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Analytical Evaluation of the Asymptotic
Impedance Matrix of a Grounded

Dielectric Slab with Roof-Top Functions
Seong-Ook Park, Constantine A. Balanis,Fellow, IEEE, and Craig R. Birtcher

Abstract—In this paper, an analytical technique is derived
to solve the asymptotic part of impedance matrix elements for
printed circuit structures using roof-top subdomain expansions.
The key to this problem is the analytical transformation from
an infinite double integral to a suitable finite one-dimensional
(1-D) integral. The newly developed formula is applied to the
monostatic radar cross section (RCS) of a microstrip patch.
Comparisons are made with measurements and conventional
method of moments predictions.

Index Terms—Impedance matrix, microstrip antennas.

I. INTRODUCTION

RECENTLY, the authors [1] have successfully derived an
analytical technique for evaluating the asymptotic part

of the self and mutual interactions between the triangular-
edge mode-basis functions along an electrically narrow strip.
The method provides highly accurate results with minimal
computational effort. However, the application of triangular-
edge mode-basis functions, which have a vector field with
only one component, is limited to problems similar to those
of microstrip dipoles and discontinuities in narrow microstrip
lines.

This paper presents an analytical technique to solve the
asymptotic part of the impedance matrix in the spectral domain
that employs roof-top subdomain basis functions to model sur-
face current densities on a grounded dielectric slab. Roof-top
subdomain basis functions are suitable for solving arbitrarily
shaped planar geometries. However, the numerical evaluation
of the integrals, without an acceleration technique, leads to
very time-consuming computations.

Previously, Yanget al. [2] have presented an efficient
numerical algorithm for directly evaluating the infinite double
integral in the spectral domain. However, their method is
incomplete because the efficient evaluation of the asymptotic
part

R
1

A

R
1

0
� � �dkx dky was missing. Also, if the lateral

separation (xm andyn of [2, Eq. (1)]) between the basis and
testing functions becomes large, the efficiency decreases.

The formula presented in this paper produces accurate
and efficient results for evaluating the asymptotic part of
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Fig. 1. Layout of roof-top basis functions on a microstrip patch.

the impedance matrix without limitations. This results in
a dramatic improvement in terms of the computation time
for evaluating the impedance matrix elements. The formula
derived is valid for any lateral separation between the two
expansion functions. It is interesting that this method is
especially more efficient in the case of the smaller size of
the basis functions and larger lateral separations between the
basis and testing functions, which is a pathological case of the
conventional spectral domain analysis.

II. THEORY

Consider a perfectly conducting rectangular microstrip patch
of dimensionsWx�Wy on a grounded dielectric substrate of
thicknessd and dielectric constant�r, as shown in Fig. 1.

In order to apply the moment method, we define the dyadic
Green’s function due to an infinitesimal current source on a
grounded dielectric slab, which takes the form of [3], [4]

~Gxx(kx; ky)

= �j
Z0

k0

�
�rk

2

0
� k2x

�
k2 + jk1(k20 � k2x) tan(k1d)

TeTm
tan(k1d)

(1)
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~Gyy(kx; ky)

= �j Z0
k0

�
�rk

2
0 � k2y

�
k2 + jk1

�
k20 � k2y

�
tan(k1d)

TeTm
tan(k1d)

(2)
~Gxy(kx; ky)

= ~Gyx(kx; ky) = j
Z0
k0

kxky tan(k1d)[k2 + jk1 tan(k1d)]

TeTm
(3)

where

Te = k1 + jk2 tan(k1d)

Tm = �rk2 + jk1 tan(k1d)

k21 = �rk
2
0 � k2x � k2y; Imfk1g � 0

k22 = k20 � k2x � k2y; Imfk2g � 0

� =
q
k2x + k2y

(4)

and k0 = !
p
�0�0 where! is the angular frequency and�0

and �0 are the permeability and permittivity of free-space,
respectively.

The subscriptsxy in ~Gxy(kx; ky) represent an̂x-directed
electric field (in the form of a plane wave spectrum) due
to an infinitesimalŷ-directed current source. The subscripts
of the other Green’s functions have similar designations. The
respective asymptotic Green’s functions of (1)–(3), for large
� are given by

~G1xx(kx; ky) = �j Z0
k0

�
k20
2�

� k2x
(�r + 1)�

�
(5)

~G1yy(kx; ky) = �j Z0
k0

(
k20
2�

� k2y
(�r + 1)�

)
(6)

~G1xy(kx; ky) = ~G1yx(kx; ky) = j
Z0
k0

kxky
(�r + 1)�

: (7)

In the next step, a set of roof-top subdomain basis functions are
employed to model the current density distribution on the con-
ductor. Roof-top functions are characterized by their triangular
shape along the direction of current flow and rectangular cross
section in the orthogonal direction. Thus, the current densities
can be expressed as

Jxmn(x; y) =

�
1� jx� xmj

�x

�
� rect

�
y � yn
�y

�
;

jx� xmj
�x

< 1;
jy � ynj
�y

<
1

2
(8)

Jymn(x; y) = rect

�
x� xm
�x

�
�
�
1� jy � ynj

�y

�
;

jx� xmj
�x

<
1

2
;

jy � ynj
�y

< 1 (9)

where

rect
�x
L

�
=

�
1; jxj < L=2
0; jxj > L=2:

The rectangular patch is divided into(M + 1) � (N + 1)
cells along thêx and ŷ directions, with each cell having the
dimensions of�x =Wx=(M+1) and�y =Wy=(N+1). The

size of roof-top functions for thêx-directed current elements
have dimensions 2�x and �y in the x̂ and ŷ directions,
respectively, while the size of roof-top for thêy-directed
current elements have dimensions�x and 2�y.

The drawing in Fig. 1 illustrates the discretization and roof-
top function layout for a rectangular patch. The centers of
x̂-directed roof-top functions are marked with circles and
the centers of̂y-directed functions are marked with crosses.
To satisfy edge conditions and generate correct results, the
centers between̂x- and ŷ-directed currents need to be offset
by (�x=2;�y=2) [5].

The transforms of thêx- and ŷ-directed roof-top current
densities of (8) and (9) can be written as

~Jxmn(kx; ky) =
8

�x

sin2
�
kx

�x
2

�
k2x

sin
�
ky

�y
2

�
ky

e�j(kxxm+kyyn)

(10)

~Jymn(kx; ky) =
8

�y

sin
�
kx

�x
2

�
kx

sin2
�
ky

�y
2

�
k2y

e�j(kxxm+kyyn):

(11)

The surface current densities can be expanded in terms of
roof-top functions with an unknown set of current coefficients
(Ixmn; I

y
mn) as follows:

~Jxt (kx; ky) =
MX
m=1

N+1X
n=1

Ixmn
~Jxmn(kx; ky) (12)

~Jyt (kx; ky) =
M+1X
m=1

NX
n=1

Iymn
~Jymn(kx; ky): (13)

Using Galerkin’s method, the impedance matrix elements in
the spectral domain may be expressed in the form [1], [3]

��Zmnm0n0 = � 1

4�2

Z
1

�1

Z
1

�1

~~Jmn(kx; ky)
��~G(kx; ky)

� ~~J
�

m0n0(kx; ky) dkx dky (14)

where mnm0n0 represent the self and mutual interactions

between the~~Jmn and~~Jm0n0 current basis functions.
Employing the asymptotic extraction technique, (14) can be

written as

��Zmnm0n0 = � 1

4�2

Z
1

�1

Z
1

�1

~~Jmn(kx; ky)[
��~G(kx; ky)

� ��~G
1

(kx; ky)]
~~J
�

m0n0(kx; ky) dkx dky

� 1

4�2

Z
1

�1

Z
1

�1

~~Jmn(kx; ky)
��~G
1

(kx; ky)

� ~~J
�

m0n0(kx; ky) dkx dky: (15)

The first double integral in (15) converges more rapidly to zero
than the double integral of (14). The integrand of the second
infinite double integral in (15) exhibits slowly convergent and
highly oscillatory behavior, which leads to difficulties when
attempting to evaluate it using a direct numerical integration.
Therefore, the main objective of this paper is to solve the
second integral in (15) using an analytical technique.
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III. EVALUATION OF ASYMPTOTIC IMPEDANCE MATRIX

The asymptotic impedance matrix of the second integral in
(15), associated with the roof-top functions of (10)–(11) and
the asymptotic Green’s function of (5)–(7), can be expressed as

Zxx
Asy

mnm0n0

= �
j

�2
Z0
k0

�
8

�x

�2�
�
k20
2
Ixx

a

mnm0n0 +
1

(�r + 1)
Ixx

b

mnm0n0

�
(16)

Zxy
Asy

mnm0n0

= Zyx
Asy

mnm0n0 =
j

�2
Z0
k0

�
64

�x ��y

�
1

�r + 1
Ixymnm0n0 (17)

with
Ixx

a

mnm0n0 =

Z
1

0

Z
1

0

cos(kxxs)q
k2x + k2y

sin2
�
ky

�y

2

�
k2y

�
sin4

�
kx

�x
2

�
k4x

cos(kyys) dkx dky (18)

Ixx
b

mnm0n0 =

Z
1

0

Z
1

0

cos(kxxs)q
k2x + k2y

sin2
�
ky

�y

2

�
k2y

�
sin4

�
kx

�x
2

�
k2x

cos(kyys) dkx dky (19)

Ixymnm0n0 = �

Z
1

0

Z
1

0

sin(kxxs)q
k2x + k2y

sin3
�
ky

�x
2

�
k2x

�
sin3

�
ky

�y
2

�
k2y

sin(kyys) dkx dky (20)

where the even and odd properties of the integrand are used to
reduce the integration range in (18)–(20) andxs andys (lateral
separation distances) are defined as (xm�xn) and (ym� yn),
respectively.

Both xs and ys in (18) and (19) have a discrete integer
value of�x and�y, respectively. Butxs andys in (20) are
represented by�p ��x=2 and�q ��y=2, respectively, where
p and q may have odd numbers.

Each integrand in (18)–(20) is not separable in terms ofkx

andky due to the1=
q
k2x + k2y term, which prevents it from

being reduced to the product of two one-dimensional (1-D)
integrals. By introducing the same technique represented by
[1, Eq. (11)], the integrals of (18)–(20) can be expressed as

Ixx
a

mnm0n0 =
1

�

Z
1

�1

(Z
1

0

K0(kyj� � xsj)
sin2

�
ky

�y

2

�
k2y

� cos(kyys) dky

Z
1

0
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�
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�x
2

�
k4x

� cos(kx�) dkx

)
d� (21)

Ixx
b

mnm0n0 =
1

�

Z
1

�1

(Z
1

0

K0(kyj�� xsj)
sin2

�
ky

�y
2

�
k2y

� cos(kyys) dky

Z
1

0

sin4
�
kx

�x
2

�
k2x

� cos(kx�) dkx

)
d� (22)

Ixymnm0n0 = �
1

�

Z
1

�1

Z
1

0

K0(ky�)
sin3

�
ky

�y

2

�
k2y

� sin(kyys) dky

Z
1

0

sin3
�
kx

�x
2

�
k2x

sin(kxxs)

� cos(kx�) dkx d� (23)

whereK0 is the modified Bessel function of the first kind.
The infinite three-fold integrals of (21)–(23) can be con-

verted into a 1-D integral if the separate integrals with respect
to kx andky can be evaluated in closed form. To accomplish
this, the first integrals in (21)–(23) with respect toky are
defined as

A(� � xs) =

Z
1

0

K0(kyj�� xsj)
sin2

�
ky

�y

2

�
k2y

cos(kyys) dky

(24)

B(�) =

Z
1

0

K0(ky�)
sin3

�
ky

�y

2

�
k2y

sin(kyys) dky (25)

whereA(� � xs) andB(�) can be solved analytically. Their
detailed derivations are presented in Appendixes A and B,
respectively.

The second integrals in (21) and (22), with respect tokx,
were derived in [1, Eqs. (16), (17)] and each integral is
rewritten as (26), as shown at the bottom of the next page

=b(�) =

Z
1

0

sin4
�
kx

�x
2

�
k2x

cos(kx�) dkx

=
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4
�x� 3

8
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�
2

�
�1

4
�x+ 1

8
�
�
; �x � j�j < 2�x

0; j�j � 2�x:
(27)

Since=a(�) and=b(�) are compactly supported in the finite
region�2�x < � < 2�x, the infinite double integrals of (18)
and (19) can be converted into finite 1-D integrals as follows:

Ixx
a

mnm0n0 =
1

�

Z 2�x

�2�x

A(� � xs) � =a(�) d� (28)

Ixx
b

mnm0n0 =
1

�

Z 2�x

�2�x

A(� � xs) � =b(�) d�: (29)

Similar expressions are obtained forZyyAsy

mnm0n0 by interchanging
�x$ �y andxs $ ys in (16), (28), and (29). Each integrand
in (28) and (29) has an integrable singularity at� = xs within
the interval of integration ifxs = 0 or xs = ��x andys = 0.
Otherwise, each integrand is well behaved.

Next, let us consider the analytical solution of (23). By
taking the derivative with respect tob on both sides of [6,
formula 3.828.15] and changing the parameters, we introduce
the following formula to evaluate (23):

T (�) =

Z
1

0

sin3
�
kx

�x
2

�
sin(kx�)

k2x
dkx

=

8>><
>>:
��

8

�
3�x
2

+ �
�
; �3�x

2
< � < ��x

2
�
4
(�); ��x

2
< � < �x

2
�
8

�
3�x
2
� �

�
; �x

2
< � < 3�x

2

0; otherwise.

(30)
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With the aid of (30), the second integral of (23) with respect
to kx is represented by

=c(�) =

Z
1

0

sin3
�
kx

�x
2

�
k2x

sin(kxxs) cos(kx�) dkx

=
1

2
[T (� + xs)� T (�� xs)]: (31)

With the aid of (25) and (31), (23) is reduced to

Ixymnm0n0 = �
1

2�

Z 3�x

2
�xs

�
3�x

2
�xs

B(�) � T (� + xs) d�

+
1

2�

Z 3�x

2
+xs

�
3�x

2
+xs

B(�) � T (�� xs) d�

=
1

�

Z 3�x

2
+xs

�
3�x

2
+xs

B(�) � T (�� xs) d� (32)

where the even property ofB(�) is used to reduce the two
integrals to one integral.

Within the interval of integration, the integrand in (32)
has an integrable singularity at� = 0 if xs = ��x=2 and
ys = ��y=2 or ys = �3�y=2. Since each integrand in (28),
(29), and (32) has a logarithmic singularity, their integration
at and near the singularity can be solved analytically at the
local region of interest using the same procedure outlined in
[1]. However, for convenience we use commonly available
IMSL subroutines to integrate the finite 1-D integrals of
(28), (29), and (32). If there is a singularity within the
interval, the International Mathematics ans Statistics Library
(IMSL) routine DQDAGP was used. If not, the IMSL routine
DQDAGS was used, which is a general adaptive integral
routine. The DQDAGP routine is a high-quality adaptive
quadrature to handle endpoints as well as interior singularities.

If we look at the finite 1-D integrals of (28), (29), and (32)
as counterparts corresponding to the double infinite integrals
of (18), (19), and (20), we see that the interval of integration is
determined only by the length of the basis function. This means
that the smaller the size of the basis function, the more the
interval of integration is reduced. Also if the lateral separation
(xs and ys) between any two expansion functions becomes
large, the behavior of the 1-D integrand becomes smoother.
This smooth behavior allows us to evaluate the numerical
integration faster and more accurately. In addition, since the
integrand of the transformed 1-D integral does not lead to extra
calculations, it is easier to compute.

It is interesting to examine two results—that obtained by
the finite 1-D integrals and the other using the double infinite
integrals. This allows direct comparisons between the two
methods in terms of accuracy and execution time. As an

example, the finite 1-D integrals of (28) and (29) are evaluated
with �x = �y = 1 andys = 2 ��y for 0 � xs � 10 and (32)
is evaluated with�x = �y = 1 andys = 3��y=2. With these
parameters, the two-dimensional (2-D) integrals of (18)–(20)
are calculated with self-adaptive numerical quadratures with
an upper truncation limit of�u = 300 (rad/mm) and their
accuracies are set up to four significant digits. The results
are plotted in Fig. 2, which indicate excellent agreement.
Because the results of the double infinite integral are computed
numerically using a sufficiently large upper limit of truncation
to give highly accurate results, this agreement verifies the
validity of the newly derived formulas (28), (29), and (32).

Of particular interest are the execution times. While the
computation time for the proposed method is not significantly
affected by the separation distancexs andys, the self-adaptive
numerical integration of the 2-D integrals requires excessive
computation time to achieve a comparable level of accuracy,
if large lateral separation distances are to be analyzed. In this
example, the average computation time to obtain the results of
Fig. 2, using the proposed method, at each ten integer values
of xs, takes about1=3000 of the time required by the 2-D
method while at the same time improving the accuracy.

IV. MEASUREMENT OF RCS

To verify the developed analytical formulation, RCS mea-
surements of a rectangular patch were made using RT/Duroid
5870, 0.078 74-cm thickness, 0.5-oz copper clad with dielectric
constant of 2.33� 0.02 and a loss tangent of 0.0012 at 10 GHz.

The experimental data was collected on a compact antenna
test range at Arizona State University. The measurements
were made in four overlapping frequency bands corresponding
to four sets of feed antennas: 3.7–6.4 GHz, 5.6–8.6 GHz,
7.8–12.8 GHz, and 12.0–18.4 GHz. The instrumentation is
comprised of a vector network analyzer with a synthesized
source. The source power was+11 dBm, the IF averaging
factor was 2048, and 801 points were collected for each
frequency band. The patch was cut by hand from adhesive-
backed copper tape and burnished onto a 45.9 cm� 122.3
cm substrate.

For each frequency band, a multiple-step measurement
procedure was employed. After calibrating the system to a
15.24-cm-diameter sphere, the substrate with the patch was
mounted on an expanded polystyrene support structure on an
azimuth over elevation positioner. The elevation axis of the
positioner was rotated by 30� degrees so that the� observation
angle was 60�. The azimuthal axis of the positioner was
rotated by 25� to reduce the backscatter of the substrate; the
orientation of the patch was at 20� relative to the substrate for
a � observation angle of 45�.

=a(�) =

Z
1

0

sin4
�
kx

�x
2

�
k4x

cos(kx�) dkx

=

8<
:

�
96
f(2�x� j�j)3 � 4(�x� j�j)3g; j�j < �x

�
96
(2�x� j�j)3; �x � j�j < 2�x

0; j�j � 2�x
(26)
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Fig. 2. Comparison between the infinite 2-D integral and the finite 1-D
integral.

The response of the patch on the substrate was measured.
The patch was removed, and the response of the empty
substrate was measured. An approximation to the response
of the patch in the presence of the substrate, but without the
effects of the substrate edges, was obtained by subtracting the
second measurement from the first. A time-domain gate was
applied to the subtracted measurement to remove the effects
of the residual responses of the substrate edges. Artifacts of
the gating process were removed by clipping the ends of each
frequency band. This process was repeated multiple times for
each band. The individual measurements were very consistent,
but the amplitude of two or more measurements were averaged
together per frequency band to reduce small variations. This
was particularly effective at frequencies above approximately
9 GHz.

V. NUMERICAL RESULTS OF RCS

To verify the proposed method, computations were made
and were compared with measurements and other available

numerical data. The structure investigated is a 2-cm square
patch on a grounded dielectric substrate of thicknessd =
0:078 74 cm and dielectric constant�r = 2:33.

Enforcing the boundary condition on the surface of a
perfectly conducting patch, the total tangential electric field
(the sum of the incident and scattering electric fields) must
be zero, i.e.,~Escat

tan
+ ~Einc

tan
= 0. Using Galerkin’s method,

the electric field equation is reduced to the following matrix
equation [7], [8]:2
4
�
Zxx
mnm0n0

� �
Z
xy
mnm0n0

�
�
Z
yx
mnm0n0

� �
Z
yy
mnm0n0

�
3
5
2
4
�
Ixm0n0

�
�
I
y
m0n0

�
3
5 =

2
4
�
V x
mn

�
�
V y
mn

�
3
5 (33)

where each submatrix is described in (14) and the unknown
coefficients ofIxm0n0 andIym0n0 are given in (12) and (13).

The excitation vector on the right side of (33) can be
obtained by the inner product between the testing function
and the incident field as

Vmn =

Z
S

Z
~Jmn �

~Einc dx dy: (34)

Instead of performing the double integration directly to obtain
(34), the excitation vectorVmn can be alternatively calculated
by using the reciprocity theorem [9], [10]

Vmn =
�4� ~Emn �

~E0

jw�0

(35)

where the ~Emn is the far-field radiation due to the current
density ~Jmn on the patch and~E0 is the vector amplitude of
the incident plane wave.

The far-zone field radiated by the expansion current densi-
tiesJxmn andJymn can be solved asymptotically by the method
of stationary phase. The reader is referred to [9] and [10] for
the expressions of the excitation vector.

Next, consider the evaluation of the matrix elements of
(33). The double infinite integral in each submatrix is carried
out by the asymptotic extraction technique described in (15).
The first integral in (15) is performed numerically, after
transforming into polar coordinates, with a finite upper limit
�u. The integrand of the first double integral in (15) pos-
sesses singularities corresponding to the surface wave poles.
A number of techniques have been used to calculate these
poles in the numerical integration such as a pole extraction
technique [3], [11], a method of deformed integration contour
[12], and a folding technique [13]. In this paper, these poles
are evaluated with the use of a folding technique. After treating
the singularities with the folding method, the remaining double
integral of the first integral in (15) is performed using the
IMSL routine DTWODQ, which is also an adaptive quadrature
routine for double integration. In general, for the 2-D integrals,
it was found that combining the folding technique and the
IMSL routine DTWODQ provided sufficient accuracy.

The second integral in (15) is computed directly from the
transformed 1-D integral over the finite integration region by
using the adaptive integration algorithm. The direct double
integration of the second integral in (15) is the most time
consuming part of the overall computation of the matrix
elements. Previously, to speed up this part, others [14], [15]
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Fig. 3. Comparison between measured and predicted RCS.

have used the spatial domain method with the homogeneous
Green’s function, which results in a four-fold integral. This
technique was originally developed by Pozar [14] and re-
quires additional computations of the same geometry in a
homogeneous medium. Thus, this method is still relatively
time consuming. However, the calculation of this tail integral
using the transformed finite 1-D integral has almost negligible
computation time as compared to those of the first integral in
(15).

An efficient algorithm for calculating the matrix element
in (33) can take advantage of the occurrence of elements
having repeated values as mentioned in [10]. The redundancies
allow one to precompute the first row of each submatrix
in [Zxx

mnm0n0 ], [Zxy
mnm0n0 ], and [Zyy

mnm0n0 ], and retrieve them
later to fill the entire moment matrix. Also[Zyx

mnm0n0 ] can be
obtained by rearranging[Zxy

mnm0n0 ].
The slowly varying nature of the impedance matrix elements

over a wide-frequency range can be used to enhance the
computational efficiency [8]. The impedance matrix elements
are computed from a few sampled frequency points. The
remaining impedance matrix elements at the intermediate
frequency points are calculated using the cubic spline inter-
polation algorithm [16].

By using the above mentioned numerical techniques, the
monostatic radar cross section (RCS) of a square microstrip
patch is computed as a function of frequency for the incident
angles�i = 45�, �i = 60�, with �̂ polarization, and plotted
in Fig. 3. As a check of the consistency and accuracy of the
proposed method, our results are compared with the measured
data as well as those using the Rao, Wilton, and Glisson
(RWG) subdomain basis functions, which have 225 unknown
coefficients [16]. Their respective results are included in
Fig. 3. For the results of the method of this paper and RWG
solution, there is a good agreement with each other over a
wide range of frequencies.

The convergence of the solution was investigated by vary-
ing the number of subsections. The solution of our method
converges relatively well by usingM = N = 12. Also, no

significant improvement in the numerical results was found by
further increasing the number ofM andN over the frequency
range from 4 to 18 GHz. Thus, here we useM = N = 13,
which leads to364 = [M � (N + 1) +N � (M + 1)] unknown
coefficients. To evaluate the first integral in (15), an upper limit
�u = 50 � k0 is used to obtain the results in Fig. 3. This leads
to a good convergency. Further increases in the upper limit do
not enhance the accuracy (up to four significant figures) over
the entire frequency region.

As shown in Fig. 3, good agreement between the measured
and the numerically computed data is observed for the lower
frequencies, while for the high frequencies the agreement
is less favorable. To find the possible explanation of this
slight disagreement for the high-frequency region, each of
the parameters such as patch size, substrate dielectric con-
stant and thickness, substrate loss, and the incident angle
were varied by small values commensurate with the physical
tolerances of the structure. We found that small changes of
incident angle (within 2%) and the losses do not play a
significant role; therefore, the losses may even be neglected
in this case. However, the RCS results are affected by the
physical tolerance of the remaining parameters such as patch
size, substrate dielectric constant, and thickness. Thus, these
tolerances may contribute to the slight discrepancies between
the measurements and the predicted data in the high-frequency
region. As an example, a 1% increase of the patch size causes
the entire curve from 13 to 18 GHz to be shifted downward
by 150 MHz.

To illustrate the overall speed of the computation time, the
CPU time between the proposed method and the conventional
spectral domain approach (SDA) without acceleration to obtain
the RCS at a single frequency of 4 GHz is compared. In
Table I the CPU times are given for two different numbers of
unknowns. Using the proposed method, the chosen upper limit
of 50 �k0 to evaluate the integral of the matrix elements allows
the result to be accurate to four significant digits; the overall
time to obtain the RCS at 4 GHz was 45 s with 180 unknowns.
Without any acceleration, the conventional SDA does not lead
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TABLE I
CPU TIME ON A HP735/125 WORKSTATION FOR THE

CALCULATION OF RCS (PATCH SIZE 2 cm� 2 cm, �r = 2:33,
d = 0:7874 mm, �i = 45�, �i = 60�, f = 4 GHz)

Number of
Unknown
(M=N)

SDA without
acceleration(a)

(seconds)

Proposed
Method(b)
(seconds)

Speed
Improvement

a

b

180(M=9)
(Bu)

553
(300 � k0)

68
(50 � k0)

8.1

364(M=13)
(Bu)

2729
(500 � k0)

153
(50 � k0)

17.8

to this level of accuracy until the upper limit�u reaches 300
�k0. With this value of upper limit, approximately 553 sec
were needed using 180 unknowns. If the number of unknowns
is increased to 364, the small size of the basis functions in the
conventional SDA requires an upper limit of 500�k0 to achieve
comparable accuracy, as seen in Table I. The method of this
paper does not require the upper limit to change, depending on
the size of basis functions, and it is clearly more accurate than
the conventional SDA due to the elimination of the truncation
error.

VI. CONCLUSION

Utilization of the analytical transform method for the
asymptotic impedance matrix element provides a significant
improvement in the computation time over the conventional
SDA in the evaluation of the radar cross section of a microstrip
patch. In addition, the proposed method leads to highly
accurate results even for a relatively small upper limit of
truncation. The computed results were compared with those
of other methods and with measured data over a wide range
of frequencies. Although the newly derived formula was
demonstrated for the RCS of a microstrip patch, this approach
can be easily applied to any arbitrarily shaped planar circuit.

APPENDIX A

The integrationA(� � xs) over the ky plane can be
converted into an integration over they plane by using
Parseval’s theorem

A(�� xs)

=

Z
1

0

K0(kyj�� xsj)
sin2

�
ky

�y

2

�
k2
y

cos(kyys) dky

=

Z
1

0

F1(ky)F2(ky) dky = �

Z
1

�1

f1(y) f2(y) dy:

(36)

Let us defineF1(ky) = K0(kyj� � xsj) and F2(ky) =
sin2(ky

�y

2
) cos(kyys)=k2y. With the aid of [6, formula

6.671.14],f1(y) can be solved as

f1(y) =
1

2�

Z 1

�1

K0(kyj�� xsj) cos(kyy) dky

=
1

2

1p
(�� xs)2 + y2

(37)

f2(y) can be easily obtained as

f2(y) =
1

2�

Z 1

�1

sin2
�
ky

�y

2

�
k2
y

cos(kyys) cos(kyy) dky

=
�y

8
�

�
y + ys
�y

�
+

�y

8
�

�
y � ys
�y

�
(38)

where

�

�
y

�y

�
=

�
1� jyj

�y
; jyj < �y

0; otherwise.

Substituting (37) and (38) into (36),A(� � xs) can be
represented analytically as

A(�� xs) = �
�y

16

Z 1

�1

1p
(�� xs)2 + y2

�

�
�

�
y + ys
�y

�
+ �

�
y � ys
�y

��
dy (39)

if n = 0

A(� � xs) = �

�
�y

4

��
ln
�
�y +

p
(�� xs)2 +�y2

�

� ln(j��xsj)�
1

�y

p
(��xs)2+�y2

+
1

�y
j�� xsj

�
(40)

if n � 1

A(� � xs)=�

�
�y

8

��
(1 + n)

�
ln
�
(n + 1)�y

+
p

(�� xs)2 + (n+ 1)2�y2
�	

� (1� n)
�
ln
�
(n� 1)�y

+
p

(�� xs)2 + (n� 1)2�y2
�	

� 2n � ln
�
n�y+

p
(��xs)2+n2�y2

�
+

2

�y

p
(� � xs)2 + n2�y2

�
1

�y

p
(� � xs)2 + (n� 1)2�y2

�
1

�y

p
(� � xs)2 + (n+ 1)2�y2

�
(41)

wherexs = m�x and ys = n�y.

APPENDIX B

The integrationB(�) over theky plane can be converted into
an integration over they plane by using Parseval’s theorem

B(�) =

Z
1

0

K0(ky�)
sin3

�
ky

�y

2

�
k2
y

sin(kyys) dky

=

Z
1

0

F1(ky)F2(ky) dky = �

Z
1

�1

f1(y)f2(y) dy: (42)
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Let us define F1(ky) = K0(ky�) and F2(ky) =
sin3(ky

�y

2
) sin(kyys)=k2y. With the aid of [6, formula

6.671.14],f1(y) can be solved as

f1(y) =
1

2�

Z
1

�1

K0(ky�) cos(kyy) dky

=
1

2

1p
�2 + y2

: (43)

Using the formula (30),f2(y) can be easily obtained as

f2(y) =
1

2�

Z
1

�1

sin3
�
ky

�y

2

�
k2
y

sin(kyys) cos(kyy) dky

=
1

2�
[T (y + ys)� T (y � ys)]: (44)

Substituting (43) and (44) into (42),B(�) can be represented
analytically as

B(�) = �

Z
1

�1

f1(y) � f2(y) dy

=
�

16

8<
:�3

s
�2 +

�
�y

2
+ ys

�2

+3

s
�2+

�
�y

2
�ys

�2
+

s
�2+

�
3�y

2
+ ys

�2

�

s
�2+

�
3�y

2
�ys

�2
+3

�
�y

2
+ys

�
ln

0
@�y

2

+ys+

s
�2+

�
�y

2
+ys

�21A�3

�
�
�y

2
+ys

�

� ln

0
@��y

2
+ys+

s
�2+

�
�y

2
�ys

�21A

+

�
�
3�y

2
+ys

�
ln

0
@� 3�y

2
+ys

+

s
�2+

�
3�y

2
�ys

�21A��3�y

2
+ys

�

� ln

0
@3�y

2
+ys+

s
�2+

�
3�y

2
+ys

�21A
9=
;

(45)

whereys = �q�y=2 (q: odd number).
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