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Numerical Evaluation of Dyadic Diffraction
Coefficients and Bistatic Radar Cross Sections for a
Perfectly Conducting Semi-Infinite Elliptic Cone

Siegfried Blume and Volker Krebs

Abstract—n this paper, the scattering of electromagnetic waves far-zone fields of the circular cone and is simply the nonuni-
by a perfectly conducting semi-infinite elliptic cone is treated. form asymptotic result for the tip diffracted contribution. These
The exact solution of this boundary value problem in problem- b _pyased far-zone fields of a circular cone will be compared

adapted spheroconal coordinates in the form of a spherical . . . . .
multipole expansion is of poor convergence if both the source with the far-zone fields of the rigorous multipole solution to

point and the field point are far away from the cone’s tip. D€ developed.
Therefore, an appropriate sequence transformation of these series A PO approximation of the bistatic RCS of an elliptic cone

expansions (we apply the Shanks transformation) is necessarywas derived in [5]. In the case of a circular cone, this formula
to numerically determine the dyadic diffraction coefficients and coincides with the PO-based solution derived by Trott.

bistatic radar cross sections (RCS) for an arbitrary elliptic cone. . . . . .
Our far-field data for an elliptic cone, a circular cone, and a plane The interest in these problems is motivated by the role in

angular sector are compared with some other results obtained Which the diffraction coefficients play in asymptotic high-
with the aid of quite different methods. frequency theories like the geometrical theory of diffraction
(GTD) or the uniform theory of diffraction (UTD). These
ray-optical techniques represent extensions of classical GO
by introducing diffracted rays produced when incident rays
. INTRODUCTION hit edges, corners, tips, or impinge tangentially on smoothly
ECENTLY, an article dealing with electromagnetic scatcurved surfaces of scattering objects. The initial value of the
tering by a perfectly conducting semi-infinite cone ofield on a diffracted ray is, according to the principle of locality
arbitrary shape was published by Babéttal. [1]. The solution in the GTD or UTD, determined from the incident field at the
was synthesized via the superposition of the solutions B®int of diffraction with the aid of an appropriate diffraction
the two associated scalar problems—the acoustical scattelg@gfficient. These diffraction coefficients are to be determined
by a soft or hard cone. The treatment of the boundaf§gm the solution of boundary value problems with simple
value problems leads to integral equations of the FredhoRfiapes (canonical structures) capable of approaching the local
type along the line of intersection of the cone and the urggometry at the point of diffraction. One of the incompletely
sphere. Numerical evaluations of bistatic radar cross sectig®ved canonical problems in the electromagnetic theory is that
(RCS) were performed for a semi-infinite perfectly conductingf diffraction by a semi-infinite elliptic cone. The rigorous
circular cone and an elliptic cone. treatment of scattering by this structure and the numerical
Appropriate uniform solutions that make the asymptotievamation of diffraction coefficients and bistatic RCS are the
high-frequency total field continuous across the shaddwbjects of this paper. A comprehensive review, dedicated to
boundaries of the rays diffracted by a circular cone or Bijie solution of this boundary value problem, is to be found
a plane angular sector (two degenerations of an elliptic corig)[6]-[8]. Pioneering work has been carried out by Kraus
were derived in [2]-[4]. and Levine, who examined scalar diffraction by a semi-infinite
Hill's uniform solution for the plane angular sector is base@lliptic cone with the aid of the same technique [9].
upon the solutions of the two associated scalar problemsThe paper proceeds as follows. In Section Il, the sphero-
Trott's uniform solution for the circular cone was obtainegonal or conical coordinate system is introduced. Appropriate
from the evaluation of the radiating integral for the scattere&lementary solutions of the scalar Helmholtz equation and the
field using a geometrical optics (GO) approximation for thepherical multipole expansion of the electromagnetic field in
surface current on the cone and an exact kernel rather ttia@se problem-adapted conical coordinates will be presented
the far-zone form for the scalar Green’s function. Assumiri Section Ill. The scattering of electromagnetic waves by a
the observation point is on the shadow side of the reflectiggrfectly conducting semi-infinite elliptic cone and the intro-
shadow boundary his solution yie|d5 the same result as tleliction of dyadic diffraction coefficients and of bistatic RCS
obtained via the exact evaluation of the physical optics (P®)ll be treated in Section IV. In order to improve the rapidity
of convergence of the rigorous modal series expansions and to
Manuscript received October 7, 1996; revised November 18, 1997 ghtain numerical results, the nonlinear Shanks transformation
The authors are with the Department of Electrical Engineering, Ruhr- . . . .
Universitit Bochum, Bochum, D-44780 Germany. IS introduced in Section V. In Section VI, we compare our
Publisher Item Identifier S 0018-926X(98)02272-8. far-field data for a circular cone, for an elliptic cone, and for
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a plane angular sector with the published data in the papers

[1]-{5].
Throughout the paper, a time dependence @ will be
assumed but always suppressed.

Il. SPHEROCONAL COORDINATES

We introduce a spheroconal coordinate system,¢)
related to the cartesian coordinate system by the transformation

z =rsinvcos p, 0<r<oo ()

y=rv1—k?cos? dsin g, 0<v <7 (2)

. Fig. 1. Spheroconal coordinate surfaces.
z=rcosVy/1 — k'?sin? ¢, 0<p<27. 3 9 P

k and k¥’ are ellipticity parameters with

The spherical cylinder functions, (xr) are related to cylin-

0<k K <1; K24+ k7 = 1. @) der functions of ordev + % according to
In the special casé = 1 (¥ = 0) the spheroconal zy (K1) = \/%Zwm/z)(ffr) %)
coordinate systenir,?, ¢) reduces to the ordinary spherical
coordinate system denoted by, J, 7). Spherical Bessel functions are denotedjbfrr); spherical
The coordinate surfaces are (Fig. 1): Hankel functions of the second kind are denotedzb@(m).
r=r, spherical surfaces around the origin; The spherical harmonic¥), (9, ¢) satisfying the eigenvalue

¥ =14, semi-infinite elliptic cones around theaxis with equation
their cone tips in the origin, with half-opening
anglesw, in thezz plane, andy, in theyz plane;

¢ = ¢. one half of semi-infinite elliptic cones around thenay be written as “Lamproducts”

(7Fx V)?Y, (9, ¢) = —v(v + )Y, (9, ¢) (10)

y axis.
. . . () — oW () —1-9-3:

It can be shown that there are the following relationships *»" (0, 0) =0 ()2 (), p=1234  (11)
betweenv., a;, ay and k: The upper indey indicates the existence of four function

odi onsd ) odi
Gp= -1, a,=r—arccos(kcosd.), k= cos oy typeé. The_perlo((il)l)c Lamfunctpnsd),, (p) and nonperlod|c,
COS Lamé functiongdy™’ (¥) are solutions of the two coupled Lam

differential equations with separation constafitsy)

I1l. M ULTIPOLE EXPANSION OF THEELECTROMAGNETIC FIELD

(r)

The key to the solution of the scattering problem is the \/1 — /2 sin? gpi (\/l — k/2sin? @M)
; , ; dy dy

knowledge of the elementary solutions of Maxwell's equations

in a source-free region in the conical coordinate system. In + A= v+ DE? sin? 30]@5,”)(80) -0 (12)

a source-free region the electrﬂE) and magnetic(ﬁ) field d dG(p)(ﬁ)
intensities are solutions of the homogeneous vector differential /1 — k2 cos? 9 — [ /1 — k2 cos? J —2——~
equations v v

6X€XE—K2520, SO x Ak’ =0 5) —|—[1/(1/—|—1)(1—]92(305279)—/\]65/7’)(19)IO. (13)
The four types of periodic Lamfunctions with the sym-
@gertry relations indicated in Table | may be written as Fourier
ies with periods ofr or 2z, where As;, As;y1, Bajio,
Bs;,1 are the Fourier coefficients which have to be deter-
mined by three-term recurrence relations leading to tridiagonal

matrices.
The four types of nonperiodic Lagrfunctions can be written
series with associated Legendre functi&fis(cos ¥#) with
the same Fourier coefficients. A more detailed analysis is to
V20, + k%0, = 0. (7) be found in [11] and [12].
Additionally, the Lang products are normalized according
In conical coordinates the elementary solutickhs can be to

written in the separated form de pom
Y, (9, ¢)]* sy 5, dv dp = 1 (14)
U, = z,(kr)Y, (4, ¢). (8) /0 /0 Yol0 @) o5

where k = w.,/ep = 27 /A is the wavenumber and the
wavelength. Linear independent solenoidal solutions are
vector spherical-multipole functions (Stratton [10])

o - O -
M, = (FxV)¥, N, =—[Vx @<V, (6

where ¥, is a solution of the scalar homogeneous HelmholtgS
equation
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TABLE |
PerRIoDIC AND NONPERIODIC LAME FUNCTIONS
Periodic Lamé functions Period =0 p=m/2
p | Representation 7| 27 | even | odd | even | odd
x
1 <I>,(,])(<p) = Z Ay; cos 2ip . . .
i=0
2 <I>,(, Z Agiticos(2i+ 1) . . .
i=0
3 <I>“ Z Byiyasin(2i+2)p | e . .
i=0
o
4| 0(p) =3 Boiyrsin(2i + 1) . . .
i=0
Non-periodic Lamé functions $=0
p Representation even odd
1 ZT (2i) Agi P} (cos 9) .
C N
2 | 0P0)=3"T(2i + 1) A P2 (cos 9) .
i=0
oc
3 0PW)=1(9) Y (2i+2)T(2i+2)Bais2 P2 (cos 9) .
i=0
fo o]
4| 0W)=f(0) Y (2i+1)T(2i+ )Baiy P2+ (cos 9) .
i=0
TE)y=—(v—-i)v+i+1)T(E+2) TO)=T(1)=1

(9) = VI—FF ot sind

wheres, ands, are normalized metric coefficients

\/k2 sin? ¥ + k2 cos? ©
Sy =

1 —k2cos?d

50 = WQ WO sy (15)

1—k?sin? ¥

With (6) and (8) the vector-spherical multipole functions V XV x f(F,F’

which leads to the transcendental eigenvalue equations for the
associated scalar problems

0P (9)]y=9. =0 (soft cone: corresponding eigenvalues
-v are denoted by) (21)
4o (1)

49 =0

(hard cone: corresponding

- eigenvalues are denoted by). (22)

These transcendental equations must be solved numerically.
The spherical multipole representation of the electromagnetic
field is a superposition of TM and TE modes

BOED SO ALEED SR AC IS
A= 23 a7+ 0800 (24)

= \/t/€ denotes the intrinsic impedance of the medium.
Thea, are the multipole amplitudes of the TM modes and the
b, are the multipole amplitudes of the TE modes.

IV. SCATTERING OF ELECTROMAGNETIC WAVES BY A
PERFECTLY CONDUCTING SEMI-INFINITE ELLIPTIC CONE

Now we want to obtain the solution of Maxwell's equa-
tions containing an electric current densityleading to the
nonhomogeneous vector differential equation for the electric
field intensity

6x€xﬁ—m252—jwuf. (25)

The electric field intensity can be calculated by the integral

transformation

B = [[ [E@m i a

if the Green’s dyadic functiol (7, 7
equation

(26)
) satisfies the differential
) — &2T(7, 7

) = —jwplds(F—7)  (27)

can now be expressed in terms of angular vector functions -

m, and i,
M, (7) = 2, (k1)17, (9, ¢) (16)
N, () =—v(v+ 1)Z”I(;7°) Y, (9, )7
1 d
= — Zlra(er)]i, (9, ¢) 17)
where
. 1 9Y, (9, ¢) ; 1 Yy, (¥, ¢) .
9,0y = — — L\ P, P
mV( ) SD) SLp 630 579 679 (18)
. _ LN, 1 V(0,9
(0, ) = 5877979 + oy (19)

At the cone’s surface, the electric field intensity must satis

the boundary condition

(7 X E)|y=y. =0 (20)

where [ is the unit dyadic an@ denotes Dirac’s’ function.
A suitable representation for the Green'’s dyadic in the source-

free region is
NI(AN] (7)

L = _”““{Z o(o+1)

+3 e () )} A<I7)

(28)

where dyadic products of the vector spherical multipole func-
tions N, and M, occur. The upper index | and Il indicates
the use of spherical Bessel functions and spherical Hankel
nctions of the second kind, respectively. Then the condition
f finite energy for all values of- including » = 0 and
Sommerfeld’s radiation condition for’ tending toco are
automatically satisfied. A Hertz dipole source locatedFat
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polarized in direction of the unit vectar, and with a current

417

Im{s,}
moment /Al is described by 6 5
J(7) = IAIS(F — 7)a (29) ,/
and generates the electric field intensity 4>*\va° S
i N /’/ X ‘\
_’II(_’) . 2 N )e\‘\“\/ s \
= N () -a = AN N A
B =—Fog 2 =0y N0 0 SRV RO p
7 N—— TN T
~as S ~ %‘/ .:’.v_-’ ’\'\/ ll
2k ! LA Ty
L - AN *
M 7) 30 ” \
+Z T(T+1 e G S
N ——’ AR \\
~b S
; Ny
where £y, = IAlkwpu. By comparison with (23), we obtain k3 % 2 o 2 s 5
the corresponding multipole amplitudes andb., . Moving the Re{s,}
dipole toward infinity in the directiof,, ¢, ) and considering @
a “source-strength factor,” we obtain the solution of the
boundary value problem for a plane electromagnetic wave with  1m{s,}
unit amplitude, polarized in direction, incident from direction 6 , g —%
e e . . | )
(%0, ¢a) upon the semi-infinite elllptlc cone i . -7
o T |
E(7) = Zaa (M += Zﬁf (31) o .
2t | ! \\\
)= oz,,MI 7) + TNI 32 i e .
UGESS MSIICED B @ I
0 // ek x|
with the multipole amphtude&a and @ v N - -
cion)n/2 S, o
o =4n By ———[1, (0, ) - @] 9=y 33 2 T .
& L 0_(0_+1) [n ( JSD) Cl] Z;ZE ( ) .\’K,\ /,
EO ej(T+1)7'r/2 . A\»\ 7
—4r 0 m (0.0) -d]yey. . (34 "
67' T 7 T(T—I—l) [mT( ;30) a]li;gg ( ) \_;(
By replacing the spherical Bessel functions by their asymp- < . - = n s s .
totic representations Re{s,)
i () %l<ﬂ ~itwrnmsa € e;<u+1>w/2) (b)
2\ kr KT Fig. 2. Complex valued partial sums, of the series in (37) for a cir-
Kr > v (35) cular cone. (a) Backscattering directieh = 0°,% = 0°. (b) Direction

d = 100°,% = 0°.

we obtain the far field as sums of inwardly and outwardly

traveling waves

ejlw‘

o =271 F
Eeo () mjE—

’ (Zﬁ: ﬁ[ﬁo(ﬁi p)-a

i, (9, )

i, (9, )

1 — ~ —
+z7—: m[mT(ﬁa @)'a]izgg ~m7(19, 30))
] e—jlw‘
— 27y
ej(fﬂ'
: PR v : =
(ZU: p 1)[”0( @) - @lo=ng
) A
—~r(r+ 1)

= L' (7) + E* (7).

7(19, 30)'&] d=1¢q '7?7'7' (ﬁ: 30))

(36)

The completeness relation, applied to the complete set
of normalized Lare” productsY, (¥, ) or Y. (¥, ¢) allows
us to show that the inwardly traveling waves represent the
incident plane wave asymptotically, whereas the outwardly
traveling waves represent the scattered wave. In the far field
the scattered electric field intensiBy (+) has two independent
components depending on the polarization of the incident
electric field intensityZ" (7)

] e—jiw‘
LS =—-21jE, -

elom 1 0Y, (9, ¢)
) I - S dop, — P

(ZU: (o + 1)[ o0, ¢)-d] Z, ZD X ov
el N R 1 9Y, (9, ¢)
v 9, 0)-d] g — TP

+ ZT:T(T—I- 1)[m7( )] Z,;Zﬁ 5, Op

(37)
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Re{s,}, Re{s} Im{Dj,(9)}
6 T T T T T T T T T i
o X
iy
A
A . X J 10° 9
B, - * ‘ ‘\ */ \\
N R4 \ i v ! \
K N e x* \ i \ ! \ .
or .~ . Tiklg e @R O 0= T 0 — 0 — 0~ g circular cone
RN Yo ! ! ! (o = ay)
* . ! \ ; \
ol \ // \\ s \\ i
\\I 1 I./ \
* \/ v
-4t X \\‘ -1
f 10
6 ; . . L ; . ; . \ o° 50° 106° 150°
0 1 2 3 4 5 6 7 8 9 10 .
n ¥
@) @)
Im{s,}, Im{s,}
6 T T T T T T T T
by
ar ,’ ‘v
X ,l \\ r,
2r /A X ' ' 1
7 \\ II N ,'I ' !
- — ! \ / i ' i
of D\_\ R ity el el R circular cone
. ) ; N ; i i (az = o)
.* \» / \\ 7 1 t
A i i 1 I
o \ ‘\ / 1 I
\)‘é \*y “\‘ Il
4 “ ” 7 107 4
m
; . .
6 . . . . ) . . * 0° 50° 100° 150°
) 1 2 3 4 5 6 7 8 9 10 B
n ]
. (b)
() Fig. 4. Diffraction coefficients of a circular congv, = o, = 30°) in
Fig. 3. (a) Real part and (b) imaginary part of the complex valued partitle z= plane for an axially incident plane wa¥&y = 0°, oo = 0°). The
sumss,, (=) in Fig. 2(a) and the transformed partial susjs(o) determined incident electric field is polarized either in or in v direction. (@)D, (b)
by (54). Doy, multipole solution.- - - PO solution by Trotet al. [4]. D,
and Dgy vanish in therz plane.
e—jlm‘
B, =—=2mjE, .
Of course, we don't use spheroconal coordinates’, ¢)
‘ Z ciom (0.0 - s 1 0¥, (7, ¢) and components{ﬁ_?lg ,E,), but usual spherical coordinates
—~g(c+1)" 7 Sen S, D (r,9,%) and associated componeffs;, L) in the following
) oy ( ) representation:
elrr N R 10Y. (¥, ¢
— Y = (9, p) g —— 5 |- :
m(r+1) o=po 55 ov R . . L
’ E*(7) = D(0,2)E"(0) (39)
(38) _ KT
. . L. L E%(F) _ Dm(ﬂ;@ Dq_a(ﬁ;@
Dependent on the direction of incidence, the polarization, — PR ) T\D(0.%) Des(,7)
and the field point these expressions may simplify because of ? gz 0’ _J.W”) ’
symmetry properties of the Lamproducts. . ( 779_( )> € (40)
This far-field relation between the scattered field and the E5(0) ) wr
- : . L . ) . ~ D Do
incident field allows us to introduce a dyadic diffraction co with D = < v ﬂ_q,). (41)
w1 PP

efficient ) according to the rules of high-frequency solutions

like GTD and UTD, which state that the scattered field is
an outgoing spherical wave depending only on the incidentin the case of axial incidence we will calculate the dyadic

field at the tip of the scatterer and the diffraction coefficientliffraction coefficient dependent on the Cartesian components
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TABLE 1 (73(19)/A2

NorMALIZED BisTatic RCS«® /A2 oF A CIRCULAR CONE o
(oz = ay = 30°) FOR AN AXIALLY INCIDENT PLANE
Wave (See ALso FiG. 5 FOR A DETAILED DESCRIPTION

Multipole solution | Trott Babich

J o3 /A% | oS/A% | oPo/A? | o3 /A?
0° 0.002234 | 0.002234 | 0.002210 — )
7.5° | 0.002285 | 0.002281 | 0.002258 | 0.002282 o

15° 0.002444 | 0.002443 | 0.002409 | 0.002430
22.5° | 0.002738 | 0.002700 | 0.002686 | 0.002700
30° 0.003218 | 0.003137 | 0.003136 | 0.003137
37.5° | 0.003978 | 0.003824 | 0.003845 | 0.003822
45° 0.005192 | 0.004905 | 0.004969 | 0.004902 10
52.6° | 0.007195 | 0.006658 | 0.006804 | 0.006652
60° 0.010663 | 0.009635 | 0.009947 | 0.009624
67.5° | 0.017079 | 0.015023 | 0.015691 | 0.015009
75° 0.030019 | 0.025640 | 0.027127 | 0.025610 0° 50° 100° 150°
82.5° | 0.059266 | 0.049066 | 0.052650 | 0.049011

enlargement

86° 87° 88° 88" 90° 91° 92° 93°

]
90° | 0.136597 | 0.116456 | 0.119366 | 0.109492
97.5° | 0.304544 | 0.308038 | 0.340238 | 0.307766 Fig-)5f- NOfma_”Zlfd.bi?éa“C RICSS/ A2 gga circular Con)e {?I'mh SO =
o 30°) for an axially incident plane wavédo = w0 = 0). The incident
105 1.879576 | 1.286367 | 1.434954 electric field is polarized either im or y direction. The RCS are evaluated
in thezz plane. multipole solutioncr;/AQ — - — .; multipole solution
.. . o5 /A? + +05/A? calculated by Babicket al. [1]; - - - ¢7°/A? PO-based
of the incident field solution (Trott [3], [4]).
E(7 D= (9,%) D= (9,%)\ (EL(0) e™7*" _ _ _
(Eff(j> = ( ”“(5’ f) DM(EJ f) E;;”(O) —_— The partial sums fom + 1 terms of this series shall be
E(F) DET( JSD) 53/( 730) y( ) RT denoted bysn
(42) ’ .
_ _ snzao—i—cﬁ—|—a2—|—~~~—|—an:Za1, n=0;1;2;---.
The representations in (39) and (42) allow us to calculate =0
bistatic RCS for axial incidence of the plane wave. If the (46)

electric field of the axially incident plane wave is polarized

) : . : If the sequence of the partial sumMs, } is convergin
in the » direction we define q P msn} ging

toward a limit s

oo | lim s, = 47
o3 (0,%) = lim 4w Ei (7) 43) ntoo T (47)
T £:(0) this value is the sum of the infinite series. If the sequence of the

partial sumg{s,, } is not converging or very slowly converging,
If the electric field of the axially incident plane wave isa transformatioril” can be applied to the sequence of partial

polarized in they direction we define sums{s, } in order to obtain a better converging sequence
{sn}
— 2
P . E5 () T{s,} ={s,}. (48)
o3(7,7) = lim 4m” 70)| (44) F=Asn}

An efficient technique for calculating the sum of infinite

L ) ) . . series with poor convergence is the nonlinear Shanks transfor-
But it is impossible to obtain the limits of the sums in (37),4ti0n [13]-[16].

and (38) by simply adding up the terms of the series. Fig. 21e th order Shanks transformation (s, ) is defined in
shows the complex valued partial sums of EZ in case of the following form:

a circular conga,, = «, = 30°) andx polarization of the

incident electric field intensity in the backscattering direction AS" o AS"““
1)J = 0° and for 2)7 = 100° in the zz plane. Therefore, 5n Sntk
in order to obtain the limits sequence transformations are : :
necessary.
y e (5n) = Asn;—k—1 Asn?k_1 (49)
V. SEQUENCE TRANSFORMATIONS As, o Asygp
Let us consider an infinite series : ) :
o Aspir—1 -+ Aspiop—1
Zaz =ag+a; +ay+---. (45) where thes, are defined in (46) and\s,, = s, — s,,. The

1=0 valuese,(s,) can be arranged in thez, k) plane. As the
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® ®
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1 oal
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4 04f
4 o2t > 1
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Fig. 6. Diffraction coefficients of a quarter plangw. = 0°,a, = 45°) for plane wave incidence perpendicular to the plane of the sector

(0 = 90°, 0 = 0°). The incident electric field is polarized in direction, i.e.i-direction in this case. (aJdz%(%) in the =y plane. (b)Dﬁa(a)
in the zy plane. (c) Dz5(d) in the y= plane. (d)Dgz(¥) in the == plane:

the »z plane andDg 5 in the y= plane vanish.

evaluation of the determinants is time consuming we apply Let

(50J51J52J'

Wynn's ¢ algorithm

6(_771) =0, ng) =3,

(n) _ 1

(n41) —_0-1-9.
i1 = -1 +€(n+1)_€(n)a k,n=0;1;2;---
k k

(50)

where n is the index of the partial sums aridis the order
It can be shown that the elements
with even order2k yield the elements; (s, ) of the Shanks

of the transformation.

transformation and that the elements with odd ottle# 1 of
this recursive algorithm yield only intermediate values

o =ex(sn) (51)
1
R (52)

Sory1 = er(Asy)

multipole solution; - - UTD solution by Hill [2]. D5 in

us assume
<y 8p), L€,

that only the
0 1 2
(" &,

finite sequence
~~,€én)), of n + 1

partial sums of the infinite series in (45) is known. According
to the calculation rule in (50), we are only able to determine
the following terms which can be arranged in e k) plane

O A

6510—) 1 6510)

€1

I R I 1)

6(_71,1—2) 65)71,—2) 6(171—2) 6(271—2)

6(_711—1) 6E)n—l) 6(171—1)

e(_nl) eén) . (53)

As mentioned above, the elements with even otdeyield

the elementsy (s,,) of the Shanks transformation. Therefore,
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Fig. 7. Diffraction coefficients of a quarter plarfie. = 0°, o, = 45°) for an axially incident plane waveds = 0°, 0 = 0°). The incident electric
field is polarized iny direction. (a)Dgy () in thexy plane. (b)Dz, (%) in thewy plane. (c)Dg,(?) in theyz plane. (d)Dgy (9) in thex=z plane

multipole solution;- - - UTD solution by Hill [2]. D, in the zz plane andDﬁy in the yz plane vanish.

we choose the terms in brackets to build up a new sequentieee consecutive terms of the transformed series differed in

(5] = (EEO)J 6&1)) E(QO)J 6(21), 6510)’ ). (54) less than the required relative accuracy of 10
The last term will bee!,” if n is even oreg_)1 if » is odd. In
the cases under consideration the transformed sequyefde VI. NUMERICAL RESULTS
in (54) converges toward the same limis the sequence, } We will begin with the calculation of the diffraction co-
lim s, = lim s, —s (55) efficients and the bistatic RCS for a semi-infinite perfectly

: : _ . conducting circular congo, = o, = 30°) in the case of an

if {s.} is a convergent sequence. E."er? if a sequelacg is axially incident plane wavéd, = 0°,¢q = 0°). In Fig. 4, we

not converging at all (_I|ke the ones in Fig. 2) the transforme mpare the numerical results for the diffraction coefficients
seéquence converges in many cases. We consider for examyléq circular cone obtained with the aid of the rigorous
the comple_x valued sequenge, } in Fig. 2(a). Although the multipole solution and the numerical results obtained with the
sequence 1s DOt convergent,_ the transfo_rmed _sequ{aﬁp aid of the PO-based solutions derived by Tretttal. [3], [4].
converges quickly toward a limit, which is obviously a typgye assumed that the observation point is on the shadow side

of mean value (Fig. 3). ) . of the reflection boundary, i.e.,
The number of terms needed to obtain the limits of the series _
OSﬁSﬁRRITF—QOzm (56)

depends on the geometry considered. For all results presented
in this paper a maximum number of 100 series terms wadere 'gp denotes the direction of the reflection shadow
sufficient to obtain convergence. Convergence was assumelddtindary.
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Fig. 9. Normalized bistatic RCSs*/A%2 of an ellptic cone
(g = 20°a, = 40°) for an axially incident plane wave
WO = 0° ¢ = 0°). The incident electric field is polarized either in
xz or y direction. The RCS are evaluated in the plane and in theyz
plane. (a)xz plane: multipole solutionoS/A%; — - — . — multipole

Fig. 8. Diffraction coefficients of an elliptic congr, = 20°, o, = 40°)
for an axially incident plane wavedg = 0°, o = 0°) determined with the
aid of the multipole solution. The incident electric field is polarized either i
z or y direction. The diffraction coefficients are evaluated in theplane

and in they= plane. (@)= plane:— - — - D5 (4) D@(ﬁ.)' (t.)) Y2 solutionss/AZ; - - - oP°/A2 PO-based solution by Blume and Kahl [5].
plane:— - — . — Dz, (9) D (9). Dz, and D5 vanish in the gl . a2 . -

| D dD ish i thﬁy | By (b) y= plane: multipole solutiong 3 /A% — - — - — multipole solution;
@z plane. Ly, and iz, vanish in they= plane. o5 /A% - - - oP°/A? PO-based solution by Blume and Kahl [5].

Generally, the diffraction coefficient is a complex quantity, = 90°, ¢, = 0°) (Fig. 6) and for an axially incident plane
But at least for plane wave incidencedny, andz direction wave (Fig. 7). We compare the numerical results obtained with
the real part vanishes identically for all values of the variabtbe aid of the rigorous multipole solution and the numerical
¥ or % in the main planes of the elliptic cone: the, yz, and results obtained with the aid of the UTD solution derived by
the zy plane. Therefore, we depicted only the imaginary partill [2]. The UTD solution was evaluated in the far zone for
of the diffraction coefficients in Fig. 5 and (in the following)purpose of comparison with the far-zone field of the multipole
Figs. 6-8. In Table Il and Fig. 5, numerical values for theolution. Note that no scattered field is produced by the sector
bistatic RCSs% /A* ando$ /A* of a circular cone, calculated for axial incidence of the plane wave, if the electric field is
with the aid of the rigorous multipole solution in the plane, polarized inz direction, i.e., perpendicular to the sector plane.
are compared with the available data obtained by Bakich Finally, we will calculate numerically—with the aid of the
al. [1] and with data calculated with the PO-based solutiomultipole solution—the diffraction coefficients of an elliptic

derived by Trottet al. [3], [4]. cone (o, = 20°,¢, = 40°) for an axially incident plane
Subsequently, we will calculate the diffraction coefficientarave. The incident electric field is polarized eitherziror y
of the quarter planga, = 0°,a, = 45°) for a plane direction. The diffraction coefficients are evaluated in the

wave with incidence perpendicular to the plane of the sectplane and theyz plane. The results are depicted in Fig. 8.
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In Fig. 9, numerical values for the bistatic RG@S/A? and The rigorous solutions of this boundary value problem in the
o, /A? of this elliptic cone (using the multipole solution) areform of modal series expansions are of poor convergence. The
compared with data calculated with the PO-based solutiapplication of the Shanks transformation directly enables us
derived by Blume and Kahl [5]. to determine dyadic diffraction coefficients and bistatic RCS

Our results for the RCE?;;/A2 of a circular cone—evaluated of an elliptic cone, a circular cone, and a quarter plane. The
in the zz plane in the case of an axially incident plane waveesults obtained are in good agreement with some published
whose electric field is polarized in thedirection—are in very calculations performed with the aid of quite different methods.
good agreement with those ones calculated by Babichl
[1, (Fig. 5 and Table I)]. But they did not evaluate the RCS REFERENCES
0% /A% in thezz plane forz polarization of the axially incident _ _ _

| The RCS light! larizati d d {1] V. M. Babich, V. P. Smyshlyaev, D. B. Dementiev, and B. A. Samokish,
p a_ne wave. € are_s 'g_ y Ppo arlZE} 10N dependent,” «Numerical calculation of the diffraction coefficients for an arbitrary
which the PO-based approximation®/A? derived by Trott shaped perfectly conducting condEEE Trans. Antennas Propagat.
i vol. 44, pp. 740-747, May 1996.
et al". does nOt. take Int(.) account' O.”ly two Components_ of th?Z] K. C. Hill, “A UTD solution to the EM scattering by the vertex of
dyadic diffraction coefficient of a circular cone occur In the™ 4 perfectly conducting plane angular sector,” Ph.D. dissertation, Ohio
zz plane. The other two components vanish identically. The State Univ., Columbus, OH, 1990. _ _
PO-based approximation of the diffraction coefficients is inf3] K- D Trott, “A high frequency analysis of electromagnetic plane
. . . wave scattering by a fully illuminated perfectly conducting semi-infinite
rather good agreement with the results obtained by evaluating cone,” Ph.D. dissertation, Ohio State Univ., Columbus, OH, 1986.
numerically the rigorous multipole solution (Fig. 4). [4] Kf- ?. T:ott, P. H. Pathak, anbd F.fAI.I I\_/:Iolmet, “Ad UTEf) tylpe aﬂglys!s
- : of the plane wave scattering by a fully illuminated perfectly conducting

Analogous results are obtained in the plane on behalf_ cone,” IEEE Trans. Antennas Propagatol. 38, pp. 1150-1160, Aug.
of the circular structure of the cone. Note that a reflection 1990
shadow boundaryzy arises from the fact that the incident [5] S. Blume and G. Kahl, “The physical optics radar cross section of an

] . elliptic cone,” IEEE Trans. Antennas Propagatol. 35, pp. 457-460,
plane wave is reflected at the surface of the circular cone. Apr. 1987.
For axial incidence of the plane wave this reflection boundarys] S. Blume, “Spherical multipole analysis of electromagnetic and acoustic

Jrp can be determined with the aid of the law of reflection: scattering by a semi-infinite elliptic cone|EEE Antennas Propagat.
= Mag. vol. 38, no. 2, pp. 33-44, Apr. 1996.

Ypp = 7 — 20_4m- ) ) ) o [7] S. Blume, L. Klinkenbusch, and U. Uschkerat, “The radar cross section

The comparison of the dyadic diffraction coefficients for a  of the semi-infinite elliptic cone,Wave Motion vol. 17, pp. 365-389,

; ; ; ; 1993.

quarter plane ev_aluated _Wlth the aid of the_ mU|tIp_0|e SOIUUF)TS] S. Blume and U. Uschkerat, “The radar cross section of the semi-infinite
and evaluated with the aid of the UTD solution derived by Hill" * ejliptic cone: Numerical evaluationWave Motionvol. 22, pp. 311324,
[2] shows sufficient agreement for vertical incidence if the field ] &9%' 4L M. Levine. “Dif . i c

: : - . Kraus and L. M. Levine, “Diffraction by an elliptic coneCommun.
point and the source point of the sc_att_ered fle_ld are far awa[ff Pure Appl. Math, vol. XIV. pp. 4968, 1961.
from each other (Fig. 6). If they coincide—this happens fquo] J. A. Stratton, Electromagnetic Theory New York: McGraw-Hil,
example in therz plane ford = 180° [Fig. 6(c)]—the UTD 1941.

| .p fail h P . f [ 'gl . ( )(1 . bll] J. K. M. Jansen, “Simple periodic and nonperiodic léafanctions and
_SO _Ut'on al _S- T_ e compg_rlson or axia |nC|_ence_(graZ|n their application in the theory of conical waveguides,” Ph.D. dissertation,
incidence) in Fig. 7 additionally shows a slight difference  Eindhoven Univ. Technol., Eindhoven, The Netherlands, 1976.

; ; ; ; [12] J. Boersma and J. K. M. Jansen, “Electromagnetic field singularities at
hear the baCI.(SC.att.e”ng d|_rect|0n both in hheplane andyz the tip of an elliptic cone,” Dept. Math. Comput. Sci., Eindhoven Univ.
plane. But axial incidence is also the worst case where a UTD  1gchnol., The Netherlands, EUT Rep. 90-WSK-01, 1990.
solution can be used. Because of wedge diffraction phenométi C. Brezinski and M. Redivo Zagli&xtrapolation Methods, Theory and

; Practice Amsterdam, The Netherlands: North-Holland, 1991.
at the two edges f(_)rmln_g the qu‘r_"r_ter plane, tWO_ K_el_ler con E. J. Weniger, “Nonlinear sequence transformations for the acceleration
occur where the diffraction coefficient tends to infinity, €.g., ~ of convergence and the summation of divergent seri@sshput. Phys.
for axial incidence we pass through one of them in the Rep, vol. 10, pp. 189-371, 1989. _ ,
lane atd = 90° [Fi 7(d)] The reason for the observeo[ls] N. Kinayman and M. I. Aksun, “Comparative study of acceleration
p_ - - g. o . ) techniques for integrals and series in electromagnetic problerasiio
discrepancies is that the multipole solution does satisfy the sci, vol. 30, no. 6, pp. 1713-1722, 1995.
boundary conditions whereas the UTD solution does not. Nd! V. Krebs, “Sphifische Multipolentwicklung von Beugungsfeldern des
. . . _ elliptischen Kegels und ihre numerische Auswertung mit Hilfe von

that with the kn0W|que of the diffraction coefficients the RCS Reihentransformationen,” Ph.D. dissertation, Ruhr-Univar&tichum,
o, /A? can also easily be calculated. Germany, 1997.

In the case of scattering by an elliptic cone, the polarization-
independent PO-based solution by Blume and Kahl [5] for
the RCS of this object is only an approximation that lies
between the exact data for the two polarizations (Fig. €
Similar to the circular cone a reflection boundary occurs
elliptic cones. In the:z plane we meet this reflection boundan
at Ypp = m — 2a,; in the yz plane we meet this reflection

boundary atigp = = — 2«,, (Fig. 8).
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