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Numerical Evaluation of Dyadic Diffraction
Coefficients and Bistatic Radar Cross Sections for a

Perfectly Conducting Semi-Infinite Elliptic Cone
Siegfried Blume and Volker Krebs

Abstract—In this paper, the scattering of electromagnetic waves
by a perfectly conducting semi-infinite elliptic cone is treated.
The exact solution of this boundary value problem in problem-
adapted spheroconal coordinates in the form of a spherical
multipole expansion is of poor convergence if both the source
point and the field point are far away from the cone’s tip.
Therefore, an appropriate sequence transformation of these series
expansions (we apply the Shanks transformation) is necessary
to numerically determine the dyadic diffraction coefficients and
bistatic radar cross sections (RCS) for an arbitrary elliptic cone.
Our far-field data for an elliptic cone, a circular cone, and a plane
angular sector are compared with some other results obtained
with the aid of quite different methods.

Index Terms—Electromagnetic diffraction, radar cross section.

I. INTRODUCTION

RECENTLY, an article dealing with electromagnetic scat-
tering by a perfectly conducting semi-infinite cone of

arbitrary shape was published by Babichet al. [1]. The solution
was synthesized via the superposition of the solutions of
the two associated scalar problems—the acoustical scattering
by a soft or hard cone. The treatment of the boundary
value problems leads to integral equations of the Fredholm
type along the line of intersection of the cone and the unit
sphere. Numerical evaluations of bistatic radar cross sections
(RCS) were performed for a semi-infinite perfectly conducting
circular cone and an elliptic cone.

Appropriate uniform solutions that make the asymptotic
high-frequency total field continuous across the shadow
boundaries of the rays diffracted by a circular cone or by
a plane angular sector (two degenerations of an elliptic cone)
were derived in [2]–[4].

Hill’s uniform solution for the plane angular sector is based
upon the solutions of the two associated scalar problems.
Trott’s uniform solution for the circular cone was obtained
from the evaluation of the radiating integral for the scattered
field using a geometrical optics (GO) approximation for the
surface current on the cone and an exact kernel rather than
the far-zone form for the scalar Green’s function. Assuming
the observation point is on the shadow side of the reflection
shadow boundary his solution yields the same result as that
obtained via the exact evaluation of the physical optics (PO)
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far-zone fields of the circular cone and is simply the nonuni-
form asymptotic result for the tip diffracted contribution. These
PO-based far-zone fields of a circular cone will be compared
with the far-zone fields of the rigorous multipole solution to
be developed.

A PO approximation of the bistatic RCS of an elliptic cone
was derived in [5]. In the case of a circular cone, this formula
coincides with the PO-based solution derived by Trott.

The interest in these problems is motivated by the role in
which the diffraction coefficients play in asymptotic high-
frequency theories like the geometrical theory of diffraction
(GTD) or the uniform theory of diffraction (UTD). These
ray-optical techniques represent extensions of classical GO
by introducing diffracted rays produced when incident rays
hit edges, corners, tips, or impinge tangentially on smoothly
curved surfaces of scattering objects. The initial value of the
field on a diffracted ray is, according to the principle of locality
in the GTD or UTD, determined from the incident field at the
point of diffraction with the aid of an appropriate diffraction
coefficient. These diffraction coefficients are to be determined
from the solution of boundary value problems with simple
shapes (canonical structures) capable of approaching the local
geometry at the point of diffraction. One of the incompletely
solved canonical problems in the electromagnetic theory is that
of diffraction by a semi-infinite elliptic cone. The rigorous
treatment of scattering by this structure and the numerical
evaluation of diffraction coefficients and bistatic RCS are the
subjects of this paper. A comprehensive review, dedicated to
the solution of this boundary value problem, is to be found
in [6]–[8]. Pioneering work has been carried out by Kraus
and Levine, who examined scalar diffraction by a semi-infinite
elliptic cone with the aid of the same technique [9].

The paper proceeds as follows. In Section II, the sphero-
conal or conical coordinate system is introduced. Appropriate
elementary solutions of the scalar Helmholtz equation and the
spherical multipole expansion of the electromagnetic field in
these problem-adapted conical coordinates will be presented
in Section III. The scattering of electromagnetic waves by a
perfectly conducting semi-infinite elliptic cone and the intro-
duction of dyadic diffraction coefficients and of bistatic RCS
will be treated in Section IV. In order to improve the rapidity
of convergence of the rigorous modal series expansions and to
obtain numerical results, the nonlinear Shanks transformation
is introduced in Section V. In Section VI, we compare our
far-field data for a circular cone, for an elliptic cone, and for
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a plane angular sector with the published data in the papers
[1]–[5].

Throughout the paper, a time dependence ofe+j!t will be
assumed but always suppressed.

II. SPHEROCONAL COORDINATES

We introduce a spheroconal coordinate system(r;#;')
related to the cartesian coordinate system by the transformation

x = r sin# cos'; 0 � r <1 (1)

y = r
p

1� k2 cos2 # sin'; 0 � # � � (2)

z = r cos #

q
1� k02 sin2 '; 0 � ' � 2�: (3)

k and k0 are ellipticity parameters with

0 � k; k0 � 1; k2 + k02 = 1: (4)

In the special casek = 1 (k0 = 0) the spheroconal
coordinate system(r;#; ') reduces to the ordinary spherical
coordinate system denoted by(r;#;').

The coordinate surfaces are (Fig. 1):

r = rc spherical surfaces around the origin;
# = #c semi-infinite elliptic cones around thez axis with

their cone tips in the origin, with half-opening
angles�x in thexz plane, and�y in theyz plane;

' = 'c one half of semi-infinite elliptic cones around the
y axis.

It can be shown that there are the following relationships
between#c; �x; �y and k:

�x = � � #c; �y = � � arccos(k cos#c); k =
cos�y
cos�x

:

III. M ULTIPOLE EXPANSION OF THEELECTROMAGNETIC FIELD

The key to the solution of the scattering problem is the
knowledge of the elementary solutions of Maxwell’s equations
in a source-free region in the conical coordinate system. In
a source-free region the electric(~E) and magnetic( ~H) field
intensities are solutions of the homogeneous vector differential
equations

~r� ~r� ~E � �2 ~E = 0; ~r� ~r� ~H � �2 ~H = 0 (5)

where � = !
p
�� = 2�=� is the wavenumber and� the

wavelength. Linear independent solenoidal solutions are the
vector spherical-multipole functions (Stratton [10])

~M� = (~r � ~r)	�
~N� =

1

�
[~r� (~r � ~r)]	� (6)

where	� is a solution of the scalar homogeneous Helmholtz
equation

~r2	� + �2	� = 0: (7)

In conical coordinates the elementary solutions	� can be
written in the separated form

	� = z�(�r)Y�(#; '): (8)

Fig. 1. Spheroconal coordinate surfaces.

The spherical cylinder functionsz�(�r) are related to cylin-
der functions of order� + 1

2
according to

z�(�r) =

r
�

2�r
Z�+(1=2)(�r): (9)

Spherical Bessel functions are denoted byj�(�r); spherical
Hankel functions of the second kind are denoted byh

(2)
� (�r).

The spherical harmonicsY�(#; ') satisfying the eigenvalue
equation

(~r � ~r)2Y�(#; ') = ��(� + 1)Y�(#; ') (10)

may be written as “Lam´e products”

Y (p)
� (#; ') = �(p)

� (#)�(p)
� ('); p = 1; 2; 3; 4: (11)

The upper indexp indicates the existence of four function
types. The periodic Lam´e functions�(p)

� (') and nonperiodic
Lamé functions�(p)

� (#) are solutions of the two coupled Lam´e
differential equations with separation constants(�; �)q

1� k02 sin2 '
d

d'

 q
1� k02 sin2'

d�(p)
� (')

d'

!

+ [�� �(� + 1)k02 sin2']�(p)
� (') = 0 (12)p

1� k2 cos2 #
d

d#

 p
1� k2 cos2 #

d�(p)
� (#)

d#

!

+ [�(� + 1)(1� k2 cos2 #)� �]�(p)
� (#) = 0: (13)

The four types of periodic Lam´e functions with the sym-
metry relations indicated in Table I may be written as Fourier
series with periods of� or 2�, whereA2i, A2i+1, B2i+2,
B2i+1 are the Fourier coefficients which have to be deter-
mined by three-term recurrence relations leading to tridiagonal
matrices.

The four types of nonperiodic Lam´e functions can be written
as series with associated Legendre functionsPm

� (cos #) with
the same Fourier coefficients. A more detailed analysis is to
be found in [11] and [12].

Additionally, the Lamé products are normalized according
to Z #c

0

Z 2�

0

[Y�(#; ')]
2s#s' d# d' = 1 (14)
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TABLE I
PERIODIC AND NONPERIODIC LAMÉ FUNCTIONS

wheres# and s' are normalized metric coefficients

s# =

s
k2 sin2 #+ k02 cos2 '

1� k2 cos2 #

s' =

s
k2 sin2 #+ k02 cos2 '

1� k02 sin2 #
: (15)

With (6) and (8) the vector-spherical multipole functions
can now be expressed in terms of angular vector functions
~m� and ~n�

~M�(~r) = z�(�r)~m�(#; ') (16)

~N�(~r) =��(� + 1)
z�(�r)

�r
Y�(#; ')r̂

� 1

�r

d

dr
[rz�(�r)]~n�(#; ') (17)

where

~m�(#; ') = � 1

s'

@Y�(#; ')

@'
#̂+

1

s#

@Y�(#; ')

@#
'̂ (18)

~n�(#; ') =
1

s#

@Y�(#; ')

@#
#̂+

1

s'

@Y�(#; ')

@'
'̂: (19)

At the cone’s surface, the electric field intensity must satisfy
the boundary condition

(~n � ~E)j#=#c = 0 (20)

which leads to the transcendental eigenvalue equations for the
associated scalar problems

�(p)
� (#)j#=#c =0 (soft cone: corresponding eigenvalues

� � are denoted by�) (21)

d�
(p)
� (#)

d#

�����
#=#c

=0 (hard cone: corresponding

� eigenvalues� are denoted by� ): (22)

These transcendental equations must be solved numerically.
The spherical multipole representation of the electromagnetic
field is a superposition of TM and TE modes

~E(~r) =
X
�

a� ~N�(~r) +
Z

j

X
�

b� ~M� (~r) (23)

~H(~r) =
j

Z

X
�

a� ~M�(~r) +
X
�

b� ~N� (~r): (24)

Z =
p
�=� denotes the intrinsic impedance of the medium.

Thea� are the multipole amplitudes of the TM modes and the
b� are the multipole amplitudes of the TE modes.

IV. SCATTERING OF ELECTROMAGNETIC WAVES BY A

PERFECTLY CONDUCTING SEMI-INFINITE ELLIPTIC CONE

Now we want to obtain the solution of Maxwell’s equa-
tions containing an electric current density~J leading to the
nonhomogeneous vector differential equation for the electric
field intensity

~r� ~r� ~E � �2 ~E = �j!� ~J: (25)

The electric field intensity can be calculated by the integral
transformation

~E(~r) =

ZZ
V

Z
~�(~r; ~r0) ~J(~r0) dv0 (26)

if the Green’s dyadic function~�(~r; ~r0) satisfies the differential
equation

~r� ~r� ~�(~r; ~r0)� �2~�(~r; ~r0) = �j!�~I�(~r � ~r0) (27)

where ~I is the unit dyadic and� denotes Dirac’s� function.
A suitable representation for the Green’s dyadic in the source-
free region is

~�(~r; ~r0) =��!�
(X

�

~N I
� (~r) ~N

II
� (~r0)

�(� + 1)

+
X
�

~M I
� (~r) ~M

II
� (~r0)

� (� + 1)

)
j~rj< j~r0j

(28)

where dyadic products of the vector spherical multipole func-
tions ~N� and ~M� occur. The upper index I and II indicates
the use of spherical Bessel functions and spherical Hankel
functions of the second kind, respectively. Then the condition
of finite energy for all values ofr including r = 0 and
Sommerfeld’s radiation condition forr0 tending to1 are
automatically satisfied. A Hertz dipole source located at~r0,
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polarized in direction of the unit vector̂a, and with a current
momentI�l is described by

~J(~r0) = I�l�(~r0 � ~r0)â (29)

and generates the electric field intensity

~E(~r) =�E0

8>>><
>>>:
X
�

~N II
� (~r0) � â
�(� + 1)| {z }

�a�

~N I
� (~r)

+
X
�

~M II
� (~r0) � â
� (� + 1)| {z }

�b
�

~M I
� (~r)

9>>>=
>>>; (30)

whereE0 = I�l�!�. By comparison with (23), we obtain
the corresponding multipole amplitudesa� andb� . Moving the
dipole toward infinity in the direction(#0; '0) and considering
a “source-strength factor,” we obtain the solution of the
boundary value problem for a plane electromagnetic wave with
unit amplitude, polarized in̂a direction, incident from direction
(#0; '0) upon the semi-infinite elliptic cone

~E(~r) =
X
�

�� ~N
I
�(~r) +

Z

j

X
�

�� ~M I
� (~r) (31)

~H(~r) =
j

Z

X
�

�� ~M I
� (~r) +

X
�

�� ~N
I
� (~r) (32)

with the multipole amplitudes�� and��

�� =4�E0
ej(�+1)�=2

�(� + 1)
[~n�(#; ') � â]#=#0

'='0

(33)

�� =4�
E0

Z

ej(�+1)�=2

� (� + 1)
[~m� (#;') � â]#=#0

'='0

: (34)

By replacing the spherical Bessel functions by their asymp-
totic representations

j�(�r) �
1

2

�
ej�r

�r
e�j(�+1)�=2 +

e�j�r

�r
ej(�+1)�=2

�
�r� � (35)

we obtain the far field as sums of inwardly and outwardly
traveling waves

~E1(~r) =�2�jE0
ej�r

�r

�

 X
�

1

�(� + 1)
[~n�(#; ') � â]#=#0

'='0

� ~n�(#; ')

+
X
�

1

� (� + 1)
[~m� (#; ')�â]#=#0

'='0

� ~m� (#; ')

!

� 2�jE0
e�j�r

�r

�

 X
�

ej��

�(� + 1)
[n�(#; ') � â]#=#0

'='0

� ~n�(#; ')

�

X
�

ej��

� (� + 1)
[~m� (#; ')�â]#=#0

'='0

� ~m� (#; ')

!

= ~Ei(~r) + ~Es(~r): (36)

(a)

(b)

Fig. 2. Complex valued partial sumssn of the series in (37) for a cir-
cular cone. (a) Backscattering direction# = 0

�; ' = 0
�. (b) Direction

# = 100
�; ' = 0

�.

The completeness relation, applied to the complete set
of normalized Lam´e productsY�(#; ') or Y� (#; ') allows
us to show that the inwardly traveling waves represent the
incident plane wave asymptotically, whereas the outwardly
traveling waves represent the scattered wave. In the far field
the scattered electric field intensity~Es(~r) has two independent
components depending on the polarization of the incident
electric field intensity~Ei(~r)

Es
# =�2�jE0

e�j�r

�r

�

 X
�

ej��

�(� + 1)
[~n�(#; ') � â]#=#0

'='0

1

s#

@Y�(#; ')

@#

+
X
�

ej��

� (� + 1)
[~m� (#; ')�â]#=#0

'='0

1

s'

@Y� (#; ')

@'

!

(37)
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(a)

(b)

Fig. 3. (a) Real part and (b) imaginary part of the complex valued partial
sumssn (�) in Fig. 2(a) and the transformed partial sumss

0

n
(�) determined

by (54).

Es
' =�2�jE0

e�j�r

�r

�

 X
�

ej��

�(� + 1)
[~n�(#; ') � â]#=#0

'='0

1

s'

@Y�(#; ')

@'

�

X
�

ej��

� (� + 1)
[~m� (#; ')�â]#=#0

'='0

1

s#

@Y� (#; ')

@#

!
:

(38)

Dependent on the direction of incidence, the polarization,
and the field point these expressions may simplify because of
symmetry properties of the Laḿe products.

This far-field relation between the scattered field and the
incident field allows us to introduce a dyadic diffraction co-
efficient ~D according to the rules of high-frequency solutions
like GTD and UTD, which state that the scattered field is
an outgoing spherical wave depending only on the incident
field at the tip of the scatterer and the diffraction coefficient.

(a)

(b)

Fig. 4. Diffraction coefficients of a circular cone(�x = �y = 30�) in
the xz plane for an axially incident plane wave(#0 = 0�; '0 = 0�). The
incident electric field is polarized either inx or in y direction. (a)D

#x
. (b)

D'y ; multipole solution.� � � PO solution by Trottet al. [4]. D'x

andD
#y

vanish in thexz plane.

Of course, we don’t use spheroconal coordinates(r;#;')
and components(E#; E'), but usual spherical coordinates
(r;#;') and associated components(E

#
; E') in the following

representation:

~Es(~r) = ~D(#;')~Ei(0)
e�j�r

�r
(39)

()

�
Es

#
(~r)

Es
'(~r)

�
=

�
D

##
(#; ') D

#'
(#; ')

D
'#

(#;') D''(#;')

�

�

�
Ei

#
(0)

Ei
'(0)

�
e�j�r

�r
(40)

with ~D =

�
D

##
D

#'

D
'#

D''

�
: (41)

In the case of axial incidence we will calculate the dyadic
diffraction coefficient dependent on the Cartesian components
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TABLE II
NORMALIZED BISTATIC RCS�s=�2 OF A CIRCULAR CONE

(�x = �y = 30�) FOR AN AXIALLY INCIDENT PLANE

WAVE (SEE ALSO FIG. 5 FOR A DETAILED DESCRIPTION)

of the incident field

�
Es

#
(~r)

Es
'
(~r)

�
=

�
D

#x
(#;') D

#y
(#;')

D'x(#;') D'y(#;')

��
Ei
x(0)

Ei
y(0)

�
e�j�r

�r
:

(42)

The representations in (39) and (42) allow us to calculate
bistatic RCS for axial incidence of the plane wave. If the
electric field of the axially incident plane wave is polarized
in the x direction we define

�sx(#; ') = lim
r!1

4�r2

�����
~Es(~r)

Ei
x(0)

�����
2

: (43)

If the electric field of the axially incident plane wave is
polarized in they direction we define

�sy(#; ') = lim
r!1

4�r2

�����
~Es(~r)

Ei
y(0)

�����
2

: (44)

But it is impossible to obtain the limits of the sums in (37)
and (38) by simply adding up the terms of the series. Fig. 2
shows the complex valued partial sumssn of Es

#
in case of

a circular cone(�x = �y = 30�) and x polarization of the
incident electric field intensity in the backscattering direction
1)# = 0� and for 2)# = 100� in the xz plane. Therefore,
in order to obtain the limits sequence transformations are
necessary.

V. SEQUENCE TRANSFORMATIONS

Let us consider an infinite series

1X
l=0

al = a0 + a1 + a2 + � � � : (45)

Fig. 5. Normalized bistatic RCS�s=�2 of a circular cone (�x = �y =
30�) for an axially incident plane wave(#0 = '0 = 0). The incident
electric field is polarized either inx or y direction. The RCS are evaluated
in thexz plane. multipole solution�s

y
=�2

� �� �; multipole solution
�sx=�

2 + +�sy=�
2 calculated by Babichet al. [1]; � � � �po=�2 PO-based

solution (Trott [3], [4]).

The partial sums forn + 1 terms of this series shall be
denoted bysn

sn = a0 + a1 + a2 + � � �+ an =
nX

l=0

al; n = 0; 1;2; � � � :

(46)

If the sequence of the partial sumsfsng is converging
toward a limit s

lim
n!1

sn = s (47)

this value is the sum of the infinite series. If the sequence of the
partial sumsfsng is not converging or very slowly converging,
a transformationT can be applied to the sequence of partial
sumsfsng in order to obtain a better converging sequence
fs0

n
g

Tfsng = fs0
n
g: (48)

An efficient technique for calculating the sum of infinite
series with poor convergence is the nonlinear Shanks transfor-
mation [13]–[16].

The kth order Shanks transformationek(sn) is defined in
the following form:

ek(sn) =

��������

sn � � � sn+k
�sn � � � �sn+k

...
. . .

...
�sn+k�1 � � � �sn+2k�1

��������
��������

1 � � � 1
�sn � � � �sn+k

...
. . .

...
�sn+k�1 � � � �sn+2k�1

��������

(49)

where thesn are defined in (46) and�sn = sn+1 � sn. The
values ek(sn) can be arranged in the(n; k) plane. As the



420 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 3, MARCH 1998

(a) (b)

(c) (d)

Fig. 6. Diffraction coefficients of a quarter plane(�x = 0�; �y = 45�) for plane wave incidence perpendicular to the plane of the sector
(#0 = 90�; '0 = 0�). The incident electric field is polarized iny direction, i.e.'-direction in this case. (a)D''(') in the xy plane. (b)D

#'
(')

in the xy plane. (c)D''(#) in the yz plane. (d)D
#'

(#) in the xz plane: multipole solution; � � � UTD solution by Hill [2]. D
#'

in
the xz plane andD'' in the yz plane vanish.

evaluation of the determinants is time consuming we apply
Wynn’s � algorithm

�
(n)
�1 =0; �

(n)
0 = sn

�
(n)
k+1 = �

(n+1)
k�1 +

1

�
(n+1)
k � �

(n)
k

; k; n = 0; 1;2; � � �

(50)

wheren is the index of the partial sums andk is the order
of the transformation. It can be shown that the elements
with even order2k yield the elementsek(sn) of the Shanks
transformation and that the elements with odd order2k+1 of
this recursive algorithm yield only intermediate values

�
(n)
2k = ek(sn) (51)

�
(n)
2k+1 =

1

ek(�sn)
: (52)

Let us assume that only the finite sequence
(s0; s1; s2; � � � ; sn), i.e., (�(0)0 ; �

(1)
0 ; �

(2)
0 ; � � � ; �

(n)
0 ), of n + 1

partial sums of the infinite series in (45) is known. According
to the calculation rule in (50), we are only able to determine
the following terms which can be arranged in the(n; k) plane

�
(0)
�1 [�(0)0 ] �

(0)
1 [�(0)2 ] �

(0)
3 � � � �

(0)
n�1 �(0)n

�
(1)
�1 [�

(1)
0 ] �

(1)
1 [�

(1)
2 ] �

(1)
3 � � � �

(1)
n�1

...
...

...
...

...

�
(n�2)
�1 �

(n�2)
0 �

(n�2)
1 �

(n�2)
2

�
(n�1)
�1 �

(n�1)
0 �

(n�1)
1

�
(n)
�1 �

(n)
0 : (53)

.
As mentioned above, the elements with even order2k yield

the elementsek(sn) of the Shanks transformation. Therefore,
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(a) (b)

(c) (d)

Fig. 7. Diffraction coefficients of a quarter plane(�x = 0�; �y = 45�) for an axially incident plane wave(#0 = 0�; '0 = 0�). The incident electric
field is polarized iny direction. (a)D

#y
(') in thexy plane. (b)D'y(') in thexy plane. (c)D'y(#) in theyz plane. (d)D

#y
(#) in thexz plane

multipole solution;� � � UTD solution by Hill [2]. D'y in the xz plane andD
#y

in the yz plane vanish.

we choose the terms in brackets to build up a new sequence

fs0ng = (�
(0)
0 ; �

(1)
0 ; �

(0)
2 ; �

(1)
2 ; �

(0)
4 ; � � �): (54)

The last term will be�(0)n if n is even or�(1)n�1 if n is odd. In
the cases under consideration the transformed sequencefs0ng
in (54) converges toward the same limits as the sequencefsng

lim
n!1

s0n = lim
n!1

sn = s (55)

if fsng is a convergent sequence. Even if a sequencefsng is
not converging at all (like the ones in Fig. 2) the transformed
sequence converges in many cases. We consider for example
the complex valued sequencefsng in Fig. 2(a). Although the
sequence is not convergent, the transformed sequencefs0ng
converges quickly toward a limit, which is obviously a type
of mean value (Fig. 3).

The number of terms needed to obtain the limits of the series
depends on the geometry considered. For all results presented
in this paper a maximum number of 100 series terms was
sufficient to obtain convergence. Convergence was assumed if

three consecutive terms of the transformed series differed in
less than the required relative accuracy of 10�8.

VI. NUMERICAL RESULTS

We will begin with the calculation of the diffraction co-
efficients and the bistatic RCS for a semi-infinite perfectly
conducting circular cone(�x = �y = 30�) in the case of an
axially incident plane wave(#0 = 0�; '0 = 0�). In Fig. 4, we
compare the numerical results for the diffraction coefficients
of the circular cone obtained with the aid of the rigorous
multipole solution and the numerical results obtained with the
aid of the PO-based solutions derived by Trottet al. [3], [4].
We assumed that the observation point is on the shadow side
of the reflection boundary, i.e.,

0 � # � #RB = � � 2�x (56)

where #RB denotes the direction of the reflection shadow
boundary.
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(a)

(b)

Fig. 8. Diffraction coefficients of an elliptic cone(�x = 20�; �y = 40�)
for an axially incident plane wave(#0 = 0�; '0 = 0�) determined with the
aid of the multipole solution. The incident electric field is polarized either in
x or y direction. The diffraction coefficients are evaluated in thexz plane
and in theyz plane. (a)xz plane:� � � � �D

#x
(#) D'y(#). (b) yz

plane:� � � � � D'x(#) D
#y
(#). D'x andD

#y
vanish in the

xz plane.D
#x

andD'y vanish in theyz plane.

Generally, the diffraction coefficient is a complex quantity.
But at least for plane wave incidence inx, y, andz direction
the real part vanishes identically for all values of the variable
# or ' in the main planes of the elliptic cone: thexz, yz, and
thexy plane. Therefore, we depicted only the imaginary parts
of the diffraction coefficients in Fig. 5 and (in the following)
Figs. 6–8. In Table II and Fig. 5, numerical values for the
bistatic RCS�sx=�

2 and�sy=�
2 of a circular cone, calculated

with the aid of the rigorous multipole solution in thexz plane,
are compared with the available data obtained by Babichet
al. [1] and with data calculated with the PO-based solution
derived by Trottet al. [3], [4].

Subsequently, we will calculate the diffraction coefficients
of the quarter plane(�x = 0�; �y = 45�) for a plane
wave with incidence perpendicular to the plane of the sector

(a)

(b)

Fig. 9. Normalized bistatic RCS �s=�2 of an elliptic cone
(�x = 20�; �y = 40�) for an axially incident plane wave
(#0 = 0�; '0 = 0�). The incident electric field is polarized either in
x or y direction. The RCS are evaluated in thexz plane and in theyz
plane. (a)xz plane: multipole solution�sx=�

2 ; � � � � � multipole
solution�sy=�

2; � � � �po=�2 PO-based solution by Blume and Kahl [5].
(b) yz plane: multipole solution;�sx=�

2
� �� �� multipole solution;

�sy=�
2
� � � �po=�2 PO-based solution by Blume and Kahl [5].

(#0 = 90�; '0 = 0�) (Fig. 6) and for an axially incident plane
wave (Fig. 7). We compare the numerical results obtained with
the aid of the rigorous multipole solution and the numerical
results obtained with the aid of the UTD solution derived by
Hill [2]. The UTD solution was evaluated in the far zone for
purpose of comparison with the far-zone field of the multipole
solution. Note that no scattered field is produced by the sector
for axial incidence of the plane wave, if the electric field is
polarized inx direction, i.e., perpendicular to the sector plane.

Finally, we will calculate numerically—with the aid of the
multipole solution—the diffraction coefficients of an elliptic
cone (�x = 20�; �y = 40�) for an axially incident plane
wave. The incident electric field is polarized either inx or y
direction. The diffraction coefficients are evaluated in thexz
plane and theyz plane. The results are depicted in Fig. 8.
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In Fig. 9, numerical values for the bistatic RCS�sx=�
2 and

�sy=�
2 of this elliptic cone (using the multipole solution) are

compared with data calculated with the PO-based solution
derived by Blume and Kahl [5].

Our results for the RCS�sy=�
2 of a circular cone—evaluated

in the xz plane in the case of an axially incident plane wave
whose electric field is polarized in they direction—are in very
good agreement with those ones calculated by Babichet al.
[1, (Fig. 5 and Table II)]. But they did not evaluate the RCS
�sx=�

2 in thexz plane forx polarization of the axially incident
plane wave. The RCS are slightly polarization dependent,
which the PO-based approximation�po=�2 derived by Trott
et al., does not take into account. Only two components of the
dyadic diffraction coefficient of a circular cone occur in the
xz plane. The other two components vanish identically. The
PO-based approximation of the diffraction coefficients is in
rather good agreement with the results obtained by evaluating
numerically the rigorous multipole solution (Fig. 4).

Analogous results are obtained in theyz plane on behalf
of the circular structure of the cone. Note that a reflection
shadow boundary#RB arises from the fact that the incident
plane wave is reflected at the surface of the circular cone.
For axial incidence of the plane wave this reflection boundary
#RB can be determined with the aid of the law of reflection:
#RB = � � 2�x.

The comparison of the dyadic diffraction coefficients for a
quarter plane evaluated with the aid of the multipole solution
and evaluated with the aid of the UTD solution derived by Hill
[2] shows sufficient agreement for vertical incidence if the field
point and the source point of the scattered field are far away
from each other (Fig. 6). If they coincide—this happens for
example in thexz plane for# = 180� [Fig. 6(c)]—the UTD
solution fails. The comparison for axial incidence (grazing
incidence) in Fig. 7 additionally shows a slight difference
near the backscattering direction both in thexz plane andyz
plane. But axial incidence is also the worst case where a UTD
solution can be used. Because of wedge diffraction phenomena
at the two edges forming the quarter plane, two Keller cones
occur where the diffraction coefficient tends to infinity, e.g.,
for axial incidence we pass through one of them in theyz
plane at# = 90� [Fig. 7(d)]. The reason for the observed
discrepancies is that the multipole solution does satisfy the
boundary conditions whereas the UTD solution does not. Note
that with the knowledge of the diffraction coefficients the RCS
�sy=�

2 can also easily be calculated.
In the case of scattering by an elliptic cone, the polarization-

independent PO-based solution by Blume and Kahl [5] for
the RCS of this object is only an approximation that lies
between the exact data for the two polarizations (Fig. 9).
Similar to the circular cone a reflection boundary occurs at
elliptic cones. In thexz plane we meet this reflection boundary
at #RB = � � 2�x; in the yz plane we meet this reflection
boundary at#RB = � � 2�y (Fig. 8).

VII. CONCLUSION

In this work, the electromagnetic wave scattering by a per-
fectly conducting semi-infinite elliptic cone has been treated.

The rigorous solutions of this boundary value problem in the
form of modal series expansions are of poor convergence. The
application of the Shanks transformation directly enables us
to determine dyadic diffraction coefficients and bistatic RCS
of an elliptic cone, a circular cone, and a quarter plane. The
results obtained are in good agreement with some published
calculations performed with the aid of quite different methods.
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