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Representation of Electromagnetic Fields
over Arbitrary Surfaces by a Finite

and Nonredundant Number of Samples
Ovidio M. Bucci, Fellow, IEEE, Claudio Gennarelli, and Catello Savarese

Abstract—In this paper, it is shown that the electromagnetic
(EM) field, radiated or scattered by bounded sources, can be
accurately represented over a substantially arbitrary surface by
a finite number of samples even when the observation domain
is unbounded. The number of required samples is nonredundant
and essentially coincident with the number of degrees of freedom
of the field. This result relies on the extraction of a proper phase
factor from the field expression and on the use of appropri-
ate coordinates to parameterize the domain. It is demonstrated
that the number of degrees of freedom is independent of the
observation domain and depends only on the source geometry.
The case of spheroidal sources and observation domains with
rotational symmetry is analyzed in detail and the particular cases
of spherical and planar sources are explicitly considered. For
these geometries, precise and fast sampling algorithms of central
type are presented, which allow an efficient recovery of EM fields
from a nonredundant finite number of samples. Such algorithms
are stable with respect to random errors affecting the data.

Index Terms—Electromagnetic fields, sampling methods.

I. INTRODUCTION

SAMPLING representations of radiated or scattered fields
are usually more convenient and efficient than those based

on modal or asymptotic expansions since the expansion coef-
ficients are the field samples (i.e., directly available quantities)
and the basis functions are simple and universal. Accordingly,
they can be used on any observation surface.

Sampling techniques have long been applied to antenna
problems, although heuristically and with great data redun-
dancy, but only recently have they received a rigorous the-
oretical assessment. This was allowed by the demonstration
[1] that electromagnetic (EM) fields radiated or scattered by
finite sources, enclosed in a sphere of radiusa, and observed
on an analytical surfaceM external to it can be well approx-
imated by spatially bandlimited functions, provided the phase
propagation factorexp(�j�r), where� is the wavenumber
and r the distance from the sphere center, is extracted from
the field expression and a proper parameterization is used
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Ingegneria Elettrica, Universitá di Salerno, Fisciano (Salerno), 84084 Italy.

C. Savarese is with the Istituto di Teoria e Tecnica delle Onde Elettromag-
netiche, Istituto Universitario Navale, Napoli, 80133 Italy.

Publisher Item Identifier S 0018-926X(98)02264-9.

to describeM. Indeed, for large scatterers(�a � 1), the
band-limitation error exhibits a step-like behavior decreasing
more than exponentially as the bandwidth exceeds a critical
value, practically equal to�a. Accordingly, the “reduced”
field F(rrr) = E(rrr) exp(j�r) can be described by functions
bandlimited to�0�a where�0 is a factor slightly greater than
unity. Consequently, sampling interpolation techniques can be
used to represent the field and can be applied to antenna
pattern evaluation as well as to near-field far-field (NF-FF)
transformation techniques. To this end, by taking advantage
of the above properties, efficient sampling interpolation al-
gorithms of central type have been developed for several
geometries. These algorithms are optimal since they minimize
the truncation error for a given number of retained samples
and, as compared with the cardinal series expansions, are more
stable with respect to errors affecting the data. Finally, starting
from these expansions, accurate, computationally manageable,
and stable sampling algorithms appropriate to nonuniform
sample distributions over various surfaces have been proposed.
A review of the more relevant results can be found in [2].

In the case of a spherical observation domain centered on
the source, the number of required samples is finite regardless
of the sphere size and coincides essentially with the number
of degrees of freedom of the field [3], i.e., the number of
independent parameters necessary to represent it with a given
accuracy outside the smallest sphere enclosing the source.
This “nonredundancy” is not shared by the available sampling
representations over nonspherical surfaces. In the case of
unbounded surfaces such as the plane and the cylinder, the
number of required samples increases with the extension of
the region wherein the field is significant, which can lead to
a large redundancy. Moreover, the hypothesis that the source
is contained in a sphere is not always the most natural one.
For instance, for aperture-type antennas, this assumption does
not make it possible to consider observation domains close to
the antenna, which can be a relevant practical drawback and
again leads to redundancies.

This paper aims to overcome the above drawbacks, obtain-
ing efficient representations of EM fields, which require a finite
and nonredundant number of samples, even when the source
is not spherical and the observation domain is unbounded.

We stress that while in “direct” problems the redundancy
of the representation affects the efficiency but not the stability
of the algorithms, the situation is completely different when
dealing with “inverse” problems such as inverse scattering,
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phase retrieval, image restoration, and antenna synthesis. In
fact, the ill-posedness of these problems makes it impossible
to recover, from unavoidably inaccurate data, a number of
independent parameters larger than the number of degrees of
freedom of the field [4].

In Section II, with explicit reference to the source and
the observation domain geometry, the approach developed
in [1] is generalized to establish the proper phase factor to
be extracted from the field expression and the appropriate
parameterization of the observation surface. Furthermore, the
number of degrees of freedom is established for sources
enclosed in a convex domain with rotational symmetry and a
“natural” coordinate system is introduced to describe the field.
In Section III, the case of spheroidal sources is considered in
detail together with the particular cases of spherical and planar
sources. Interpolation formulas of central type are established
in Section IV, wherein numerical examples of recovery of
radiated fields from nonredundant samples are also shown.
Some conclusions are collected in Section V.

II. OPTIMAL PARAMETERIZATION AND

DEGREES OFFREEDOM OF EM FIELDS

Since any observation surfaceM can be described by two
families of coordinate curves, let us consider first the electric
field radiated by an arbitrary finite source over an analytical
curve C. In the frequency domain andexp(j!t) convention,
we have (Fig. 1)

E(rrr) = �
j��

4�

Z
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�
I +

rr

�2
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exp(�j�R)
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� JJJ(rrr0) drrr0 =
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0) � JJJ(rrr0) drrr0 (1)

whereI is the identity matrix,JJJ(rrr0) is the (true or equivalent)
source current density,� is the free-space impedance,G0 is
the dyadic Green function,R = jrrr� rrr0j, andV is the volume
occupied by the source.

Let us now define the “generalized reduced field” overC as

F(�) = E(�) exp[j (�)] (2)

whererrr = rrr(�) is an arbitrary parameterization of the curve
and is a phase function (both analytical) to be determined.
Accordingly
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where


(�; rrr0) =  (�) � �R(�; rrr0): (4)

The best approximation (in mean-square norm) ofF with a
function bandlimited tow is1

Fw =
1

�

sinw�

�
�F(�) (5)

1The Dirichlet kernel should be used in the case of closed curves.

Fig. 1. Geometry of the problem.

where the asterisk stands for convolution. The corresponding
error is

�F(�) =Fw(�)� F(�) =

Z
V

[Gw(�; rrr
0)� G(�; rrr0)]

� JJJ(rrr0) drrr =

Z
V

�G(�; rrr0) � JJJ(rrr0) drrr0 (6)

whose modulus is sharply bounded as follows:

j�F(�)j � max
rrr02V;�

j�G(�; rrr0j

Z
V

jJ(rrr0)j drrr0: (7)

�G can be asymptotically evaluated by the steepest descent
method in a way similar to that exploited in [1]. The stationary
points are given by the condition

�w +
@

@�

(�; rrr0) = �w +

@

@�
[ (�) � �R(�; rrr0)] = 0: (8)

By paralleling the reasoning in [1], it turns out that for large
sources and observation domains not too nearV , the band-
limitation error (7) exhibits a step-like behavior and becomes
vanishingly small as the bandwidthw exceeds the critical value

W = max
rrr0;�

����@
@�
���� = max

�

�
max
rrr0

����@
@�
����
�
= max

�
w(�): (9)

This value is naturally identified as the effective bandwidth
corresponding to the chosen parameterizationrrr = rrr(�) and
phase function =  (�). Now, for a given curve parameteri-
zation, it is clear that to obtain a nonredundant representation,
we must choose the phase factor in such a way as to minimize
for any � the “local” bandwidthw(�). From (4) and (9), we
find that this is accomplished by making the derivative of
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 equal to the average between the maximum and minimum
values of�@R=@� whenrrr0 assumes all the positions inV , i.e.,

d (�)
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(10)

wheres is the arclength,̂ttt is the unit-vector tangent toC at
P (�), andR̂RR is the unit vector pointing fromrrr0 to P (Fig. 1).
Therefore, the required phase factor to be singled out is
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Once has been chosen according to (11), by taking (4)
and (9) into account we get

w(�) =
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Let us now consider the optimal choice of the parame-
ter �. The choice made in [1], i.e., a normalized arclength
generally causes the local bandwidthw to be variable with
�. As a consequence, the sample spacing, which is dictated
by the bandwidthW , becomes unnecessarily small in the
zones, whereinw(�) is smaller than its maximum value.
This obviously leads to redundancy in the corresponding
sampling representations. This suggests determining� by
ensuring that the local bandwidthw(�) is constant and equal
to W . Accordingly

� = �(s) =
�

2W
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@s

�
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Note that a change ofW is reflected in a simple change of
scale in the parameterization and vice versa. Expressions (11)
and (13) give the optimal phase factor and parameterization.

In order to take the source geometry into account in a
realistic and flexible way, let us consider (instead of a sphere)
the smallest convex domainB with rotational symmetry,
enclosingV , and denote by� its surface and2a its diameter
(Fig. 1).

With reference to an observation curve lying on a meridian
plane�, let us denote withC0 the intersection between� and
�. Due to the involved symmetry, it is clear that the extreme
values of the quantity@R=@s = R̂RR � t̂tt in (11) and (13) occur at
the two tangency pointsP1;2

2 (Fig. 1). Denoting bys01;2 the
arclength coordinates of the pointsP1;2, we have

R1;2 = jrrr(s) � rrr0(s01;2)j = R(s; s01;2) = R[s; s01;2(s)] (14)

hence
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2It is assumed that̂ttt is external to the cone of vertexP tangent to�.

because@R=@s0
1;2

= �1; being P1;2 tangency points. Ac-
cordingly
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Taking (11) and (13) into account, we immediately get
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Relations (17) and (18) reduce the evaluation of and� to
that of quantities having a simple geometrical meaning. They
show that and� at the pointP depend only on the point itself
and not on the considered curve through it. Hence, the couple
( ; �) provides a coordinate system for the points (external to
�) on any meridian plane. This “natural” coordinate system
is orthogonal and from relations (15)–(18) we get
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Accordingly, the coordinate curves throughP are perpen-
dicular to R̂RR1 + R̂RR2 and R̂RR1 � R̂RR2, respectively, and, hence,
orthogonal. Putting the constants in (17) and (18) equal to zero,
the curve = 0 coincides withC0 and the coordinate curve
� = 0 intersectsC0 at s0 = 0. As P goes to infinity, we have
 � �r so that is a (normalized) radial-like coordinate. On
the other hand,� is an angle-like coordinate whose variation
whenP encircles the source once equals�`0=W; `0 being the
length of C0. This suggests choosingW = �`0=2� so that�
covers a2� range.

The above property implies that the number of points at
Nyquist spacing�� = �=W lying on any meridian closed
curve encirclingC0 is finite, constantand equal to

N� =
�`0W

W�
=

2`0

�
: (20)

Accordingly, the field over such a curve can be represented
with a sampling expansion using a number of samplesn
slightly larger thanN�. By paralleling the reasoning of [3],
it turns out that the corresponding error goes to zero exponen-
tially with n�N� provided that
 and� are indeed analytical
overC, i.e., if (and only if) bothC andC0 are analytical closed
curves. The same conclusions also hold if we are interested
in representing the field only on a segment ofC provided
that some few guard samples outside the interval of interest
are retained or more sophisticated representations involving
spheroidal functions are adopted [3]. When the hypothesis on
C andC0 are not satisfied, the asymptotic behavior is dominated
by the nonregular points of
(�) and the error decreases only
algebraically. Accordingly, sampling representations can still
be used but the bandlimitation error can assume larger values
in the neighborhood of those points of the observation curve
wherein
 or � (or both) are not regular.
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Fig. 2. Geometry relevant to an azimuthal observation circumference.

Let us now turn to consider an azimuthal circle (see Fig. 2).
Due to the symmetry, the extreme values of@R=@s are
opposite and constant along the circle. It thus follows from
(11) and (13) that the phase function is constant and that
any parameter proportional to the arclength is optimal. It is
convenient to choose for the phase function the value of
 corresponding to the considered circle in the previously
introduced meridian coordinate system( ; �) and to choose
the azimuthal angle' as parameter. In this way, the triple
( ; �; ') constitutes an orthogonal coordinate system in the
space outside the surface� enclosing the source. Appendix A
shows that the bandwidth relevant to a circle of radius� and
center(0; 0; z) is given by

W' =W'(�; z) =
�

2
max
z0

(R+ �R�)

=
�

2
max
z0

(
p
(z � z0)2 + (� + �0(z))2

�
p
(z � z0)2 + (� � �0(z0))2) (21)

wherein�0(z0) is the equation of� in cylindrical coordinates.
It is worth noting that, as can be shown by simple geometrical
reasonings, the maximum is attained on that zone of surface
lying on the same side of the observation circle with respect
to its maximum transverse circle.

It can be easily shown that the following sharp bound holds
for W':

W' � ��0max (22)

�0max being the maximum transverse radius of�.
As the circle moves toward infinity, we have

W' �
�2+z2!1

��0max
�p

�2 + z2
= ��0max sin# (23)

# being the polar angle of the circle points. On the other hand,
as the circle shrinks to�, direct application of the triangular
inequality to (21) gives

W' �
�!�0(z)

��0(z): (24)

According to the above results, by applying sampling ex-
pansion along' and �, we can represent the field over any

observation surface (with the same rotational symmetry as the
source) in terms of afinite number of samples.

For large sources, we can choose a surface~� that is simul-
taneously sufficiently far from� (in terms of wavelengths)
for asymptotic analysis to apply, yet sufficiently near to it (in
terms of source diameter2a) to make the estimate (24) forW'

valid. For such a surface, the overall numberN of samples at
Nyquist rate is given by

N =

N�=2X
i=1
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0
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�

�

W
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Z 2�

0
d'

Z �`0=2W

0
�0(�) d� (25)

wherein~�(�) and�0(�) denote the transverse radius of~� and
�, respectively. Taking (18) into account, we get from (25)

N �=
�2

�2

Z 2�

0

d'

Z `0=2

0

�0(s0) ds0 =
area of(�)
(�=2)2

: (26)

Because the tangential components over a surface enclosing
the source determine the field everywhere, we conclude that
the number of degrees of freedom of the field is essentially
twice the number of sampling points, i.e.,2N . This result has a
very simple and appealing physical interpretation: the degrees
of freedom of the fields radiated byarbitrary sources inside
� are substantially coincident with those of an array of�=2
spaced elements conforming to�. Leaving aside the relevance
of this result in the areas of antenna synthesis, microwave
diagnostics, and phase recovery, it is clear that a nonredundant
field representation should use a number of parameters only
slightly larger than that given by relation (26). As is shown in
the next section with reference to ellipsoidal sources, sampling
representations enjoy this property.

III. SPHEROIDAL SOURCES

Let us now consider sources enclosed in a spheroid of
rotation with major and minor semi-axesa andb, respectively.
According to (19), the coordinate curves = const and� =
const through a pointP in the meridian plane(x; z) bisect the
angles formed by the tangents fromP to C0 (see Fig. 3). Now,
in a centered conical section, the angles formed by the tangents
from an external point and those formed by the straight lines
from that point to the foci have the same bisectors. Because
the bisectors of the lines from a pointP to the foci coincide
with the tangent and the normal to the confocal ellipse through
P , we can conclude that the coordinate curves of the system
( ; �) are the families of ellipses and hyperbolas confocal
to C0. This implies that and � are functions only of the
elliptic coordinatesv = (r1 + r2)=2a

3 andu = (r1 � r2)=2f ,
respectively,r1;2 being the distances fromP to the foci and
2f the focal distance (see Fig. 3). In particular,� is equal
to �s0=W; s0 being the abscissa of the pointP0 wherein the

3With the choicev = (r1 + r2)=2a instead of the more usualv =
(r1 + r2)=2f , the equation ofC0 is v = 1 irrespective of its eccentricity.
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Fig. 3. The case of spheroidal sources.

hyperbola throughP intersectsC0 (see Fig. 3) and can
be evaluated by considering a point on the symmetry axis.
By lengthy but straightforward computations, with the choice
W = �`0=2� we get

 = �a

"
v

r
v2 � 1

v2 � "2
�E

 
cos�1

r
1� "2

v2 � "2
j"2

!#
(27)

� =
�

2
�

�
E(sin�1 uj"2)=E(�=2j"2) + 1 prolate spheroid
E(sin�1 uj"2)=E(�=2j"2) oblate spheroid

(28)

wherein" = f=a is the eccentricity ofC0 andE(�j�) denotes
the elliptic integral of second kind [5]. Note that the parameters
u andv appearing in (27) and (28) have a simple geometrical
meaning:(av) is the major semi-axis of the confocal ellipse
throughP , whereas

sin�1 u =

�
#1 � �=2 prolate case
#1 oblate case

(29)

#1 being the polar angle of the asymptote to the hyperbola
throughP (see Fig. 3). The choice of the pertinent branch of
sin�1 is fixed by #1.

Let us now consider the bandwidthW' relevant to an
azimuthal circle intersecting the meridian plane at the point
( ; �). Appendix B shows thatW' is independent of , i.e.,
the same bandwidth corresponds to all circles with the same
value of�. Accordingly,W'(�) can be evaluated by moving
the circle to infinity along the hyperbola� = const; so taking
(23) into account, we get

W'(�) =

�
�b sin#1(�) prolate case
�a sin#1(�) oblate case

(30)

wherein the asymptotic angle#1 is obtained by inverting (28)
and taking (29) into account.

SinceW' depends only on�, the number of samples at the
Nyquist rate overanyrotational surface is constant and is given
(for large sources) by relation (26). Accordingly, sampling
representations over such surfaces are nonredundant.

The above results are now specified to the remarkable cases
of “spherical” or planar sources. The first case can be handled

by considering a spheroid with eccentricity" = 0. Accord-
ingly, the curves = const are circumferences, whereas the
� = const curves are radial lines. For an observation curve
lying on a meridian plane we getW = �`0=2� = �a and

 = �
p
r2 � a2 � �a cos�1(a=r) (31)

� =# (32)

sincev = r=a; #1 = # andE(#j0) = # [5].
When the observation curve is an azimuthal circle, we get

from (30)

W' = �a sin #: (33)

The case of a planar source, e.g., a diskD of radiusa, can
be treated as an oblate spheroid with eccentricty"! 1. With
reference to an observation curve lying on a meridian plane we
haveW = �`0=2� = 2�a=� and taking into account that [5]

E(#1j1) =

Z #1

0

j cos � j d�

=

8<
:
�2� sin#1 �3�=2<#1<��=2
sin#1 ��=2<#1<�=2
2� sin#1 �=2<#1< 3�=2

(34)

we get

 = �a(v � 1) = �

�
r1 + r2

2
� a

�
(35)

� =
�

2
�

8><
>:
�2� u #<��=2

u ��=2 � # � �=2; u =
r1 � r2
2a

2� u #>�=2:

(36)

For an azimuthal circle, we get directly from (21)

W' = �

����r1 � r2

2

����: (37)

Note explicitly that � is not analytic for # = ��=2.
Accordingly (see Section II), the band-limitation error can be
significantly higher near the equatorial plane, i.e., the plane
containing the disk, than elsewhere. The same behavior is
also expected in the case of very flat ellipsoids, wherein the
singularities move outside the real axis of the complex# plane,
but are still very near to it. From the practical viewpoint, this
drawback can be easily overcome when representing the field
near the equatorial plane by considering the disk enclosed in
a sphere of the same radius or in a confocal oblate spheroid
and switching to the corresponding parameterization [see (31)
and (32)].

IV. A PPLICATION TO FIELD RECONSTRUCTION

Previous results can be used to obtain fast and accurate
sampling interpolation formulas from a nonredundant number
of samples. While cardinal formulas could be used, central
sampling series are more advisable from the point of view
of numerical efficiency and make it possible to control error
propagation from high- to low-level field regions [6], [7]. This
requires a moderate increase of the sampling rate with respect
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Fig. 4. Spherically modeled source. Amplitude of the fieldy component on the linex = 0; z = 15�. Solid line: exact field; crosses: interpolated.

to the Nyquist rate corresponding to the adopted bandwidth
�0W being�0> 1 the factor that controls the band-limitation
error.

The general expression of such a sampling representation
over a generic curve is

FFF (�) =

no+qX
n=no�q+1

FFF (�n)DM (� � �n)
P (� � �n) (38)

wherein �n = n�� = 2�n=(2M + 1); �> 1 being the
oversampling factor,no = Int(�=��)4 is the index of the
sample closest to the output point, 2q is the number of retained
samples andM = Int(��0W ).

In (38),DM (�) denotes the Dirichlet polynomial of degree
M

DM (�) =

sin

�
2M + 1

2
�

�
(2M + 1) sin(�=2)

(39)

whereas
P (�) is an appropriate window function controlling
the truncation error whose explicit expression is given in [6]
and [7].

By applying (38) to meridian curves and azimuthal circles,
nonredundant sampling expansions for various sources and
observation geometries can be obtained [8]–[10].

In the following, two representative numerical tests are
presented in order to validate the effectiveness of the proposed
representations. In the first one, the source is considered as
enclosed in a ball, i.e., (31) and (32) are used for and�, while
in the second one, the true source geometry is explicitly taken
into account and, consequently, (35) and (36) are adopted.
The examples are relevant to a nonfocusing planar circular
array with diameter2a = 24� radiating a highly variable field
to simulate severe reconstruction conditions. Its elements are
elementary Huygens sources linearly polarized along they

4Int(x) denotes the integer part ofx.

axis, radially and azimuthally spaced by 0.6�. Only 20% of
them (randomly distributed) are active. Moreover, the array is
symmetrical and symmetrically excited with respect to thex
axis. The excitation amplitudes are tapered with respect to both
the axes with acos2 law and the phases are the superposition of
a random term uniformly distributed in the range(��=2; �=2)
and of ax-dependent cubic one.

With reference to the first example, Fig. 4 shows the recon-
struction of the near-fieldy component (the most significant
one) along the linex = 0; z = 15�. The displayedy range
subtends an angle equal to2�78� = 156�. The overall number
of employed samples (theq = 5 guard samples included) is 95,
which is remarkably lower than the 305 required by applying
the previous sampling representation [6].

To obtain a quantitative assessment of the algorithm perfor-
mance, the maximum and mean-square reconstruction errors
(normalized to the field maximum on this line) have been
computed by comparing the reconstructed and the exacty
component of the field, excluding the zone covered by the
guard samples. Some values of the mean-square error are
reported in Table I; the maximum error exhibits a quite similar
behavior, being�10 dB higher. As can be seen, the attainable
precision is very high in spite of the fact that
(#) is not
analytic for# = �=2. This is obviously related to the behavior
of the field, which goes to zero as# approaches�=2.

Let us now consider the reconstruction of the field over
a sphere by taking explicitly into account the true source
geometry. Fig. 5 (dots) shows the near-field reconstruction
along the H plane cut over a sphere of radius 25�. As can be
seen, notwithstanding the number of samples is halved with
respect to a “spherical” modeling, the reconstruction is very
good except for the neighborhood of# = 90� wherein� is not
regular. As stated in the previous section, we can obviate such
an obstacle by adopting in this neighborhood the representation
relevant to a spherical source. This is demonstrated in the same
figure wherein triangles show the reconstruction obtained by
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Fig. 5. Planar source. H plane cut over a sphere of radius 25�. Solid line: exact field; dots: interpolated; triangles: interpolated from spherically modeled source.

TABLE I
MEAN-SQUARE RECONSTRUCTION ERROR

(DECIBELS) ON THE LINE x = 0; z = 15�

switching to the “spherical” source in the interval [82�, 110�].
Finally, it must be stressed that an extensive numerical

analysis has also assessed that, as expected, the above rep-
resentations enjoy the same stability with respect to errors
affecting the data as previously developed ones [7].

V. CONCLUSIONS

The problem of developing nonredundant representations
of radiated or scattered EM fields over curves or surfaces
has been thoroughly investigated and fully resolved. It has
been shown that EM fields can be accurately represented by
a finite number of samples, whatever the observation domain,
even if unbounded. Such a number is essentially coincident
with the number of degrees of freedom of the field, which is
independent of the observation domain and depends only on
the source geometry. Spheroidal sources have been analyzed
in detail and the cases of spherical and discoidal sources have
been explicitly dealt with.

Precise, fast, and stable sampling algorithms of central
type have been applied to these source geometries on simple
observation domains. The approach can be suitably extended to
other observation domains and source geometries and can also

be applied to the interpolation from power samples provided
that the sample spacings are halved since, in this case, the
bandwidth doubles.

It must be stressed that these results have a significant
relevance in NF-FF transformation techniques and in other
direct problems and become even more relevant in the “inverse
problems” area where, due to the ill-posedness of the problem,
it is mandatory to represent the EM field in a nonredundant
way.

APPENDIX A
THE EQUIVALENT BANDWIDTH FOR AN AZIMUTHAL CIRCLE

Let us consider an azimuthal circle of radius� and center
(0; 0; z) (see Fig. 2). The Cartesian coordinates of a pointP
over this circle are(� cos'; � sin'; z), whereas those of a
point P 0 belonging toV are (�0 cos'0; �0 sin'0; z0). Because
the phase factor and the local bandwidth are independent of
the angle', we can assume, without any loss of generality,
' = 0. Accordingly

@


@'

����
'=0

= ��
@R

@'
=

���0 sin'0p
�2 + �02 + (z � z0)2 � 2�0� cos'0

:

(40)

As the extreme values of@R=@' are opposite and attained
on �, we have from (9)

W' = max
rrr02�

@


@'

����
'=0

= max
z0

 
max
'0

���0 sin'0p
�2 + �02 + (z � z0)2 � 2�0� cos'0

!

(41)

wherein�0 = �0(z0) according to the equation of the surface�.
It can be verified that the maximum with respect to'0 is

attained when (42), as shown at the top of the next page, and
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cos'0 = cos'0

M =
[�2 + �02 + (z � z0)2]�

p
[�2 + �02 + (z � z0)2]2 � 4�2�02

2��0
(42)

is given by

_
M = max
'0

@


@'

����
'=0

= �
q
��0 cos'0

M : (43)

As

(R�)2 = (z�z0)2+(���0)2 = (z�z0)2+�2+�02�2��0 (44)

we get from (42) and (43) by straightforward passages

_
M =
�

2
(R+ � R�) =

�

2
(
p
(z � z0)2 + (� + �0(z0))2

�
p
(z � z0)2 + (� � �0(z0))2): (45)

By substituting into (41), we get (21).

APPENDIX B
BANDWIDTH PROPERTIES OFAZIMUTHAL

CIRCLES FOR SPHEROIDAL SOURCES

Due to the rotational symmetry, the analysis is carried out
with reference to thexz plane.

Let us focus on a given bandwidthW' and regard the source
S as a sum of elementary disks having radius�0 and abscissaz0

(see Fig. 6). For each diskD(z0), let us consider the hyperbola
�(R+�R�)=2 = W'; which exists if�0(z0) � W'=�. As the
disk varies alongz0, the hyperbolas relevant to the bandwidth
W' describe a family with parameterz0. This family has an
envelope� , which divides the plane into two parts; we call
the first one, containing the positivez axis, theinner zone and
the second one we call theouter zone. By construction, for
all points in the inner zone, we have�(R+ � R�)=2<W',
whereas for each point in the outer zone there exists a disk
such that�(R+ � R�)=2>W'. Accordingly, from (21) we
conclude that an azimuthal circumference, which intersects
the xz plane in a point belonging to the inner zone, has
a bandwidth less thanW', whereas a circumference, which
passes through a point belonging to the outer zone, has a
bandwidth greater thanW'. Consequently,� is the locus of
the azimuthal circles with bandwidthW'.

As is well known, the envelope� can be evaluated by
eliminating the parameterz0 between the equation of the
hyperbola family and its derivative (with respect toz0) equated
to zero, i.e., by solving the following system:

F (x; z; z0) =
x2

w2
�

(z � z0)2

f2(z0) �w2
� 1 = 0

@F

@z0
=

2(z � z0)[f2(z0) �w2] + (z � z0)2@f2=@z0

[f2(z0)� w2]2

=0 (46)

wherew =W'=� andx = f(z0) is the equation of the curve
C0.

Fig. 6. Relevant to the bandwidth properties of azimuthal circles for sphe-
roidal sources.

In the case of spheroidal sources, (46) can be easily solved
and gives

z2

(a2 � b2)(1� w2=b2)
�

x2

(a2 � b2)w2=b2
� 1 = 0 (47)

for a prolate spheroid and

x2

(a2 � b2)w2=a2
�

z2

(a2 � b2)(1� w2=a2)
� 1 = 0 (48)

for an oblate one.
It can be easily recognized that (47) and (48) correspond

to coordinate curves� = const. Accordingly, the azimuthal
circles lying on the hyperbola� = const have a constant
bandwidth.
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