(air)x
j

and
Q(air)

j —of Sommerfeld-type integrals. The integral equa-
tion is reduced to a set of linear equations[Zm;n][In] = [Vm]
by the method of moments.

Weighted free-space Green’s functions are extracted fromQ(air)x
j and

Q(air)
j . The terms

Q(air)x
j and

Q(air)
j after these

(a)

(b)

(c)

Fig. 7. Power patterns of spiral antennas.

extractions converge rapidly and can be interpolated with
respect to the distance between the source and observation
points. This interpolation leads to efficient calculation ofZm;n.

The far-zone radiation field is also formulated using the
stationary phase method. The formulation of the far-zone
radiation field does not have any integrals, leading to simple
calculations. The field calculation is performed using the
expansion function coefficients.

Good agreement is found between the numerical results
obtained by the present method and Compton’s current-mode
moment method for a bow-tie antenna. After the numerical
verification with the bow-tie, a two-wire spiral antenna on a
semi-infinite dielectric material of permittivity"r is numer-
ically analyzed. The numerical results show that the current
behaves as a traveling wave with a guided wavelength of
approximately�g = �0=

p
(1 + "r)=2.

Further calculations show that as"r increases, the radiation
into the dielectric material becomes stronger in accordance
with a power gain ratio of"1:5r . The axial ratio calculation
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(a)

(b)

(c)

Fig. 8. Axial ratios in dielectric materials.

Fig. 9. Frequency response of power gain.

Fig. 10. Frequency response of input impedance.

reveals that the spiral radiates a circularly polarized wave
around its axis (normal to the spiral plane) in the dielectric

Fig. 11. Frequency response of axial ratio.

material. It is also found that as"r increases, the resistive
value of the input impedance decreases.
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