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Biconical Antennas with Unequal Cone Angles
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Abstract—The problem of radiation and reception of electro-
magnetic waves associated with a spherically capped biconical
antenna having unequal cone angles 1 and  2 is investigated.
Both cones that comprise a bicone are excited symmetrically at
the apices by a voltage source so that the only higher order modes
are TM. A variational expression for the terminal admittance is
derived. Under the wide-angle approximation, expressions for the
radiated field, the effective height, and the terminal admittance
are obtained. In addition, limiting values of these quantities
are derived for electrically small and electrically large wide-
angle bicones. The results for arbitrary cone angles are new
and subsume results that appear in the existing literature as
special cases such as where 1 =  2 or  2 = �=2. Moreover,
the approximations of this paper are more accurate than many
in the literature. It is argued that the radiation pattern of an
electrically small cone is proportional to sin �, which is similar
to that of a short dipole; whereas the pattern behaves like
1= sin � for electrically large cones. The parameter� is the angle
from the bicone’s axis of symmetry to the observation direction.
Consequently, the direction of maximum radiation changes with
exciting frequency for a bicone of fixed length. Although most of
the analyses are presented in the frequency-domain, time-domain
responses of bicones are discussed for some special cases that
are similar to situations considered by Harrison and Williams.
In particular, the time-domain radiated field and the received
voltage are shown to depend on the input’s passband and on the
match between the source and the bicone.

I. INTRODUCTION

I N this paper, the biconical antenna analyses provided by
Schelkunoff [1], Smith [2], Tai [3]–[5], Papas and King [6],

[7], and Sandler and King [8] are generalized by considering
axially symmetric bicones having unequal cone angles. The
geometry of the antenna configuration is shown in Fig. 1, and
(r; �; �) are spherical coordinates. The common axis of the
two cones is oriented along thez axis and the cone angles
 1 and  2 satisfy 0 <  1 < �=2 and 0 <  2 � � �  1.
Relative to �, the lateral surfaces of the upper and lower
cones correspond to� =  1 and � = � �  2, respectively.
By a proper choice of 1 and  2, the exit aperture of the
antenna can be adjusted so that the radiated power will be
directed in a desired direction, which is one of the motivations
behind this investigation. Furthermore, knowledge of biconical
antenna characteristics is helpful in understanding why TEM
horns, V-antennas, triangular plates, and bow-tie antennas are
very wide band.

The cones are excited symmetrically at the apices so
that only TEM and TM modes are generated. The field
components can then be expressed in terms of a scalar
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Fig. 1. Cross-sectional view of spherically capped biconical antenna with
equal slant heights denoted bya and with unequal cone angles 1 and 2
in rectangular(x; y; z) and spherical(r; �; �) coordinates. Thex axis points
out of the paper and the angle� about thez axis is measured from thex
axis toward they axis. The dotted curve represents a sphere of radiusa and
the lengthsh1 and h2 are the altitudes of the top cone and bottom cone,
respectively.

function �(r; �) [1]–[5], which is equivalent to the radial
component of the vector potential and is azimuthally invariant.
Formal expressions for the field components are presented
first in each of the regions0 � r � a and r � a, where
a is the length of each cone and corresponds to the radius
of the sphere in Fig. 1. On using these field components, a
variational expression for the terminal admittance is derived
in Sections II-A and II-B. When 1 =  2, this variational
expression agrees with Tai’s result [5].

Also of interest are the wide-band and ultrawide-band
behaviors of biconical antennas, which have application in
surveillance and communications. Papas and King [6] demon-
strated that both the input resistance and reactance of wide-
angle bicones having cone angles exceeding 40� are very
slowly varying functions of frequency for very wide frequency
ranges. Furthermore, they showed that the higher-order TM
modes in the antenna region(0 � r � a) can be neglected
for wide-angle bicones. Under this wide-angle approximation,
general results for a bicone’s effective length, input impedance,
terminal admittance, and radiated field are derived (Section II-
C). These results are further analyzed for the limiting cases
of electrically small and large wide-angle cones. Radiation
patterns for two specific wide-angle bicones witha = 20
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inches are discussed to contrast the behavior of equal cone
angles versus that of unequal cone angles: 1) 1 =  2 = 53:1�

and 2) 1 = 53:1� and 2 = 70�. In Section III, the transient
responses of wide-angle biconical antennas for some special
cases, similar to the situations considered by Harrison and
Williams [9], are studied.

II. A NALYSIS

In this section, formal expressions of the electric- and
magnetic-field components for the antenna region(0 � r � a)
and its complement(r > a) are expanded in terms of series
involving Bessel(J�), Legendre(P�), and Hankel(H(2)

� )
functions. The unknown coefficients of these expansions and
the terminal admittanceYt of the bicone atr = a are
determined. The expression forYt is recast in a variational
form, which is evaluated to obtain a series representation of
Yt. At this point, the expressions for the fields, the input
impedanceZin, the effective heighthe, andYt are simplified
by using a wide-angle approximation for the cones. These
results are reduced further by applying approximations for two
special cases: electrically small(ka� 1) and electrically large
(ka � 1) wide-angle cones.

Within the antenna region(0 < r < a and  1 < � <
� �  2), the components of the electric and magnetic fields
are given by
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where S0�p denotes differentiation ofS�p with respect to
its argument andfa�pg and I0 are constants that must be
determined. Furthermore, by [1],Z0 =

p
�0=�0 = 120�
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(kr): (2c)

Equation (2b) satisfies the boundary condition thatEr van-
ishes on the surface of the bicone for0 < r < a:T�p( 1) = 0
and T�p(� �  2) = 0. In general, the index�p runs over a
countable number of noninteger values, which are determined

by solving the transcendental equationT�p (� �  2) = 0 for
eachp = 1; 2; � � �. Moreover, taking the limit asr approaches
a in (1b) yields

I0( 1;  2) =
a

2Zc( 1;  2)

Z �� 2

 1

E�(a; �) d�: (3)

Outside the antenna region(r > a)
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whereR0

l is the derivative ofRl with respect to its argument,
fblg are unknown constants, and

Rl(kr) =
p
krH

(2)

l+ 1

2

(kr): (4d)

A. Determination ofa�p , bl, andYt

Representations for the unknown coefficientsa�p and bl
and the terminal admittanceYt of (1) and (4) are determined
by applying the continuity conditions atr = a and the
orthogonality relations forT�p andPl. In particular, sinceEr
and rH� are continuous atr = a for  1 < � < � �  2

1X
l=1

blPl(cos �) =
X
�p

a�pT�p (�);  1 < � < � �  2 (5)
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@
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The manipulations in the remainder of this section simplify the
coupling among the unknowns and completely uncouples them
under the wide-angle cone assumption, so that each unknown
is expressed in terms of known quantities.

Integrating both sides of (6) with respect to� from  1 to
� �  2 and applying the boundary conditions yield

Yt =

�
Z0

2�Zc

�2 1X
l=1

b̂l
l(l + 1)

gl(�1; �2) (7a)

where�1 = cos 1, �2 = cos 2

b̂l =
bl�

Z0I0
and

gl(�1; �2) = Pl(cos 1)� (�1)lPl(cos 2): (7b)

When 1 =  2 =  , (7a) reduces to

Yt =

�
Z0

2�Zc

�2 X
l=1;3;5;���

2b̂l
l
Pl(cos ) (7c)

which is (14) of [3].
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Setting (1b) and (4b) equal atr = a leads to

� iZ0
2�a

1X
l=1

blMl

l(l + 1)

@

@�
Pl(cos �)

=

�
Ea(�);  1 � � � � �  2
0; 0 � � �  1 and � �  2 � � � �

(8a)
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Multiplying (8a) by sin � @
@�
Pr(cos �) for positive integerr,

integrating from� = 0 to � = �, and noting thatE� vanishes
on the spherical caps of the metallic bicone yield
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where� = cos � (see (10a) at the bottom of the page) and
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(10b)

The function
( 2) is introduced to account for the situation
when the cone with angle 2 is replaced with an infinite perfect
conductor at the planez = 0 (Fig. 2) that occurs in [6]–[9].
After applying the orthogonality ofT�p (�) on 1 � � � �� 2
to (5), one obtains
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Next, substituting (7b) for̂br and (11a) fora�p in (9) results in

gr(�1; �2) =
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� ir(r + 1)

2I0

X
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l=1
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Fig. 2. Cross-sectional view of spherically capped conical antenna in rectan-
gular(x; y; z) and spherical(r; �; �) coordinates above an infinite conducting
ground plane (xy-plane). The cone angle is 1, the altitude ish1 , anda is
both the cone’s slant height and the hemisphere’s radius. The hemsiphere is
indicated by the dotted curve.

which involves only the unknownsfblg. Finally, replacement
of gr( 1;  2) in (7a) by the right side of (12) provides an
expression for the terminal admittanceYt

Yt =
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in terms offblg only. Hence, (11a), (12), and (13) represent
the coupling amonga�p andbl more simply than (5) and (6).

As mentioned in the introduction, when TM waves or
complementary waves in the antenna region are negligible
a�p can be neglected, which is accurate for wide-angle cones
according to [2] and [6]. Lettinga�p = 0 in (9) implies the
following approximate value of̂br:
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Z0Mr
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( 2): (14)

Subject to the wide-angle cone condition(a�p ' 0), which
may be called the zero-order approximation, the expression
for the terminal admittance becomes
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Equation (15) can also be obtained from (13) by neglecting
the term consisting of the triple sum and then replacingb̂r
with (7b) and (14).

B. Evaluation ofYt

The representation ofYt is first recast in terms of the
unknown aperture fieldEa, which is then expanded in a
series involving the sequencefT�pg. Finally, Yt is derived
by requiring thatEa give a stationary value ofYt.

With the aid of (8a) and (8b), expressbr anda�p as follows
in terms of the aperture fieldEa(�) at r = a:
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Z0N�p Î�p;�p

Z �� 2

 1

Ea(�) sin �
@

@�
T�p (�) d� (16b)

Ir;r =

Z �

0

[Pr(cos �)]
2 sin � d� =

2

2r + 1
: (16c)

Substituting (3), (16a), and (16b) forI0; br , anda�p , respec-
tively, into (6) leads to
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the integral equation for the unknown aperture fieldEa(�).
Next, multiply both sides of (17) byEa(�) sin � and integrate
with respect to� from � =  1 to � = � �  2 to get
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It can be shown that the functionalYt of (18) is in variational
form with respect toEa(�); that is,Ea makesYt stationary. In
other words, the first variation ofYt is zero for all admissable
variations ofEa.

ExpandEa in the form

Ea(�) = �
A0

sin �
+
X
�m

A�m
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which is implied by (8b), wherefA�mg are unknown con-
stants. SinceEa(�) appears in both the numerator and the
denominator of the right side of (18), normalizeA0 to unity.
After carrying out the integrals in (18) using (19),Yt becomes
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To simplify (20), introduce��m , ��m , and
�n;�m as follows:
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With (16) and (21),Yt can be cast in the form
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Since Yt is stationary with respect to the variation ofEa,
one determines the unknown coefficientsA�m by setting
@

@A�m
Yt = 0, which gives

��nA�n + ��n +
X
�m
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Multiply (22b) by A�n , sum over �n, and substitute the
resulting expression into (22a) to obtain

Yt = Yt0 +
X
�n

��nA�n : (23)

If the first term on the right side of (23) is called thezero-
order solution, then the second expression may be called the
correction term.
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C. Wide-Angle Approximation

As stated earlier, in the wide-angle approximation, the
complementary waves (TM modes) in the antenna region are
negligible (a�p ' 0). This approximation corresponds to 1
and 2 that exceed 40�. Consequently, for0 < r < a the field
components can be expressed as
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Z0

r sin �
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�ikr � �2e
ikr
�
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The ratio�2=�1 is the reflection coefficient.
In the exterior region(r > a)
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The prime inP 0n denotes differentiation with respect to its
argument, and the functionP 1

n is the associated Legendre
function. One can show that the input currentI(0) (which
is not I0) and the input voltageV (0) are given by
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clearly I(0) is not necessarily equalI0. Moreover, the input
impedanceZin is given by
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After settinga�p = 0 in (9) and using (27a), one determines
that
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The substitution ofBn into (26) gives the field components
in the exterior region(r > a). For observation points such
that kr � 1, an asymptotic approximation ofh(2)n is

h(2)n (kr) � in+1 e
�ikr
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: (31)

Hence, the radiated field
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Additional information is now used to derive an alternate
representation for the coefficient preceding the summand in
(32b) and to obtainYt under the wide-angle approximation. To
these ends, equate the expressions in (24) and (26) atr = a and
use (2) and (30). After manipulation, one obtains the relation
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Solving (33a) for�2=�1 leads to
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On comparing (25) and (34a), one arrives at

Yt = �
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for the terminal admittance.
Equations (32) and (34) provide expressions for the field, the

effective height, and the terminal admittance under the wide-
angle approximation. In the next two sections, these results
are simplified for electrically small(ka� 1) and electrically
large (ka � 1) wide-angle bicones.
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1) Small-Cone Approximation(ka� 1): In this case, con-
sider �n of (33b) first. Through (27a), express�n in terms of
the Bessel functions of the first(J�) and second(Y�) kinds and
substitute the standard asymptotic approximations ofJ�(ka)

and Y�(ka) for the small argumentka [10]. In the resulting
asymptotic approximation of�n, one eliminates terms with
(ka)n for n � 2 and expands the remaining expression in a
series involving powers of(ka) with the binomial expansion.
Finally, retaining only terms of the expansion through(ka)2

inclusive leads to the approximation

�n(ka) ' �
ka

n

�
1 +

(ka)2

n(2n� 1)

�
: (35a)

Next, substitute (35a) into (33b) to get

S ' �
Z0ka

4�Zc

1X
n=1

2n+ 1

n2(n+ 1)
g2n(�1; �2)
( 2) + O

�
(ka)3

2n3

�
:

(35b)
Now an approximation ofkhe is obtained. One can argue

that

h
(2)
n�1(ka) �

n

ka
h(2)n (ka)

�
2n (n�1)!

(2n)! i(ka)
n+2

1� x2

n(2n�1) + i22n (n+1)!(n�1)!
(2n+1)!(2n)! (ka)

2n+1
: (36a)

Moreover, substituting (35b) into (34a) and expanding the
trigonometric functions in Maclaurin series yield

e�ika � �2
�1
eika

ka
�
1 + �2

�1

�
' �

i

(ka)2

 "
1 +

Z0
( 2)

4�Zc( 1;  2)

1X
n=1

2n+ 1

n2(n+ 1)
g2n(�1; �2)

#

� (ka)2

"
1

6
+

Z0
( 2)

8�Zc( 1;  2)

1X
n=1

2n+ 1

n2(n+ 1)
g2n(�1; �2)

#

+O((ka)3)

!�1
: (36b)

Substituting (36) into (32b) implies that

khe(�; !) '
N (�; !)

D(�; !)
(37a)

N (�; !) = �ka
( 2)
1X
n=1

in+12n�1
(2n+ 1)(n� 1)!

n(n + 1)(2n)!

�
P 1
n(cos �)gn(�1; �2)(ka)

n�1

1� (ka)2

n(2n�1)
+ i22n (n+1)!(n�1)!

(2n+1)!(2n)!
(ka)2n+1

(37b)

D(�; !) =

"
1 +

Z0
( 2)

4�Zc( 1;  2)

1X
n=1

2n+ 1

n2(n+ 1)
g2n(�1; �2)

#

� (ka)2

"
1

6
+

Z0
( 2)

8�Zc( 1;  2)

�

1X
n=1

2n+1

n2(n+1)
g2n(�1; �2)

#
+O((ka)3):

(37c)

By taking only the first term of each series and excluding
terms of order(ka)2 and higher, the approximations forS and
khe can be simplified further to

S '
�3Z0
( 2)

8�Zc( 1;  2)
(cos 1 + cos 2)

2
ka (38a)

khe '
6�Zc( 1;  2)
( 2)(cos 1 + cos 2) sin �

8�Zc( 1;  2) + 3Z0
( 2)(cos 1 + cos 2)
2 ka

(38b)

whereg2n(�1; �2) = cos 1 + cos 2 andP 1
1 (cos �) = sin �.

The approximations in (38) are accurate provided 2 is not
near�=2 and 1 �  2 is not near zero; otherwise, more than
one term in the series forS of (35b) is needed to obtain
reasonable accuracy. For example, the second(n = 2) and
third (n = 3) terms are not negligible compared to the first
term (n = 1) for  1 =  2. According to (37) and (38b), the
radiation pattern of an electrically small wide-angle bicone
is approximately proportional tosin � and, consequently, is
similar to the pattern of a short dipole, which agrees with an
observation made in [8].

Another parameter of interest is the bicone’s driving
impedanceZin of (29), which, by (34a) and (35b), is
approximately (39a), shown at the bottom of the page, where
the arguments ofZc, 
, and gn are suppressed. Under
the caveat on accuracy pertaining to (38a) and under the
assumption that(ka)n is negligible for n � 2, a simpler
approximation ofZin is

Zin( 1;  2)

'
8�Z2

c ( 1;  2)

ika[8�Zc( 1;  2) + 3Z0
( 2)(cos 1 + cos 2)2]
:

(39b)

As expected, the input impedance of an electrically small
bicone behaves like a capacitive impedance1=(i!Cin), where
the equivalent capacitanceCin is computed by making the
obvious identification in either of (39).

An identity between two evaluations—Yt0( 1;  1) and
Yt0( 1; �=2)—of the zero-order approximation of the terminal
admittance is now established. When either 2 = �=2 or
 2 =  1, the boundary conditions impose the constraint that

Zin '
Zc

ika

1� (ka)2
�
1
2 + Z0


4�Zc

P
1

n=1
2n+1

n2(n+1)g
2
n

�
+ O((ka)4)�

1 + Z0

4�Zc

P
1

n=1
2n+1

n2(n+1)g
2
n

�
�
�
1
6 + Z0


8�Zc

P
1

n=1
2n+1

n2(n+1)g
2
n

�
(ka)2 +O((ka)4)

(39a)
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the indexr of the summation in (15) runs over the odd natural
numbers only. SincePr(0) = 0 for odd r

Yt0( 1;  1)Z
2
c ( 1;  1) = 2Yt0( 1; �=2)Z

2
c ( 1; �=2): (40a)

However,Zc( 1;  1) =2Zc( 1; �=2) =(Z0=�) ln[cot( 1=2)]

by (2a), which implies that

Yt0( 1;  1) =
1

2
Yt0( 1; �=2): (40b)

Note that (40) and relations based on it do not depend on the
small-cone approximation.

In summary, observe that the radiated field and the input
impedance for the electrically small wide-angle bicone depend
explicitly on the cone angles 1 and  2. Moreover, upon
setting  1 = �0,  2 = �=2, and � = �=2, khe in (38b)
and Zin in (39b) reduce to

khe '
6�kaZc cos �0

4�Zc + 3Z0 cos2 �0
and

(41)

Zin '
4�Z2

c

ika(4�Zc + 3Z0 cos2 �0)

which are [9, Eq. (10)] and [11, Eq. (22)], respectively.
2) Large-Cone Approximation(ka� 1): In the high-

frequency region, expressions for�n and �2=�1 must be
established to derive results forkhe and Zin. The analysis
of this section extends the approach of [9, Appendixes B
and C] to obtain the desired results for the more general
situation of arbitrary 1 and 2. In particular, an expression for
�2=�1 is obtained by using identities involving the Legendre
polynomials.

According to [12]

1X
l=1

2l + 1

l(l + 1)
Pl(�1)Pl(�2)

= 2 ln 2� 1� ln[(1� �1)(1 + �2)] (42a)

for �1 < �1 � �2 < 1 since�i 6= �1 and 
( 2) = 1.
Replacing�1 with ��1 in (42a) and noting thatPl(��1) =

(�1)lPl(�1) imply

1X
l=1

2l + 1

l(l + 1)
(�1)lPl(�1)Pl(�2)

= 2 ln 2� 1� ln[(1 + �1)(1 + �2)] (42b)

for �1 < ��2 � �1 < 1. Set�2 = ��1 in (42b) to get

1X
l=1

2l + 1

l(l + 1)
P 2
l (�1) = 2 ln2� 1� ln

�
1� �21

�
(42c)

for �1 < �1 < 1. Consequently, by (2a), (7b), (42b), and

(42c), one obtains

1X
l=1

2l + 1

l(l + 1)
g2l (�1; �2) =

1X
l=1

2l + 1

l(l + 1)

�
P 2
l (�1)

� 2(�1)lPl(�1)Pl(�2) + P 2
l (�2)

�
= 2ln

�
cot

�
 1
2

�
cot

�
 2
2

��

=
4�

Z0
Zc( 1;  2) (43)

for �1 < ��1 � �2 < 1. Since 0 <  i < �=2 and
� cos 1 < cos 2 for any  1 and 2, the condition�1 <
��1 � �2 < 1 is satisfied. Hence, (43) is valid for the
biconical geometry.

Before addressing�2=�1, an asymptotic approximation for
�l is developed. By (31), one may argue forl=(ka) < 1 that

�l(ka) �
h
(2)
l

(ka)

h
(2)
l�1(ka)�

l
ka
h
(2)
l (ka)

� i

1X
r=0

�
li

ka

�r

� i + O

�
l

ka

�
: (44a)

Thus, for fixedl

lim
ka!1

�l(ka) = i: (44b)

From (33b), (34a), and (44a), note that�2=�1 has two infinite
sums where the indexl runs from one to1. Consequently,
one may not simply substitute the asymptotic result for�l into
(34a) to get�2=�1 becausel is not fixed. However, by taking
advantage of the convergence of the two series

1X
l=1

2l + 1

l(l + 1)
g2l (�1; �2)�l(ka) and

1X
l=1

2l + 1

l(l + 1)
g2l (�1; �2)

(45a)
and by using (44b), one may argue with mathematical rigor
that

lim
ka!1

1X
l=1

2l + 1

l(l + 1)
g2l (�1; �2)�l(ka)

= i
1X
l=1

2l + 1

l(l + 1)
g2l (�1; �2)

= i
4�

Z0
Zc( 1;  2) (45b)

and

lim
ka!1

iS + 1

iS � 1
= 0 = lim

ka!1

�2
�1
: (45c)

To determine the behavior of the effective length of the
wide-angle bicone forka � 1, one must evaluate two more
summations involving the Legendre polynomials. First, let
�2 = � = cos � in (42a); second, interchange�1 and �2
in (42a) and let�2 = �; third, let�1 = � in (42b); and fourth,
interchange�1 and�2 in (42b), replace�1 with ��1 and let
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�1 = �. Performing these manipulations leads to
1X
l=1

2l + 1

l(l + 1)
Pl(�)Pl(�1)

=

�
2 ln2� 1� ln[(1� �)(1 + �1)]; �1 < � � �1
2 ln2� 1� ln[(1� �1)(1 + �)]; �1 � � < 1

(46a)

1X
l=1

2l + 1

l(l + 1)
(�1)lPl(�)Pl(�2)

=

�
2 ln2� 1� ln[(1� �2)(1� �)]; �1 < � � ��2
2 ln2� 1� ln[(1 + �)(1 + �2)]; ��2 � � < 1:

(46b)

After differentiating (46) with respect to�, one obtains
1X
l=1

2l + 1

l(l + 1)
P 1
l (�)Pl(�1)

=

8<
:
q

1+�
1�� ; �1 < � � �1

�
q

1��
1+�

; �1 � � < 1
(47a)

1X
l=1

2l + 1

l(l + 1)
(�1)lP 1

l (�)Pl(�2)

=

8<
:
q

1+�
1�� ; �1 < � � ��2

�
q

1��
1+� ; ��2 � � < 1:

(47b)

The last ingredient necessary for calculating the limit of
khe is the asymptotic result

h
(2)
l�1(ka) �

l

ka
h
(2)
l

(ka) �
il

ka
e�ika

�
1�

li

ka

�
(48)

as ka ! 1. Equation (48) implies

lim
ka!1

1X
l=1

2l + 1

l(l + 1)

il�1e�ikaP 1
l (�)gl(�1; �2)

ka
�
h
(2)
l�1(ka) �

l
ka
h
(2)
l (ka)

�

= �i
1X
l=1

2l + 1

l(l + 1)
P 1
l (�)gl(�1; �2): (49)

Substituting (45d) and (49) into (32b) and using (47) yield

lim
ka!1

khe(�; !)

= lim
ka!1

1� �2
�1
ei2ka

1 + �2
�1


( 2)

2

�

1X
l=1

2l + 1

l(l + 1)

il�1e�ikaP 1
l (�)gl(�1; �2)

ka
�
h
(2)
l�1(ka) �

l
ka
h
(2)
l (ka)

�

= �
i

2

( 2)

1X
l=1

2l + 1

l(l + 1)
P 1
l (�)

�
Pl(�1)� (�1)lPl(�2)

�

= �
i

2

( 2)

�

�
0; �1 < � � ��2 or �1 � � < 1q

1+�
1�� +

q
1��
1+� ; ��2 < � < �1

= �i
( 2)

�
0; � in (0;  1] or [� �  2; �)
1= sin �; � in ( 1; � �  2):

(50)

TABLE I
CORRESPONDENCEAMONG UPPERLIMIT M OF APPROXIMATE RADIATION

DISTRIBUTION FUNCTION RM , ka, AND FREQUENCYf IN FIG. 3.

This limit implies that the behavior of the fieldjE�j for
 1 < � < � �  2 approaches1= sin � as the frequency
increases without bound and that the directions of maximum
radiation approach 1 and� �  2. Consequently, maximum
radiation of the electrically large wide-angle bicone does not
occur at broadside(� = �=2).

Furthermore, with (29) and (45c), one can easily show that
the bicone’s input impedance has the limit

lim
ka!1

Zin = Zc( 1;  2): (51)

Thus, for high frequencies the input impedance is essentially
constant. Hence, the electrically large wide-angle bicone is a
broadband and possibly an ultrawide-band antenna.

3) Examples:Two special cases are considered fora = 20
in: 1)  1 = 53:1� =  2 and 2) 1 = 53:1� and 2 = 70�.
The relative field pattern associated with theE-plane radiation
pattern [7]

R(�; !) =
Erad
� (r; �; !)

Erad
� (r; �=2; !)

=

P
1

n=1
in�1(2n+1)
2n(n+1)

P
1
n
(cos �)gn(�1;�2)

h
(2)
n�1(ka)�

n

ka
h
(2)
n (ka)

P
1

n=1
in�1(2n+1)
2n(n+1)

P1
n
(0)gn(�1;�2)

h
(2)
n�1(ka)�

n

ka
h
(2)
n (ka)

(52)

is plotted for various values ofka in both cases.
In case 1), as mentioned previously, only the odd terms of

the series are present because 1 =  2. Hence, on re-indexing
each sum in (52) by settingn = 2m + 1 and by allowingm
to run from zero to1, (52) becomes [8, Eq. (6)]. Truncate
each series of the re-indexed version of (52) atM + 1 terms
and denote the resulting fraction asRM . The approximate
patternjRM j is plotted in Fig. 3 for five frequencies ranging
from ka � 1 to ka � 1. The correspondence betweenka
and frequencyf for each plot is shown in Table I. One high
frequency and one low frequency are chosen to represent
situations whenka � 1 and ka � 1, respectively; while
the other three frequencies are selected for comparison to
[8, Fig. 5(c)], as well as for providing nominal values in the
transition betweenka� 1 andka� 1. The patternjRM j has
azimuthal symmetry and symmetry about� = �=2. The former
means that the pattern may be graphed in two dimensions and
the latter means that one may restrict� to [0; �=2] to gain a
complete understanding of the behavior ofjRj.

As one can observe [Fig. 3(a)], the pattern at low frequen-
cies is similar to that of the short dipole as [8] notes. In fact, on
utilizing the low-frequency approximation in (38b), one finds
thatR � sin �, which is the short-dipole pattern. The graph of
R � sin � is coincident with that of Fig. 3(a) when they are
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Approximate magnitudejRM j of the normalized radiation distribution ofE� (E-plane radiation pattern) for a spherically capped biconical antenna
with equal cone angles in free space. The cone angles 1 and 2 are equal to 53.1�, and the slant height (height) is 20 in (12 in). (a)ka = 0:0106. (b) 1:0640.
(c) 5:3198. (d) 10:6395. (e) 106:3950. (f) jRM j is graphed less accurately forka = 106:3950 by using only 30 terms(M = 29) of each series in (52).

overlayed. Even the pattern for the transitional value ofka =
1:0640 is only slightly distinguishible from the short dipole’s
pattern. Therefore, the approximation forka� 1 is excellent
for ka � 0:2 and is good for0:2 < ka � 1:06. Aska increases
from 1 to 10.640 through the transitional region between
electrically small and electrically large bicones [Fig. 3(b)–(d)],
the peak radiation remains at broadside; however, the radiation
decreases for18� � � < 90�, and for each� between 0�

and 18� the radiation level exceeds that of the short dipole
with a local maximum appearing at some intermediate angle.
Fig. 3(b)–(d) agrees well with [8, Fig. 5(c)]. Sandler and King
don’t indicate how many terms of the series they use to gener-
ate their figures; however in theMathematicacalculations used
to generate Fig. 3, one obtains good graphical depictions for

ka = 1:0640;5:3198; 10:6395 whenM = 3; 3; 6, respectively.
As Table I indicates, Fig. 3(a)–(d) is generated for 30 terms of
each series(M = 29). This value ofM is picked because each
pattern is accurate forka � 10:6395 and because Harrison
used this value for calculating tables in [11].

In contrast, to obtain a reasonably accurate pattern for
ka = 106:3950, at least 61 terms(M = 60) must be used
[Fig. 3(e)]. Fig. 3(f) plotska = 106:3950 for 30 terms and is
provided as a comparison to Fig. 3(e). Clearly, the detail is
missing in Fig. 3(f). The pattern in Fig. 3(e) is considerably
less smooth than the patterns for small and transitional values
of ka. In particular, many smaller amplitude lobes appear for
0� < � � 30�. The effect is less pronounced between 30�

and 90�, where the pattern has a somewhat wavy nature as
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Fig. 4. E-plane radiation pattern in the high-frequency limit(ka ! +1)
for a spherically capped biconical antenna with equal cone angles in free
space. The cone angles 1 and 2 are equal to 53.1� and the slant height
(height) is 20 in (12 in).

evidenced by the five local maxima and four local minima.
The lobe structure for small� is not unexpected because the
number of oscillations and the magnitude near� = 0 of the
Associated Legendre FunctionP1

2m+1(cos �) increase asm
increases. Consequently, aska increases,M must increase to
get accurate results. One major feature that distinguishes the
pattern of a wide-angle bicone for high frequencies from the
patterns at other frequencies is the migration of the direction
of peak radiation away from broadside. In Fig. 3(e), the peak
occurs well off broadside at� = 63:5�. As ka increases, one
expects the peak to approach the cone’s surface at 1 = 53:1�

since by (50) and (52),R(�; !) ! 1= sin � as ka ! 1 for
 1 < � � �=2. The limiting value in Fig. 4 is the triangular
region bounded byR = 1= sin � (the vertical line segment
y = 1), the line z = 0, and the linez = y cot(53:1�).
Consequently, aska ! 1, the pattern calculated with (52)
will approach the pattern of Fig. 4. Fig. 3(e) is consistent with
Fig. 4 in that most of the energy is radiated in50� � � � 90�

and the five local maxima are very close to the vertical line
y = 1.

In case 2), the summations in (52) are truncated atN
terms and the resulting fraction is denotedRN . Although
not shown, the pattern looks like that of the short dipole
for ka � 1. As ka increases from unity through transitional
values, the effect of distinct bicone angles is manifested in
asymmetrical patterns relative to they axis. Specifically, in
the limit as ka ! +1, jRN j ! 1= sin �. Moreover, the
pattern approaches the triangular region bounded by the lines
R = 1= sin �, z = �y cot(70�), and z = y cot(53:1�),
which are indicated by the dashed line segments in Fig. 5.
To illustrate the behavior for largeka, Fig. 5 also displays the
pattern forka = 106:3950 andN = 120 (solid curve). This
pattern has many small amplitude lobes for0� � � � 50� and
110� � � � 180�. For angles between 60� and 108�, several
relative maxima and minima occur near the liney = 1, with
the two largest maxima at� = 63:8� and 99:7�. As ka and
N increase, the number of these local extrema increases and
the associatedjRN j approaches the liney = 1 with the largest
and second largest values ofjRN j approaching the edges of
the upper and lower cones, respectively. The two obvious
differences from case 1) are: a) the loss of symmetry in the

Fig. 5. Approximate pattern withka = 106:3950 andN = 120 (solid
curve) and high-frequency limit pattern (dashed curves) for a spherically
capped biconical antenna with unequal cone angles in free space. The cone
angles 1 and 2are 53.1� and 70�, respectively, and the slant height (height)
is 20 in (12 in).

pattern about they axis of case 2) and b) the peak radiation
occurs near the cone with the smaller cone angle in case 2).

These examples provide analytical justification of Sandler
and King’s numerically based observations [8] that the wide-
angle bicone behaves like a short dipole at low frequencies
(38b) and has its direction of maximum radiation moving
away from broadside toward the bicone’s surface for high
frequencies (50). Consequently, the tacit assumption in [9,
Appendixes B and C] that the peak radiation occurs at� =
�=2 for electrically large bicones is not justified. Since an
ultrawide-band input signal’s passband [13] may contain both
low- and high-frequency spectral components relative to the
bicone’s passband, the explicit analytical characterizations
of the frequency-dependent behavior contained herein are
essential in analyzing radiation of ultrawide-band signals.

III. T IME HISTORY OF RADIATED AND RECEIVED FIELDS

ASSOCIATED WITH ELECTRICALLY SMALL AND

ELECTRICALLY LARGE WIDE-ANGLE BICONES

Thus far, the discussion of electrically small and large
wide-angle conical antennas has concentrated on the impact
to quantities in the frequency domain. Of interest, especially
when the input is wide-band or ultrawide-band, is the temporal
behavior of the radiated field and received voltage. This section
expresses the time-domain radiated field of wide-angle conical
antennas in terms of the input voltage and expresses the
time-dependent load voltage of a receiving conical antenna
in terms of the incident field. In particular, four special cases
are considered: 1) transmission forka � 1; 2) transmission
for ka � 1; 3) reception forka � 1; and 4) reception for
ka � 1.
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Let Vg(t) be the input source voltage of the transmitting
antenna, and let̂Vg(!) be the Fourier transform ofVg(t). If
Zin(!) and Zg(!) are the input impedance of the antenna
and the generator (source) impedance, respectively, the input
currentI(0) (or I(0; !)) and V̂g(!) are related by

I(0) =
V̂g(!)

Zin(!) + Zg(!)
: (53)

Substituting (53) into (32a) yields

Erad
� (r; �; !) =

iZ0

2�

"
V̂g(!)

Zin(!) + Zg(!)

#
e�ikr

r
khe(�; !):

(54)
Consequently, the transfer functionT (r; �; !) of the transmit-
ting antenna is defined by

T (r; �; !) =
Erad

� (r; �; !)

V̂g(!)

=
i!Z0

cr

he(�; !)e�i!r=c

Zin(!) + Zg(!)
: (55)

The time-dependent radiated fielderad� (r; �; t), the inverse
Fourier transform ofErad

� (r; �; !), is given formally by

erad� (r; �; t) =
1

2�

Z
1

�1

Erad

� (r; �; !)ei!t d!

=
1

2�

Z
1

�1

V̂g(!)T (r; �; !)e
i!t d!: (56)

When the antenna is receiving, define the open-circuit
receiving voltageV̂oc(!) by

V̂oc(!) = �E
inc

� (r; �; !)he(�; !): (57a)

In this expression,� gives the direction of the incident field
relative to the axis of the receiving bicone. If the receiving
antenna is connected to a load with impedanceZL(!), then
the received voltagêVL across this load is

V̂L(!) =
Einc

� (r; �; !)he(�; !)ZL(!)

Zin(!) + ZL(!)
(57b)

whereZin is the input impedance of the antenna and is the
same impedance when the antenna is used for transmitting.
One can also define the reception transfer functionS(�; !) by

S(�; !) =
V̂L(!)

Einc

� (r; �; !)
= �

he(�; !)ZL(!)

Zin(!) + ZL(!)
: (57c)

Therefore, the time-dependent load voltageVL is given for-
mally by

VL(t) =
1

2�

Z
1

�1

V̂oc(!)ZL(!)ei!t

Zin(!) + ZL(!)
d!

=
1

2�

Z
1

�1

Einc

� (r; �; !)S(�; !)ei!t d!: (58)

When V̂g(!) andEinc
� (r; �; !) are known,erad� (r; �; t) and

VL(t) can be expressed in closed form either forka � 1 or
for ka� 1 under suitable matching conditions. Harrison and
Williams [9] considered transient radiation from and reception
by wide-angle conical antennas above an infinite conducting
plane for various special cases when the observation angle�
is �=2. Instead of presenting all the cases enumerated in [9],
a few cases are presented for illustrative purposes.

Case 1: Consider radiation from a wide-angle electrically
small bicone which is matched to the source(Zc = Zg).
Substituting (39b) forZin and (38b) forkhe in (54) and (56)
yields

erad� (r; �; t) =
3
( 2)Z0a

2(cos 1 + cos 2)

8�2c2rZc( 1;  2)

� sin �
d2

dt2
Vg

�
t�

r

c

�
(59)

where j�8i�Zcj � ka
�
8�Zc + 3Z0
(cos 1 + cos 2)2

�
is

satisfied forka � 1. Equation (59) shows that for a wide-
angle small cone the radiated electric field is proportional
to the second time derivative of the retarded input voltage,
provided the matching conditionZc = Zg is also satisfied.
This result is similar to that of a short dipole, which has a
spatially invariant current.

Case 2: As a second example, assume the matching con-
dition of Case 1, but let the antenna be electrically large.
Equations (50), (51), and (56) lead to

erad� (r; �; t) =
Z0

4�rZc( 1;  2) sin �
Vg

�
t�

r

c

�
: (60)

Thus, for a large wide-angle conical radiator, the field is a
retarded replica of the input voltage and is maximized along
the conic surface corresponding to the smaller of the two
cone angles where thesin � is a minimum. Consequently, this
antenna is ideal for ultrawide-band signals with spectra that
obey the constraintka � 1.

Case 3: In this case, the voltage received by a small bicone
that is matched to its load(ZL = Zc) is obtained. After
substituting (39a) forZin and (38b) forkhe in (58), one gets

VL(t) = �
3a2

4c

( 2)(cos 1 + cos 2)

� sin �

�
1

2�

Z
1

�1

i!Einc(r; �; !)ei!t d!

�

= �
3a2

4c

( 2)(cos 1 + cos 2) sin �

d

dt
einc� (r; �; t):

(61)

Hence, the received voltage for a small wide-angle bicone
under ideal matching conditions behaves like the temporal
derivative of the incident field.

Case 4: Finally, reception by an electrically large wide-
angle bicone with a matched load(ZL = Zc) is considered.
Equations (50), (51), and (58) imply

VL(t) = �
c

2 sin �

�
1

2�

Z
1

�1

1

i!
Einc(r; �; !)ei!t d!

�

= �
c

2 sin �

Z t

�1

einc� (r; �; � ) d�: (62)
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Clearly, in the preceding cases, the time-dependent radiated
field and received load voltage are functions of the input
signal’s passband and the matching condition between the
antenna and the input’s passband. Cases 1 and 2 indicate
that under perfect matching conditions the radiated field has
different temporal dependences, as well as the previously
statedsin � and1= sin � dependences, forka� 1 andka� 1;
that is, the field is proportional to the second time derivative
of the retarded input voltage and to the retarded input voltage
for ka� 1 andka� 1, respectively. On the other hand, the
received load voltage is proportional to the product ofsin �
(1= sin �) and the time derivative (integral) of the incident field
for ka � 1 (ka � 1). Furthermore, variations of 1 and 2

affect only the amplitudes of the radiated field and received
voltage for these cases.

IV. SUMMARY

The results of this study are valid for spherically capped
wide-angle biconical antenna configurations, including the
degenerate cases of a cone above a ground plane and a
bicone with equal cone angles( 1 =  2). In addition, the
treatment for arbitrary cone angles 1 and  2 subsumes as
special cases the results of [1]–[9], [11]. In particular, to
the best of the authors’ knowledge, the results for unequal
conical angles are new. Exact and approximate expressions
for the driving impedance, the effective height, and the ra-
diated field are derived in the frequency domain. Moreover,
the approximate expressions derived herein for electrically
small (ka � 1) and large (ka � 1) bicones are more
accurate than the corresponding ones in the literature. Also,
time-domain representations of the radiated field and the
received load voltage forka � 1 and ka � 1 have
been derived under different matching conditions. The radi-
ated field and the received voltage vary likesin � for small
wide-angle bicones and like1= sin � for large wide-angle
bicones.

Sandler and King’s observations regarding the behavior
of electrically small (low frequencies) and electrically large
(high frequencies) wide-angle bicones are explained by the
analytical work of this paper. Furthermore, since the results of
Sandler and King (as well as the authors’ results) show that
maximum radiation does not take place at broadside(� = �=2)
for high frequencies, consideration only of the broadside case
by Harrison and Williams [9] forka � 1 is inadequate.
In particular, the authors show that maximum radiation oc-
curs along the cone with smaller cone angle. The results
contained herein are especially pertinent to ultrawide-band
signals, since the passband of such signals may include low,
transitional, and high frequencies of a wide-angle bicone’s
passband.

Finally, while reproducing some of the numerical results
of Sandler and King, a new piece of information has been
discovered. Namely, the infinite series for the radiated far field
is very slowly convergent for certain high frequencies, which
may correspond to the electrical resonances of the conical
structure. This aspect of biconical radiation problems requires
further detailed investigation.
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