IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 3, MARCH 1998 351

Representation of Electromagnetic Fields
over Arbitrary Surfaces by a Finite
and Nonredundant Number of Samples

Ovidio M. Bucci, Fellow, IEEE Claudio Gennarelli, and Catello Savarese

Abstract—In this paper, it is shown that the electromagnetic to describeM. Indeed, for large scatterefsia > 1), the
(EM) field, radiated or scattered by bounded sources, can be pand-limitation error exhibits a step-like behavior decreasing
accurately represented over a substantially arbitrary surface by ,5ra than exponentially as the bandwidth exceeds a critical

a finite number of samples even when the observation domain | ticall | t A dinalv. the “red d
is unbounded. The number of required samples is honredundant value, practically equal tgfa. Accordingly, the “reduce

and essentially coincident with the number of degrees of freedom field F(r) = E(r) exp(j3r) can be described by functions
of the field. This result relies on the extraction of a proper phase bandlimited toy’ Sa wherex’ is a factor slightly greater than

factor from the field expression and on the use of appropri- unity. Consequently, sampling interpolation techniques can be
ate coordinates to parameterize the domain. It is demonstrated used to represent the field and can be applied to antenna

that the number of degrees of freedom is independent of the . . .
observation domain and depends only on the source geometry. pattern evaluation as well as to near-field far-field (NF-FF)

The case of spheroidal sources and observation domains with transformation techniques. To this end, by taking advantage
rotational symmetry is analyzed in detail and the particular cases of the above properties, efficient sampling interpolation al-
of spherical and planar sources are explicitly considered. For gorithms of central type have been developed for several
these geometries, precise and fast sampling algorithms of central g oo metries. These algorithms are optimal since they minimize
type are presented, which allow an efficient recovery of EM fields . . .

from a nonredundant finite number of samples. Such algorithms the truncation error_for a given numbgr of retalned samples
are stable with respect to random errors affecting the data. and, as compared with the cardinal series expansions, are more
stable with respect to errors affecting the data. Finally, starting
from these expansions, accurate, computationally manageable,
and stable sampling algorithms appropriate to nonuniform

|. INTRODUCTION sample distributions over various surfaces have been proposed.

MPLING representations of radiated or scattered field® review of the more relevant results can be found in [2].
re usually more convenient and efficient than those based” the case of a spherical observation domain centered on
on modal or asymptotic expansions since the expansion cdB source, the number of required samples is finite regardless
ficients are the field samples (i.e., directly available quantitie) the sphere size and coincides essentially with the number
and the basis functions are simple and universal. According)/, degrees of freedom of the field [3], i.e., the number of
they can be used on any observation surface. independent parameters necessary to represent it with a given
Sampling techniques have long been applied to anterffgfuracy outside the .smallest sphere enclosjng the source.
problems, although heuristically and with great data redufhis “nonredundancy” is not shared by the available sampling
dancy, but only recently have they received a rigorous theepresentations over nonspherical surfaces. In the. case of
oretical assessment. This was allowed by the demonstratij#Pounded surfaces such as the plane and the cylinder, the
[1] that electromagnetic (EM) fields radiated or scattered By!Mber of required samples increases with the extension of
finite sources, enclosed in a sphere of radipand observed the region wherein the field is significant, Whlch can lead to
on an analytical surfacé! external to it can be well approx- 2 large r.edun.dancy. More'over, the hypothesis that the source
imated by spatially bandlimited functions, provided the pha&® contained in a sphere is not always the most natural one.
propagation factorxp(—jgr), where 3 is the wavenumber FOT instance, for aperture-type antennas, this assumption does
and r the distance from the sphere center, is extracted frdiqt make it possible to consider observation domains close to

the field expression and a proper parameterization is udb§ antenna, which can be a relevant practical drawback and
again leads to redundancies.
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phase retrieval, image restoration, and antenna synthesis. In
fact, the ill-posedness of these problems makes it impossible
to recover, from unavoidably inaccurate data, a number of

independent parameters larger than the number of degrees of
freedom of the field [4].

In Section Il, with explicit reference to the source and
the observation domain geometry, the approach developed
in [1] is generalized to establish the proper phase factor to
be extracted from the field expression and the appropriate
parameterization of the observation surface. Furthermore, the
number of degrees of freedom is established for sources
enclosed in a convex domain with rotational symmetry and a
“natural” coordinate system is introduced to describe the field.
In Section lll, the case of spheroidal sources is considered in
detail together with the particular cases of spherical and planar
sources. Interpolation formulas of central type are established
in Section IV, wherein numerical examples of recovery of
radiated fields from nonredundant samples are also shown.
Some conclusions are collected in Section V.

Il. OPTIMAL PARAMETERIZATION AND
DEGREES OFFREEDOM OF EM FIELDS

Since any observation surfagel can be described by two
families of coordinate curves, let us consider first the electric
field radiated by an arbitrary finite source over an analyticaiy. 1. Geometry of the problem.
curveC. In the frequency domain anekp(jwt) convention,
we have (Fig. 1)

. . where the asterisk stands for convolution. The corresponding
S [I—i— ﬂ] exp(—JjPAR) error is

B = -7 3 R
AP =F. ()~ F(6) = [ [Gu(e,r) ~ Gl )

~J(r') dr’:/ Go(r,7) - J(r') dr 1)

v / _ N / /

wherel is the identity matrixJ(r') is the (true or equivalent) () dr= /V AG(E, ) (') dr ()
source current density, is the free-space impedandg is
the dyadic Green functior = |r— /|, andV is the volume

occupied by the source. / / /
Let us now define the “generalized reduced field” ogexs [AFO] < rrllé%/),(g [AG(E 7 v ()] . 0

whose modulus is sharply bounded as follows:

F(&) = E(¢) exp[j¥(¢)] (2) AG can be asymptotically evaluated by the steepest descent
énethod in a way similar to that exploited in [1]. The stationary

wherer = r(¢) is an arbitrary parameterization of the curv
Bomts are given by the condition

andy is a phase function (both analytical) to be determine

According|
o | ot %7(6, ") = tu %[1/)(5) —BR(E,)] = 0. (8)
F(e) = — JB¢ [ exp(jv)
r fy R By paralleling the reasoning in [1], it turns out that for large
L+ Rexp( 6R)VV eXp( JOR) sources and observation domains not too néaithe band-
PY 52 R limitation error (7) exhibits a step-like behavior and becomes
vanishingly small as the bandwidthexceeds the critical value
() dr = / GrE), ) - I dr (3
v _ oy & _
where W= max 7€ ‘ max [max 7€ H = max w(é). (9)
(& 7)) =€) — BR(E, 7). (4)  This value is naturally identified as the effective bandwidth

corresponding to the chosen parameterizatios =(¢§) and
phase function) = (§). Now, for a given curve parameteri-
zation, it is clear that to obtain a nonredundant representation,
*F(§) (5) we must choose the phase factor in such a way as to minimize
< for any ¢ the “local” bandwidthw(€). From (4) and (9), we
LThe Dirichlet kernel should be used in the case of closed curves. find that this is accomplished by making the derivative of

The best approximation (in mean-square normfFafith a
function bandlimited tow is!

sin wé
F“) =

2| =
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¥ equal to the average between the maximum and minimumacausedRR/9s| , = F1, being P », tangency points. Ac-
values of 3 R/9¢ whenr’ assumes all the positions A, i.e., cordingly

dy() g oR . OR]|ds OR dRy 5 | dsio  d(Ris%s),)
g€ 2" TR G | Bsl, T ds T ds s 19
6 . A . o dS 1,2
= §[H}?}XR i+ H}.I,HR't]E (10) Taking (11) and (13) into account, we immediately get
wheres is the arclength{ is the unit-vector tangent t6 at 0 :ﬁ[Rl + o + 51— 5/2] + const (17)
P(¢), andR is the unit vector pointing from’ to P (Fig. 1). 2 2
. . . _ / /
Therefore, the required phase factor to be singled out is ¢ = B [Rl Ry | s+ 52] + const. (18)
w 2 2
= /d
ve) / ve) Relations (17) and (18) reduce the evaluationyadnd¢ to
g [o® OR AR that of quantities having a simple geometrical meaning. They
=3 /0 max o= = min == ds + const. (11)  ghow thaws andé at the point? depend only on the point itself

_ ) and not on the considered curve through it. Hence, the couple
Oncey has been chosen according to (11), by taking (4), ¢) provides a coordinate system for the points (external to

and (9) into account we get ¥) on any meridian plane. This “natural” coordinate system
3 oR . OR]ds is orthogonal and from relations (15)—(18) we get
O = e T e o
p 5 5 i d¢_ﬁa<R1+R2>_ﬁ(R1+R2) i
D linax ki — min 0. &\ )7\ T )
Q[II;E}XR i H11mllIlR 1] T (12) s Js

Let us now consider the optimal choice of the parame- ﬁ — ﬁ £<R1 — R2> — ﬁ B — Ry t. (19)
ter £. The choice made in [1], i.e., a normalized arclength ~ ds W s 2 w 2

generally causes the local bandwidthto be variable with ccordingly, the coordinate curves throughare perpen-
£. As a consequence, the sample spacing, which is dictagedls‘I ¢ j?y, R dR - R fivel dp hp

by the bandwidth!V, becomes unnecessarily small in the car t0 £ + fi; and A 2, FESpectively, and, hence,
zones, whereinw(€) is smaller than its maximum Value.orthogonal.Puttlng_thg constgnts/m(l?) and (18)_equa| to zero,
This obviously leads to redundancy in the correspondi c cu_rve1/; =0 (/:0|nc/|des with¢’ and the _co_or_dmate curve
sampling representations. This suggests determigingy = 0 intersect=C" at &' = 0. As P’ goes to infinity, we have

ensuring that the local bandwidih(¢) is constant and equal ¥ ~ fir so thaty 'sa (normall_zed) rad"’?‘"""e coordlnate_. Qn
to W. Accordingly the other handg is an angle-like coordinate whose variation

when P encircles the source once equalé/W, ¢ being the
B B s OR . OR length of C'. This suggests choosing’ = 3¢’ /2= so that¢
£=¢80) = W/O s T s ds. (13) covers a2r range.

The above property implies that the number of points at

Note that a change di/ is reflected in a simple change ofN quist spacingAé = /W lying on any meridian closed
scale in the parameterization and vice versa. Expressions (&i}ve encirclingC’ is finite, constanand equal to
and (13) give the optimal phase factor and parameterization. '

In order to take the source geometry into account in a
realistic and flexible way, let us consider (instead of a sphere)
the smallest convex domai? with rotational symmetry,
enclosingV’, and denote by its surface anda its diameter

gew 2

Ne = Wr A

Accordingly, the field over such a curve can be represented
) with a sampling expansion using a number of samples
(F'g'_ 1). i ) __slightly larger thanN,. By paralleling the reasoning of [3],

With reference to an observation curve lying on a meridiafyms out that the corresponding error goes to zero exponen-
planell, let us denote witlf’ the intersection betwee and tially with n — N provided thaty and¢ are indeed analytical

2. Due to the involved symmetry, it is clear that the extremg erc ., if (and only if) bothC andC’ are analytical closed
values of the quantity2/ds = R-4in (11) and (13) occur at ;ves. The same conclusions also hold if we are interested

the two tangency point#; »? (Fig. 1). Denoting bys/ , the representing the field only on a segment (bfprovided
arclength coordinates of the poinis », we have that some few guard samples outside the interval of interest
Ry o =|r(s) — 7 (s) 2)| = R(s, 5, ,) = R[s, s, ,(s)] (14) are ret_ained or more sophisticated representations invo_lving
’ ’ ’ spheroidal functions are adopted [3]. When the hypothesis on

(20)

hence C and(’ are not satisfied, the asymptotic behavior is dominated
dR, > OR AR ds\, OR ds by the nonregular points of(¢) and the error decreases only
ds  Os . gs,, ds = s N T algebraically. Accordingly, sampling representations can still

be used but the bandlimitation error can assume larger values
(19 in the neighborhood of those points of the observation curve
2|t is assumed that is external to the cone of verteR tangent tos. whereiny or ¢ (or both) are not regular.
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observation surface (with the same rotational symmetry as the
source) in terms of dinite number of samples.

For large sources, we can choose a surfadbat is simul-
taneously sufficiently far fronk (in terms of wavelengths)
for asymptotic analysis to apply, yet sufficiently near to it (in
terms of source diametér:) to make the estimate (24) fé¥,
valid. For such a surface, the overall numbBérf samples at
Nyquist rate is given by

N&/Q N&/?

—_ 27 ~ é E e
" ZW—W - Z? pE)AE
2 p1' 2w
R [T [ e e
0 0

T

B W 97 B8e' 2w )

A d d 25
e Y RIGR: (25)

Let us now turn to consider an azimuthal circle (see Fig. Zhhereinﬁ(g) and g/ (¢) denote the transverse radiusofand

Due to the symmetry, the extreme values @R/0s are x respectively. Taking (18) into account, we get from (25)
opposite and constant along the circle. It thus follows from

(11) and (13) that the phase function is constant and that N o~ ﬁ/% d /" /2 /(s) ds' = area ofX) (26)
any parameter proportional to the arclength is optimal. It is I 7 0 p o (A/2)2

convenient to choose for the phase function the value of . :
¢ corresponding to the considered circle in the previousIK Because the tangentlal C(_)mponents over a surface enclosing
introduced meridian coordinate system, ¢) and to choose the source determine the field everywhere,_we _conclude_that
the azimuthal angle> as parameter. In this way, the triIoIethe number of degrees of freedom of the field is essentially

(1, &, ) constitutes an orthogonal coordinate system in tﬁ‘é"ce t_he number of Sa”?p"”g po_lnts,_|.éN. Th'S. re.sult hasa
space outside the surfaeenclosing the source. Appendix aAVery simple and appealing physical interpretation: the degrees

shows that the bandwidth relevant to a circle of ragiuand of freedom of the fields radiated karbitrary sources inside
center (0,0, z) is given by ¥ are substantially coincident with those of an array\gg

spaced elements conformingXb Leaving aside the relevance

of this result in the areas of antenna synthesis, microwave

diagnostics, and phase recovery, it is clear that a nonredundant
s 3 WSSy field representation should use a number of parameters only
) mza}x(\/(z — APt () slightly larger than that given by relation (26). As is shown in

— \/(Z — 22 4 (p—p(#))?) (21) the next section with reference to ellipsoidal sources, sampling

representations enjoy this property.
whereiny’(2') is the equation oE in cylindrical coordinates.

It is worth noting that, as can be shown by simple geometrical m
reasonings, the maximum is attained on that zone of surface ] _ )
lying on the same side of the observation circle with respect-€t us now consider sources enclosed in a spheroid of
to its maximum transverse circle. rotation with major and minor semi-axesandb, respectively.
It can be easily shown that the following sharp bound hold¥ccording to (19), the coordinate curves= const and; =
for W,,: const through a poink in the meridian planéz, =) bisect the
angles formed by the tangents frafhto €’ (see Fig. 3). Now,
Wo < Bpimax (22) in a centered conical section, the angles formed by the tangents
from an external point and those formed by the straight lines
: o from that point to the foci have the same bisectors. Because
As the circle moves toward infinity, we have the bisectors of the lines from a poift to the foci coincide
W, - Bl P = Byl sin? (23) with the tangent and the normal to the confocal ellipse through
p24z2—o0 NAZE L P, we can conclude that the coordinate curves of the system

. . . , &) are the families of ellipses and hyperbolas confocal
¥ being the polar angle of the circle points. On the other har{té% 5) This implies thatd andp€ are funct)i/opns only of the

as the If:ircle shrinkg t&, direct application of the triangulare"iptiC coordinatess = (ry + r5)/2a® andu = (r — r2)/2/,

inequality to (21) gives respectively,r, » being the distances frorf to the foci and
~ 0 (2). (24) 2f the focal distance (see Fig. 3). In particuldrijs equal

p=r'(2) to 8s' /W, s’ being the abscissa of the poift wherein the

ACFOrding to the above results, by applying_ sampling €X-3Wwith the choicev = (r1 + r2)/2a instead of the more usual =
pansion alonge and &, we can represent the field over anyr, + 2)/2, the equation of’ is v = 1 irrespective of its eccentricity.

Fig. 2. Geometry relevant to an azimuthal observation circumference.

R

Wo = Walp,2) = 2 max(R — 1)

. SPHEROIDAL SOURCES

Proax Deing the maximum transverse radiusaf

W,
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by considering a spheroid with eccentricity= 0. Accord-
ingly, the curvesy = const are circumferences, whereas the
& = const curves are radial lines. For an observation curve
lying on a meridian plane we gé¥ = 3¢ /27 = e and

Y =pBVr2—a?— Bacos™'(a/r) (31)
£=v (32)

sincev = r/a, ¥, = ¥ and E(J|0) = 9 [5].
When the observation curve is an azimuthal circle, we get
from (30)

W, = Basin d. (33)

The case of a planar source, e.g., a disbf radiusa, can
be treated as an oblate spheroid with eccentricty 1. With
reference to an observation curve lying on a meridian plane we
haveW = 3¢ /2x = 2a/7 and taking into account that [5]

Fig. 3. The case of spheroidal sources.

hyperbola throughP intersectsC’ (see Fig. 3) and) can E(¥a]l) = /ﬂw | cos 7| dr
be evaluated by considering a point on the symmetry axis. 0
By lengthy but straightforward computations, with the choice —2—sint, —3T/2< V< —7/2
W = p¢ /2% we get = ¢ sindq, —T[2<Vs <7/2 (34)
2 — sin V., T[2< Voo < 37/2
B v2 —1 _ 1—¢2
Y = fBa lv o E (cos R |€2)] 27) we get
€= T { E(sin” ule?)/E(w/2|e?)+ 1 prolate spheroid Y =pa(v—1)= ﬁ[m T a] (35)
T2 | E(sinT ul|e?)/E(n/2]e?) oblate spheroid 2
(28) —2—u d<—7/2
: . . =Z. —w/2< V< 7)2 w="1_""2
whereine = f/a is the eccentricity of” and E(-|-) denotes ¢ 2 )" T2V <A/, 2a
the elliptic integral of second kind [5]. Note that the parameters 2—u  I>7/2
u andv appearing in (27) and (28) have a simple geometrical (36)

meaning:(av) is the major semi-axis of the confocal ellipse For an azimuthal circle, we get directly from (21)
through P, whereas

2
r —r

W, =0 7

(37)

_ { Voo — /2 prolate case (29)

sin” ' u =
Voo oblate case

¥, being the polar angle of the asymptote to the hyperbo aNOte explicitly that{ is not analytic forg = /2.

through P (see Fig. 3). The choice of the pertinent branch ccordingly (see Section Il), the band-limitation error can be
sin~" is fixed by ¥ significantly higher near the equatorial plane, i.e., the plane

Let US now consider the bandwidti. relevant to an containing the disk, than elsewhere. The same behavior is
©

azimuthal circle intersecting the meridian plane at the poiﬁ{SO expected in the case of very flat ellipsoids, wherein the

(16, €). Appendix B shows thatV,, is independent of), i.e., singularities move outside the real axis of the completane,

the same bandwidth corresponds to all circles with the sargllét are still very near to it. From the practical viewpoint, this

value of¢. Accordingly, W,,(£) can be evaluated by moving raW?ﬁCk can tbe_ eiaslily Ovlf rcome_(\j/vh_en r;przgecting Ithe 1;i|e_ld
the circle to infinity along the hyperbofa= const; so taking nearh € e(iuti orial p aned_ y consi enngf el ISbI ?nc Oie '.r;
(23) into account, we get a sphere of the same radius or in a confocal oblate spheroi

and switching to the corresponding parameterization [see (31)
_ [ Bbsin¥s (&) prolate case and (32)].
Wo(&) = { PBasind. (&) oblate case (30)

wherein the asymptotic anglk,, is obtained by inverting (28) IV. APPLICATION TO FIELD RECONSTRUCTION

and taking (29) into account. Previous results can be used to obtain fast and accurate
SinceW,, depends only og, the number of samples at thesampling interpolation formulas from a nonredundant number

Nyquist rate oveanyrotational surface is constant and is givef samples. While cardinal formulas could be used, central

(for large sources) by relation (26). Accordingly, samplingampling series are more advisable from the point of view

representations over such surfaces are nonredundant. of numerical efficiency and make it possible to control error
The above results are now specified to the remarkable capespagation from high- to low-level field regions [6], [7]. This

of “spherical” or planar sources. The first case can be handiedjuires a moderate increase of the sampling rate with respect
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S0E L [ S L ! ! R B
-60 -40 -20 0 20 40 60
(wavelengths)

Fig. 4. Spherically modeled source. Amplitude of the figldomponent on the line = 0, = = 15\. Solid line: exact field; crosses: interpolated.

to the Nyquist rate corresponding to the adopted bandwidikis, radially and azimuthally spaced by B.60nly 20% of
X' W being x’ > 1 the factor that controls the band-limitationthem (randomly distributed) are active. Moreover, the array is

error. symmetrical and symmetrically excited with respect to the
The general expression of such a sampling representatadis. The excitation amplitudes are tapered with respect to both
over a generic curve is the axes with @aos? law and the phases are the superposition of

— a random term uniformly distributed in the ranger/2, 7/2)
F(£) = FEND (€ —ENQL(E — and of az-dependent cubic one.
© Z )D€ =8u)02p (€ —6n) - (38) With reference to the first example, Fig. 4 shows the recon-
struction of the near-fieldy component (the most significant
wherein §, = nA{ = 2an/(2M + 1),x>1 being the one) along the linec = 0,z = 15)\. The displayedy range
oversampling factorp, = Int({/A¢)* is the index of the gyptends an angle equalza 78° = 156°. The overall number
sample closest to the output poin, i2 the number of retained ¢ employed samples (the= 5 guard samples included) is 95,
samples and/ = Int(xx'W). which is remarkably lower than the 305 required by applying
In (38), D (-) denotes the Dirichlet polynomial of degregpe previous sampling representation [6].
To obtain a quantitative assessment of the algorithm perfor-
. [2M+1 mance, the maximum and mean-square reconstruction errors
Sm( £> (normalized to the field maximum on this line) have been
(2M + 1)sin(£/2) (39) computed by comparing the reconstructed and the exact
component of the field, excluding the zone covered by the
whereas2p(-) is an appropriate window function controllingg,ard samples. Some values of the mean-square error are
the truncation error whose explicit expression is given in [§hnorted in Table I; the maximum error exhibits a quite similar

and [7]. N _ _ behavior, being-10 dB higher. As can be seen, the attainable
By applying (38) to meridian curves and azimuthal C'rde%recision is very high in spite of the fact thafv) is not

nonredundant sampling expansions for various sources aifhytic fory = /2. This is obviously related to the behavior
observation geometries can be obtained [8]-[10]. of the field, which goes to zero asapproachesr/2.

In the following, two representative numerical tests are | ot ys now consider the reconstruction of the field over
presented in order to validate the effectiveness of the proposaeq;phere by taking explicitly into account the true source
representations. In the first one, the source is consideredgggmetry_ Fig. 5 (dots) shows the near-field reconstruction
enclosed in a ball, i.e., (31) and (32) are used/fand¢, while 550 the H plane cut over a sphere of radius 2&s can be
in the second one, the true source geometry is explicitly takgBen notwithstanding the number of samples is halved with
into account and, consequently, (35) and (36) are adoptedshact to a “spherical” modeling, the reconstruction is very
The exc_’;\mpl_es are relevant to a _nonfoc_usmg pl_anar ercu[ﬂ;od except for the neighborhood = 90° whereiné is not
array with diametega = 241 ra@atmg a _h!ghly variable field regular. As stated in the previous section, we can obviate such
to simulate severe reconstruction condltlons_. Its elements ALC hstacle by adopting in this neighborhood the representation
elementary Huygens sources linearly polarized along 3'therelevant to a spherical source. This is demonstrated in the same

“4Int(=) denotes the integer part of figure wherein triangles show the reconstruction obtained by

n=n,—q¢+1

M

Dy (§) =
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T T T T T T T T i
Or x'=1.15 H-plane ]
Ty =1.20
Pp=q=5 s , -
20 F ~ .
@
hel
-40 -
_60 - .
1 | " " ] N 1 N | " 1 " N I N " 1 " " 1
-180 -135 -90 -45 0 45 90 135 180
V]

Fig. 5. Planar source. H plane cut over a sphere of radiis 28lid line: exact field; dots: interpolated; triangles: interpolated from spherically modeled source.

TABLE | be applied to the interpolation from power samples provided
MEAN-SQUARE RECONSTRUCTION ERROR that the sample spacings are halved since, in this case, the
(DECIBELS) ON THE LINE =z = 0, 2 = 15X .
bandwidth doubles.

x=1.10 | x=1.15 | x=1.20 | %=1.25 It must be stressed that these results have a significant
p=q=3 37.04 40.14 4270 452 rglevance in NF-FF transformation techniques _and |n other
direct problems and become even more relevant in the “inverse

p=q=> | -4497 | -50.77 | -5521 | -59.33 problems” area where, due to the ill-posedness of the problem,
p=q=7 -53.40 -62.03 -68.26 -73.69 it is mandatory to represent the EM field in a nonredundant

p=g=9 | -60.29 | -71.66 | -80.02 | -87.20 way.
p=g=11| -67.21 | -80.95 | -90.76 | -96.61
p=q=13 | -73.87 | -89.77 | -97.52 | -98.83

APPENDIX A
THE EQUIVALENT BANDWIDTH FOR AN AZIMUTHAL CIRCLE

Let us consider an azimuthal circle of radipsand center
switching to the “spherical” source in the interval 8210]. (0,0, 2) (see Fig. 2). The Cartesian coordinates of a pdint
Finally, it must be stressed that an extensive numerica¥er this circle are(pcos g, psing, z), whereas those of a
analysis has also assessed that, as expected, the abovep@pt P’ belonging toV" are (o' cos¢’, p’sin ¢/, ). Because
resentations enjoy the same stability with respect to errdhg phase factor and the local bandwidth are independent of
affecting the data as previously developed ones [7]. the anglep, we can assume, without any loss of generality,
¢ = 0. Accordingly

_ orR Bpp’ sin ¢’

The problem of developing nonredundant representation@@ »=0 Op PP+ 4 (2 =) = 2p peosy!
of radiated or scattered EM fields over curves or surfaces (40)
has been thoroughly investigated and fully resolved. It has ) )
been shown that EM fields can be accurately represented b*S the extreme values @fi/d, are opposite and attained
a finite number of samples, whatever the observation doma@il = We have from (9)
even if unbounded. Such a number is essentially coincident oy
with the number of degrees of freedom of the field, which is"Ve = L dp
independent of the observation domain and depends only on

V. CONCLUSIONS oy

=0

the source geometry. Spheroidal sources have been analyzed _ . f . Bpp' sin ¢’
in detail and the cases of spherical and discoidal sources have 2! o PP+ P+ (2= ) = 2p pcosy!
been explicitly dealt with. (41)

Precise, fast, and stable sampling algorithms of central
type have been applied to these source geometries on simplereiny’ = ¢/ (z’') according to the equation of the surface
observation domains. The approach can be suitably extended tti can be verified that the maximum with respect#0is
other observation domains and source geometries and can atsained when (42), as shown at the top of the next page, and



358 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 3, MARCH 1998

2 12 EEVAY' S 5 5 ——noT 4 =3
2pp’

is given by

. 0
Yur = max ah

= / - 43
18X 5, B/ pp’ cos iy (43)

=0

As

(RF)? = (2= P+ (pp')* = (a2 )P +p 402 2200 (44)

we get from (42) and (43) by straightforward passages

s = () = DT A E EP
— \/(z — 22 4 (p—p'(z))?). (45)

By substituting into (41), we get (21).

Fig. 6. Relevant to the bandwidth properties of azimuthal circles for sphe-
APPENDIX B roidal sources.

BANDWIDTH PROPERTIES OFAZIMUTHAL

CIRCLES FOR SPHEROIDAL SOURCES In the case of spheroidal sources, (46) can be easily solved

Due to the rotational symmetry, the analysis is carried oghd gives
with reference to therz plane. ) )

Let us focus on a given bandwidt,, and regard the source i — v —1=0 (47
S as a sum of elementary disks having ragiiand abscissa (a2 =b2)(1 —w?/0?)  (a® = b?)w? /b
(see Fig. 6). For each disk(z"), let us consider the hyperbolafor a prolate spheroid and
B(RT —R™)/2 = W, which exists ify’ () > W,, /. As the ) )
disk varies along’, the hyperbolas relevant to the bandwidth il — c —1=0 (48)
W,, describe a family with parametef. This family has an (a> = b*)w?/a®  (a® = b°)(1 — w?/a?)
enveloper, which divides the plane into two parts; we calkyr an oblate one.

the first one, containing the positiveaxis, theinnerzone and |t can be easily recognized that (47) and (48) correspond
the second one we call theuter zone. By construction, for 5 coordinate curveg = const. Accordingly, the azimuthal
all points in the inner zone, we havR* — R~)/2<W,, circles lying on the hyperbolg = const have a constant
whereas for each point in the outer zone there exists a digkndwidth.

such thatg(R* — R~)/2>W,. Accordingly, from (21) we

conclude that an azimuthal circumference, which intersects REEERENCES
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