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Analytical Evaluation of the Asymptotic
Impedance Matrix of a Grounded
Dielectric Slab with Roof-Top Functions

Seong-Ook Park, Constantine A. Balarfig]low, IEEE and Craig R. Birtcher

Abstract—In this paper, an analytical technique is derived
to solve the asymptotic part of impedance matrix elements for
printed circuit structures using roof-top subdomain expansions.
The key to this problem is the analytical transformation from
an infinite double integral to a suitable finite one-dimensional
(1-D) integral. The newly developed formula is applied to the
monostatic radar cross section (RCS) of a microstrip patch.
Comparisons are made with measurements and conventional
method of moments predictions.

Index Terms—Impedance matrix, microstrip antennas.

I. INTRODUCTION

ECENTLY, the authors [1] have successfully derived an  « W,
analytical technique for evaluating the asymptotic part
of the self and mutual interactions between the triangular-
edge mode-basis functions along an electrically narrow strip.
The method provides highly accurate results with minimal
computational effort. However, the application of triangular- I
edge mode-basis functions, which have a vector field with
only one component, is limited to problems similar to those ()
|(')f microstrip dipoles and discontinuities in narrow microstri'p_ig‘ 1. Layout of roof-top basis functions on a microstrip patch.
ines.
This paper presents an analytical technique to solve the
asymptotic part of the impedance matrix in the spectral domdfte impedance matrix without limitations. This results in
that employs roof-top subdomain basis functions to model s@-dramatic improvement in terms of the computation time
face current densities on a grounded dielectric slab. Roof-tt§§ evaluating the impedance matrix elements. The formula
subdomain basis functions are suitable for solving arbitrariflerived is valid for any lateral separation between the two
shaped planar geometries. However, the numerical evaluat®fPansion functions. It is interesting that this method is
of the integrals, without an acceleration technique, leads @specially more efficient in the case of the smaller size of
very time-consuming computations. the basis functions and larger lateral separations between the
Previously, Yanget al [2] have presented an efficientbasis and testing functions, which is a pathological case of the
numerical algorithm for directly evaluating the infinite doubl€onventional spectral domain analysis.
integral in the spectral domain. However, their method is
incomplete because the efficient evaluation of the asymptotic II. THEORY

part [" [;° - dk, dk, was missing. Also, if the lateral Consider a perfectly conducting rectangular microstrip patch

separation£, andy, of [2, Eq. (1)]) between the basis andsf gimensions, x W, on a grounded dielectric substrate of
testing functions becomes large, the efficiency decreases. ihicknessd and dielectric constant,, as shown in Fig. 1.

The formula presented in this paper produces accuratqn order to apply the moment method, we define the dyadic
and efficient results for evaluating the asymptotic part @freen’s function due to an infinitesimal current source on a
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Gw(lcT, ky) size of roof-top functions for theé-directed current elements
o (e k2 — kz)k2 + jk (k2 - k2) tan(k; d) have dimensions 2z and Ay in the z and y directions,
=—Jj- o .1, tan(kid) respectively, while the size of roof-top for thgdirected

) current elements have dimensioAs: and 2\y.
- The drawing in Fig. 1 illustrates the discretization and roof-
top function layout for a rectangular patch. The centers of
= Gyolhs k) = j Zo krky tan(ks d)[ko + jki tan(k, d)] z-directed roof-top functions are marked with circles and
yrim Ty ko T. T, the centers ofj-directed functions are marked with crosses.
(3) To satisfy edge conditions and generate correct results, the
centers betwee- and y-directed currents need to be offset

where by (Az/2, Ay/2) [5]
T, = ki + jko tan(k,d) The transforms of the:- and y-directed roof-top current
T = ks + jki tan(ky d) densities of (8) and (9) can be written as
2 _ 2 1.2 12 . z . A
ki =e ki —k; k'y; Im{k;} <0 (4) ]T (ke ky) = i sin® (kT AT) Slﬂ(li’y Ty) =i (Eam b yya)
k%:k%—kﬁ—ki, Tm{k,} <0 m Az k2 ky
10)
ENCEY: o ‘
! ) J7 (k‘ k ): i Sln(kx AT) SlIl2 (ky AQ_y) e—j(k,;.’r:m+kyyn)'
and k, = w,/fipes Wherew is the angular frequency and, “™»\V ™ Ay k,, k2
and ¢, are the permeability and permittivity of free-space, (11)

respectively.

The subscriptscy in Gy (ks , k,) represent ar-directed The surface current densities can be expanded in terms of
electric field (in the form of a plane wave spectrum) dueof-top functions with an unknown set of current coefficients
to an infinitesimaly-directed current source. The subscriptél?,,, , I%,,) as follows:
of the other Green’s functions have similar designations. The

. . . M N+1
respective asymptotic Green’s functions of (1)—(3), for large = . -
6 are given by ‘]t (kxaky) - Z_; Z_; mn‘]mn( T y) (12)
. B Za ]9(2] kZ _ M4+1 N _
Gl by ) = _JE{% T8 ) T k)= S S 1 T8 (k). (13)
R . k2 k; m=1 n=1
Gyylhe,ky) = —j— 5~ — 13 (6) Using Galerkin’'s method, the impedance matrix elements in
ko 126 (e +1)3 : 4
Do ok, the spectral domain may be expressed in the form [1], [3]
G;(;/(kx:ky) G (kxak )_] L (7) - =
ko (e, + 1)3 D= __/ / o (ki k) YG( ke k)
472 ’ Y
In the next step, a set of roof-top subdomain basis functions are
employed to model the current density distribution on the con- X Jm,n,(/cm, ky) dk, dk, (14)

ductor. Roof-top functions are characterized by their triangular ) )
shape along the direction of current flow and rectangular cro¥gere mnm’n’ represent the self and mutual interactions
section in the orthogonal direction. Thus, the current densitiestween the]mn and J,, ., current basis functions.

can be expressed as Employing the asymptotic extraction technique, (14) can be
2 — 2, | _ written as
oo (2, y) = (1—7m> ~rect<y yn), _ 0o o -
Az Ay Zm,nm,’n’ Y / / mn kr;k )[G(k'r;ky)
|2 — @] ly—yal _ 1 dm
—_— < 1, - (8) = 00
Az Ay 2 — G (kg k) i (ko By) dkey dE,
J _ L — Ty . _|y_yn| 00
JY (z,y) _rect< X, ) (1 Ay ; — 471'2/ / Tonn (k) by )G (ks ky)
e —am| 1 Jy—ynl
X, <9 Ay <1l (9 X J st (ks k) de,, dE,. (15)
where The first double integral in (15) converges more rapidly to zero
x 1, |z|<L/2 _tha_m_ the doubl_e integrgl of (14). Th_e integrand of the second
fect(f) =10 x| > L2 infinite double integral in (15) exhibits slowly convergent and

highly oscillatory behavior, which leads to difficulties when
The rectangular patch is divided inid4 + 1) x (N + 1) attempting to evaluate it using a direct numerical integration.
cells along thex andy directions, with each cell having theTherefore, the main objective of this paper is to solve the
dimensions oAz = W,. /(M +1) andAy = W, /(N+1). The second integral in (15) using an analytical technique.
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[ll. EVALUATION OF ASYMPTOTIC IMPEDANCE MATRIX
The asymptotic impedance matrix of the second integral in L

L[

253

sin® (k ( Ay )

k2

(15), associated with the roof-top functions of (10)—(11) and sin (k A_x)
the asymptotic Green’s function of (5)—(7), can be expressed as x sin(ky ys ) dk, / % sin(kyzs)
0 z
e x cos(kyx) dk, dx (23)
i Zo( 8\ K .. 1 e
T 72k \ Az 9 5 Diimons + (er + 1)Imnm’n’ where K, is the modified Bessel function of the first kind.
(16) The infinite three-fold integrals of (21)—(23) can be con-
e verted into a 1-D integral if the separate integrals with respect
Zrninm'n’ to k, andk, can be evaluated in closed form. To accomplish
_ gt FRA) 64 Ly (17) this, the first integrals in (21)—(23) with respect tp are
_ mam!n! = 2o o\ Az - Ay ) €, + 1m0 defined as
with ITT / / COS k xs Sin2 (k‘y Az_y> 0o sin2 (k‘ A_y)
mnm’n! = /k2—|—/c2 k2 .A(X—a:s):/() Ko(kyb(—xJ)%cos(kyys)dky
Y
sin? (kx AQ—x) (24)
X T cos(kyys ) dky dk, (18) o sind (ky Az_y> .
A B(x) = / Ro(/cyx)ik2 sin(k,ys ) dk, (25)
b / / cos(kyx,) sin® (k, 3%) 0 y
o R Ak k; where A(x — z,) andB(x) can be solved analytically. Their
(k M) detailed derivations are presented in Appendixes A and B,
sin” (k,, .
~ 27 cos(kyy,)dk, dk,  (19) respectively.
k3 The second integrals in (21) and (22), with respect:to
sin(k,z,) sin® (k, &%) were derived in [1, Egs. (16), (17)] and each integral is
L it = / / \/m k2 rewritten as (26), as shown at the bottom of the next page
0 aind Az
sin® (k, 2%) . I - / w ko) dk
x 786; ) sin(kyy,) dk, dk,  (20) =) g coslkax) dhs
where the even and odd pyroperties of the integrand are used to z (%Al‘ - %X); |x| < Aw
reduce the integration range in (18)—(20) andandy; (lateral = %(—%Am + 1gx), Az < |x| < 24z (27)
separation distances) are definedas € =) and ¢m — yn), 0, Ix| > 2Ax.

respectively. ) .
Both z, and y, in (18) and (19) have a discrete integeSincea(x) and3,(x) are compactly supported in the finite
value of Az and Ay, respectively. Butz, andy, in (20) are region—2Axz < x < 2Au, the infinite double integrals of (18)
represented by-p - Az /2 and=+q - Ay/2, respectively, where and (19) can be converted into finite 1-D integrals as follows:
p and ¢ may have odd numbers.

2Ax
Each integrand in (18)—(20) is not separable in terms,of ot - 1 Alx — =) - Sa(x) dx (28)
. ) mnm’n’ T s a
andk, due to thel/, /k2 + k2 term, which prevents it from —;AM
being reduced to the product of two one-dimensional (1-D) e’ _ 1 : A(x = ) - Sulx) dy. (29)
integrals. By introducing the same technique represented by mrmint T | ae

[1, Eqg. (11)], the integrals of (18)—(20) can be expressed as

| e o . 2(}3 Ay) Similar expressions are obtained %nm 1,» Dy interchanging
e = _/ {/ Ko(ky|x — |)sm+7 Az — Ay andz, « y, in (16), (28), and (29). Each integrand
TJ-co (Jo kg in (28) and (29) has an integrable singularityyat x; within
o0 gint (k'r Az_w) the interval of integration if:; = 0 or x; = +Axz andy, = 0.
x Cos(kyys)dky/ i Otherwise, each integrand is well behaved.
0 ’ Next, let us consider the analytical solution of (23). By
x cos(kyy)dky b dy (21) taking the derivative with respect b on both sides of [6,
B B formula 3.828.15] and changing the parameters, we introduce
- 1 0o o sin? (ky AQ_y> the following formula to evaluate (23):
mnm'n’ _;‘/_'Oo /0 X0( ?/|X_$9|)k72 OOSHI (k Ax)sm(er)
y( Ae) 7= 52 dk.
* sin” (k, 22 0 @
X cos(/cyys,,)dky/0 T —I (B yy), —3lr <X<——
— %(X 3 &L < X < 30
x cos(kyx) dk, v dy (22) 1(iaz_y), Ar<y< 22 (30)
0, otherW|se
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With the aid of (30), the second integral of (23) with respe@example, the finite 1-D integrals of (28) and (29) are evaluated

to k, is represented by with Ax = Ay =1andy, =2-Ayfor0 <z, <10 and (32)
3/ Ax is evaluated withtAz = Ay = 1 andy, = 3-Ay/2. With these
3.(x) = / sin® (k. ) sin(ky, ) cos(ky x) dk, parameters, the two-dimensional (2-D) integrals of (18)—(20)
0 k3 are calculated with self-adaptive numerical quadratures with
1 an upper truncation limit of* = 300 (rad/mm) and their
N §[T(X t o) = Th =)l (31) accuracies are set up to four significant digits. The results
With the aid of (25) and (31), (23) is reduced to are plotted in Fig. 2, which indicate excellent agreement.
' Because the results of the double infinite integral are computed
ﬁ—ws numerically using a sufficiently large upper limit of truncation
Lt = / ) T(x + ) dy to give highly accurate results, this agreement verifies the
Wi validity of the newly derived formulas (28), (29), and (32).
i i R B(x) - T(x —z,)dy Of particular interest are the execution times. While the
_she . § computation time for the proposed method is not significantly
se 4, affected by the separation distaneeandy;, the self-adaptive
/ Y- T(x —zs)dy (32) numerical integration of the 2-D integrals requires excessive
3Aa:

computation time to achieve a comparable level of accuracy,
if large lateral separation distances are to be analyzed. In this
example, the average computation time to obtain the results of
Fig. 2, using the proposed method, at each ten integer values
) of z,, takes aboutl /3000 of the time required by the 2-D
method while at the same time improving the accuracy.

where the even property d(x) is used to reduce the two
integrals to one integral.

Within the interval of integration, the integrand in (32
has an integrable singularity at = 0 if z; = £Az/2 and
y, = £Ay/2 or y, = £3Ay/2. Since each integrand in (28),
(29), and (32) has a logarithmic singularity, their integration
at and near the singularity can be solved analytically at the
local region of interest using the same procedure outlined inTo verify the developed analytical formulation, RCS mea-
[1]. However, for convenience we use commonly availabkurements of a rectangular patch were made using RT/Duroid
IMSL subroutines to integrate the finite 1-D integrals 0$870, 0.078 74-cm thickness, 0.5-0z copper clad with dielectric
(28), (29), and (32). If there is a singularity within theconstant of 2.33 0.02 and a loss tangent of 0.0012 at 10 GHz.
interval, the International Mathematics ans Statistics Library The experimental data was collected on a compact antenna
(IMSL) routine DQDAGP was used. If not, the IMSL routinetest range at Arizona State University. The measurements
DQDAGS was used, which is a general adaptive integrakere made in four overlapping frequency bands corresponding
routine. The DQDAGP routine is a high-quality adaptivéo four sets of feed antennas: 3.7-6.4 GHz, 5.6-8.6 GHz,
guadrature to handle endpoints as well as interior singulariti&s8—12.8 GHz, and 12.0-18.4 GHz. The instrumentation is

If we look at the finite 1-D integrals of (28), (29), and (32comprised of a vector network analyzer with a synthesized
as counterparts corresponding to the double infinite integralsurce. The source power wasll dBm, the IF averaging
of (18), (19), and (20), we see that the interval of integration factor was 2048, and 801 points were collected for each
determined only by the length of the basis function. This meafisquency band. The patch was cut by hand from adhesive-
that the smaller the size of the basis function, the more thacked copper tape and burnished onto a 45.9xcrh22.3
interval of integration is reduced. Also if the lateral separatioem substrate.

(zs and ys;) between any two expansion functions becomes For each frequency band, a multiple-step measurement
large, the behavior of the 1-D integrand becomes smoothprocedure was employed. After calibrating the system to a

This smooth behavior allows us to evaluate the numerichb.24-cm-diameter sphere, the substrate with the patch was
integration faster and more accurately. In addition, since theounted on an expanded polystyrene support structure on an
integrand of the transformed 1-D integral does not lead to ex@iaimuth over elevation positioner. The elevation axis of the

calculations, it is easier to compute. positioner was rotated by 3@egrees so that tifeobservation

It is interesting to examine two results—that obtained bgngle was 60. The azimuthal axis of the positioner was
the finite 1-D integrals and the other using the double infinitetated by 25 to reduce the backscatter of the substrate; the
integrals. This allows direct comparisons between the tvasientation of the patch was at 2@elative to the substrate for
methods in terms of accuracy and execution time. As @an¢ observation angle of 45

IV. MEASUREMENT OFRCS

/ sin” cos(kmx) dk,.
gl{(ml‘— IX1)? —4(Ax = [x])*}, x| < A=
g5 (282 — |x|)?, Az < x| < 2Az (26)
0, x| > 2A%
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2 ; numerical data. The structure investigated is a 2-cm square
- xg;eff%z)’s) patch on a grounded dielectric substrate of thicknéss
M n ra . B
2 g 0.078 74 cm and dielectric constant = 2.33.

Enforcing the boundary condition on the surface of a

g 5 perfectly conducting patch, the total tangential electric field
S (the sum of the incident and scattering electric fields) must
be zero, i.e., k5" + Enc = (. Using Galerkin's method,
2 the electric field equation is reduced to the following matrix
equation [7], [8]:
10—3 . 1 2 1 . L n 1 1
0.00 2.00 4.)0(50=xm_6£nOO 6.00 fo.00 [ rxw‘zxr‘zm’n’] [Zﬁlynm’n’] [Iﬁz’n’] [Véﬂ]
(@) Ax=Ay=1 and y,=2 -Ay — (33)
s [Zg’ﬁlm’n’] [Zgzynm’n’] I:Ig’llnl] [V#m]
: —— Proposed Method(29) where each submatrix is described in (14) and the unknown
2 . o N . .
. Double Integral(18) coefficients of7%, , and 1’ , are given in (12) and (13).
-5105 The excitation vector on the right side of (33) can be
2 obtained by the inner product between the testing function
3 2 and the incident field as
g10”} .
g, Voo = [ [T By (34)
5
2 4
16° . o . Instead of performing the double integration directly to obtain
000 200  4.00 x, 500 800 1000 (34), the excitation vectoy,,, can be alternatively calculated
() Ax=Ay=1 and y,=2 -Ay by using the reciprocity theorem [9], [10]
102 T R -
~— Proposed Method(32) —An B - B
° . D;f;lzelnte;ralﬂo) an = 771-, : 0 (35)
2 - JWHo
%10’3 £ > . .
=, ] where tt\eEmn is the far-fleldq radiation due to the current
_§ . ] density J,,, on the patch andy; is the vector amplitude of
R0k | the incident plane wave.
‘5; 5f ] The far-zone field radiated by the expansion current densi-
. ties.JZ,, andJ?,, can be solved asymptotically by the method
y N of stationary phase. The reader is referred to [9] and [10] for

105 ) I [ A X
000 200 400 600 800  10.00 the expressions of the excitation vector.

© Ax=AGET ahd =3 Ay/2 Next, consider the evaluation of the matrix elements of
Fig. 2. Comparison between the infinite 2-D integral and the finite 1-633). The double infinite integral in each submatrix is carried
integral. out by the asymptotic extraction technique described in (15).
The first integral in (15) is performed numerically, after
P&psforming into polar coordinates, with a finite upper limit

The response of the patch on the substrate was measured. X _ X _
w, 1he integrand of the first double integral in (15) pos-

The patch was removed, and the response of the em

substrate was measured. An approximation to the respoﬁ SSes singularities_ corresponding to the surface wave poles.
of the patch in the presence of the substrate, but without tﬁenum_ber of techn_lque_s have_been used to calculate th_ese
effects of the substrate edges, was obtained by subtracting Ql%es_m the numerical integration such as a pol_e extraction
second measurement from the first. A time-domain gate V\;gghnlque [3], [1_1]' a method of deforme_d integration contour
applied to the subtracted measurement to remove the effdd@l and a foldl_ng technique [13]'_ In this Paper, these po_Ies
of the residual responses of the substrate edges. Artifacts?6F e_valuate_ql W'th_ the use of_afoldlng technique. Af_ter treating
the gating process were removed by clipping the ends of ea[@ﬁ singularities Wlth _the foldlr_lg methpd, the remaining double
frequency band. This process was repeated multiple times yyegral Of the first mtegral_ |n_(15) IS performed using the
each band. The individual measurements were very consist M,S!‘ routine DTW_ODQ’ Wh'Ch is also an adaptive qgadrature
but the amplitude of two or more measurements were avera gytine for double integration. In general, for the 2-D integrals,

together per frequency band to reduce small variations. T igvas found that combining the folding technique and the

was particularly effective at frequencies above approximatéMSL routine D_TWODQ_ provid_ed sufficient accuracy.
9 GHz. The second integral in (15) is computed directly from the

transformed 1-D integral over the finite integration region by
using the adaptive integration algorithm. The direct double
integration of the second integral in (15) is the most time

To verify the proposed method, computations were madensuming part of the overall computation of the matrix
and were compared with measurements and other availalements. Previously, to speed up this part, others [14], [15]

V. NUMERICAL RESULTS OF RCS
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-60.00

-70.00

! L 1 | | 1
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Frequency(GHz)

8000 L—r T
Fig. 3. Comparison between measured and predicted RCS.

have used the spatial domain method with the homogeneaignificant improvement in the numerical results was found by
Green’s function, which results in a four-fold integral. Thidgurther increasing the number 8f and NV over the frequency
technique was originally developed by Pozar [14] and reange from 4 to 18 GHz. Thus, here we uge= N = 13,
quires additional computations of the same geometry inwdich leads t0364 = [M - (N + 1) + N - (M + 1)] unknown
homogeneous medium. Thus, this method is still relativegpefficients. To evaluate the first integral in (15), an upper limit
time consuming. However, the calculation of this tail integraf* = 50 - &, is used to obtain the results in Fig. 3. This leads
using the transformed finite 1-D integral has almost negligibte a good convergency. Further increases in the upper limit do
computation time as compared to those of the first integral imot enhance the accuracy (up to four significant figures) over
(15). the entire frequency region.

An efficient algorithm for calculating the matrix element As shown in Fig. 3, good agreement between the measured
in (33) can take advantage of the occurrence of elemeiatsd the numerically computed data is observed for the lower
having repeated values as mentioned in [10]. The redundandiegjuencies, while for the high frequencies the agreement
allow one to precompute the first row of each submatris less favorable. To find the possible explanation of this
in [Zzw o 12 ], and [ 22 ], and retrieve them slight disagreement for the high-frequency region, each of

mnm'n’! mnm’'n’ mnm’n’
later to fill the entire moment matrix. AlsgZ’"” ., .] can be the parameters such as patch size, substrate dielectric con-
obtained by rearrangingz’” . 1. stant and thickness, substrate loss, and the incident angle

The slowly varying nature of the impedance matrix elementgere varied by small values commensurate with the physical
over a wide-frequency range can be used to enhance tbkerances of the structure. We found that small changes of
computational efficiency [8]. The impedance matrix elementscident angle (within 2%) and the losses do not play a
are computed from a few sampled frequency points. Tisgnificant role; therefore, the losses may even be neglected
remaining impedance matrix elements at the intermedidtethis case. However, the RCS results are affected by the
frequency points are calculated using the cubic spline intgrhysical tolerance of the remaining parameters such as patch
polation algorithm [16]. size, substrate dielectric constant, and thickness. Thus, these

By using the above mentioned numerical techniques, tt@erances may contribute to the slight discrepancies between
monostatic radar cross section (RCS) of a square microstifig measurements and the predicted data in the high-frequency
patch is computed as a function of frequency for the inciderggion. As an example, a 1% increase of the patch size causes
angles¢’ = 45°, ¢ = 60°, with # polarization, and plotted the entire curve from 13 to 18 GHz to be shifted downward
in Fig. 3. As a check of the consistency and accuracy of thg 150 MHz.
proposed method, our results are compared with the measuredo illustrate the overall speed of the computation time, the
data as well as those using the Rao, Wilton, and Gliss@PU time between the proposed method and the conventional
(RWG) subdomain basis functions, which have 225 unknovapectral domain approach (SDA) without acceleration to obtain
coefficients [16]. Their respective results are included itme RCS at a single frequency of 4 GHz is compared. In
Fig. 3. For the results of the method of this paper and RWtble | the CPU times are given for two different numbers of
solution, there is a good agreement with each other ovemuaknowns. Using the proposed method, the chosen upper limit
wide range of frequencies. of 50 -k, to evaluate the integral of the matrix elements allows

The convergence of the solution was investigated by varhe result to be accurate to four significant digits; the overall
ing the number of subsections. The solution of our methditne to obtain the RCS at 4 GHz was 45 s with 180 unknowns.
converges relatively well by using/ = N = 12. Also, no Without any acceleration, the conventional SDA does not lead
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TABLE |
CPU TiME oN A HP735/125 VWRKSTATION FOR THE

f2(y) can be easily obtained as

CaLcuLATION OF RCS (RTCH SiZE2 cm x 2 cm, e, = 2.33, . 9 A
d = 0.7874 mm, ¢' = 45°, 6° = 60°, f = 4 GHz) £ (v) L [™ sin (kyTy) (kyys) cos(kyy) dk
. , P = U= )= 2 (y) = — ————> cos(ky, ys ) cos(k,y f
Number of SDA With(;zt Propo;ed Speed 27 —0o0 k; Y Y !
Unknown acceleratiom ) Method b) Improvement _
(M=N) (seconds) (seconds) a = %A <y * Y ) + &A <y Ys ) (38)
180(M=9) 553 68 81 8 Ay 8 Ay
(B®) (300 - ko) (50 - ko) )
364(M=13) 2729 153 178 where
(B*) (500 - ko) (50 - ko) ) y vl | | A
Al == Ay Y .
(Ay) {0, otherwise.

to this level of accuracy until the upper limit* reaches 300
-ko. With this value of upper limit, approximately 553 secSubstituting (37) and (38) into (36)A(x — z,) can be
were needed using 180 unknowns. If the number of unknowf@Presented analytically as
is increased to 364, the small size of the basis functions in the -
conventional SDA requires an upper limit of 53Q to achieve Alx — =) = ﬁ%/ 1
comparable accuracy, as seen in Table I. The method of this 16 oo /(X — )2 + 42
paper does not require the upper limit to change, depending on Y+ ys Y — Ys
the size of basis functions, and it is clearly more accurate than X [A( Ay ) + A( Ay )] dy (39)
the conventional SDA due to the elimination of the truncation
error. if n =20
A
VI. CONCLUSION Al — ) = W(%) {hl(Ay + V=) + Ay?)
Utilization of the analytical transform method for the l — >
asymptotic impedance mgtrix element provides a significant B 1n(|X_$s|)_A_y (=) +Ay
improvement in the computation time over the conventional 1
SDA in the evaluation of the radar cross section of a microstrip + A_yb( s |} (40)
patch. In addition, the proposed method leads to highly
accurate results even for a relatively small upper limit af » > 1
truncation. The computed results were compared with those
of other met_hods and with measured datg over a wide rangﬁx . xs):ﬁ<&>{(1 4 n){ln[(n +1)Ay
of frequencies. Although the newly derived formula was 8
demonstrated for the RCS of a microstrip patch, this approach
can be easily applied to any arbitrarily shaped planar circuit.

+V(x— ) + (n+1)?Ay%]}
— (1—n){ln[(n— 1)Ay
+ V(=) + (n = 1)?Ay?]}

—2n - InpAy++/(x— 2, )*+n> Ay?]

2
+ oV —2)? + Ay

APPENDIX A

The integration A(x — #,) over the k, plane can be
converted into an integration over thg plane by using

Parseval's theorem Aly
_ X_x32+n_12Ay2
Ao VN T
1

sin” (k, A%

— / Ko(ky|x — xsl)% cos(kyys ) dky
0] Y

=/mﬂww@wwﬂw=w/mﬁwwxw@.
0 — 00
(36)

(=) A
(41)

_A_y

wherez, = mAz andy, = nAy.

Let us defineF(k,) = Ko(ky|x — x4]) and Fs(k,) = APPENDIX B

sin” (ky, 8%) cos(kyy.)/k2. With the aid of [6, formula
6.671.14), i (v) can be solved as

The integratior3(x) over thek, plane can be converted into
an integration over thg plane by using Parseval's theorem

sin” (k Ay

1 o0 - oo -~ Yy o .
fily) = ﬂ/ Ko(ky|x — a4]) cos(ky y) dk, B(x) = /0 Ko(kyx) k; : ) sin(k, y, ) dk,
oo y

1 1 o0} [e'e]
9 37 = 1 1 2\ vy, y — T 1 2 .
N BTN @) | rar® s =7 [ o d. @)
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Let us define Fy(k,) = Ko(k,x) and F»(k,) = Dr.J. F. Harvey of ARO, and Dr. J. W. Mink, formerly of
sin®(k, &%) sin(k,y,)/k2. With the aid of [6, formula ARO, for their interest and support of this project.
6.671.14), i (y) can be solved as
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