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The Expansion Wave Concept—Part I:
Efficient Calculation of Spatial Green’s

Functions in a Stratified Dielectric Medium
Filip J. Demuynck,Member, IEEE, Guy A. E. Vandenbosch,Member, IEEE,

and Antoine R. Van de Capelle,Member, IEEE

Abstract—A procedure is given to perform the inverse Fourier
transformation relating a spatial Green’s function to its spectral
equivalent. The procedure is applied to the spectral Green’s
functions of the double scalar mixed-potential integral expression
formulation of the electromagnetic field in a stratified dielectric
medium. The extraction technique is used to annihilate every
type of “problematic” behavior of the spectral Green’s functions.
Every annihilating function is inverse Fourier transformed ana-
lytically. It is shown that the annihilation of both the surface wave
poles and the singularities at the branch point results in a set of
analytical spatial functions, which are a very good approximation
of the exact spatial Green’s function down to relatively small
lateral distances. Some very important characteristics of these
functions will play a crucial role in Part II of the paper, where a
new technique is introduced to model mutual coupling.

Index Terms—Green’s functions, nonhomogeneous media.

I. INTRODUCTION

T HE possibility to analyze printed structures embedded
in a stratified medium containing an arbitrary num-

ber of layers is of increasing interest. Especially in space
applications, the need to satisfy all sorts of requirements
(not only concerning electromagnetic behavior of the struc-
ture but also mechanical and thermal behavior) in many
cases, can be fulfilled only by using more than one or
two layers. Due to the presence of the arbitrary number
of layers and due to the need for accuracy, in our view,
the most appropriate technique to perform the analysis is
to solve a set of integral equations describing the structure
using the method of moments. Recently, double scalar mixed-
potential integral expressions were formulated for the electric
field in a stratified dielectric medium containing an arbitrary
number of layers [1]. These general expressions are the basis
for corresponding integral equations describing any specific
configuration under consideration. They are especially suited
to be used in combination with a subsectional expansion
scheme in the method of moments. The core of the field
expressions is a set of recursively determined spectral Green’s
functions, which have to be inverse Fourier transformed to
obtain their spatial equivalents. This problem is well known
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and many papers have been published describing procedures
to perform this task [4]–[6]. In this paper, however, certain
specific properties of the Green’s functions will be exploited.
First, the expressions for the electromagnetic field due to
arbitrary sheet currents are discussed. Second, the efficient
calculation procedure will be explained. This procedure will
be illustrated in a third section. Finally, the procedure will be
compared to what has been published in literature.

II. DOUBLE SCALAR MIXED-POTENTIAL INTEGRAL

EQUATIONS FOR THEELECTROMAGNETIC FIELD

The general layer configuration is described in [1]. For
reasons of simplicity, we will limit ourselves to the case
where only sheet currents are present. The tangential electric
or magnetic field in layeri(~Fit) due to an electric or magnetic
sheet current flowing in the transition between layerj and
j + 1 can be written as

~Fit(x; y; z) =

Z
x0

Z
y0

~Kj(x
0; y0) FT�1(gKji;F (�; �; z)) dx

0 dy0

+ ~rt

Z
x0

Z
y0

(~r0t ~Kj(x
0; y0))

� FT�1(gQ
ji;F

(�; �; z)) dx0 dy0 (1)

where ~Kj is a current derived directly from the sheet cur-
rent distribution. The inverse Fourier transforms have to be
evaluated in(x � x0; y � y0). The spectral Green’s functions
for the current(gKji;F ) and the divergence term of the current

(gQji;F ) are derived from the basic TE and TM spectral
Green’s functions, which are found as the solution of the
TE and TM system. It can be verified [1]–[3] that the basic
spectral Green’s functions for the electric and magnetic field
correspond, respectively, to the voltage(V (�; z)) and the
current(I(�; z)) along the equivalent transmission line circuit
shown in Fig. 1. The circuit is excited by either a series unit
voltage source(Vs = 1) in the case of a magnetic sheet
current or a parallel unit current source(Is = 1) in the case
of an electric sheet current. For each system TE or TM, the
following transmission line equations must be fulfilled within
each (source free) layeri

d

dz
I(�; z) =�
iYiV (�; z) (2)

d

dz
V (�; z) =�
iZiI(�; z) (3)
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Fig. 1. Transmission line equivalent with sources at transitionj.

with Zi = 1=Yi; and 
i =
p
(�2 + �2)� k2i =

p
�2 � k2i .

Yi equals
i=j!�i for the TE system andj!�i=
i for the TM
system, respectively. These equations can be solved making
use of the appropriate boundary conditions at the transitions
between the layers and at infinity.

III. EFFICIENT CALCULATION OF THE GREEN’S FUNCTIONS

It is well known that in multilayered structures most Green’s
functions can be derived analytically in the spectral domain.
Their spatial equivalents can be calculated using an inverse
Fourier transformation. Ifg(�; �) is a spectral Green’s function
and G(x; y) its spatial equivalent, then the relation between
them is given by

G(x; y) =
1

4�2

Z
�

Z
�

g(�; �) e�j(�x+�y) d� d�: (4)

After a transformation from Cartesian into cylindrical coor-
dinates given byx = r cos �, y = r sin�, � = � cos �, and
� = � sin � and making use of the fact that only spectral
Green’s functions independent of� are considered, we obtain
a Sommerfeld type integral

G(r) =
1

2�

Z
1

0
�g(�)J0(�r) d� (5)

with J0 the Bessel function of the first kind and of order
zero. The latter equation expresses that for spectral Green’s
functions only depending on�, the corresponding spatial
Green’s functions only depend on the lateral separationr
between source and observation point. The integral can be
regarded as an integral in the complex plane. This means
that the integration contour may be deformed. However, our
procedure disregards this possibility and integrates over the
positive real axis.

A. The General Procedure

If the spatial Green’s function is evaluated very close
to the source(r is small), the oscillation period of the
Bessel function is very large and the behavior of the spatial
Green’s function is mainly determined by the asymptotic
behavior for large arguments of�g(�). The integrand may
decrease very slowly, resulting in an unacceptable convergence
of the integral in terms of the upper integration limit. On
the other hand, far away from the source (r is large), the
oscillation period becomes very small. If�g(�) is slowly
varying, the contribution to the integral is small because within
one period of the oscillation, the positive part is annihilated

(a)

(b)

Fig. 2. Product of� and spectral Green’s function for the transversal electric
field in a layer structure consisting of a substrate backed by a ground plane.
Source: divergence term of electric sheet current in air–substrate interface;
observation point in the same layer interface; frequency= 10 GHz. (a)
Substrate 1: thickness= 3 mm, �r = 2, tan � = 0. (b) Substrate 2: thickness
= 1 mm, �r = 2, tan� = 0.

by an almost equal negative part. Only rapid variations,
which occur where the derivative of�g(�) becomes large,
can give a substantial contribution to the integral. This is
especially true at the surface wave poles and at the branch
point (� = K, K is the wave number of the open half-
space). There the derivatives become infinite. Both problems
are illustrated in Fig. 2. The solution to both problems consists
of subtracting a well-chosen analytic function showing the
behavior needed to eliminate the difficulty in question and
re-adding the same function after analytical inverse Fourier
transformation. The remaining smooth spectral function will
contribute substantially at intermediate values ofr only.

1) Contributions of the Asymptotes:The asymptotic be-
havior of�g(�) for large� determines the contribution in the
immediate neighborhood of the source. The decay of�g(�)
is very slow and a function�ga(�) multiplied by a proper
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TABLE I
ANNIHILATING SPECTRAL FUNCTIONS AND THEIR

SPATIAL EQUIVALENTS FOR THE ASYMPTOTES

constantCa is subtracted to improve the convergence of the
integration. If ga is chosen properly, the contribution above
a threshold�max can be neglected. This function has to be
chosen so that it can be re-added after analytical integration.
It is calculated using the same recursive procedure as to
calculate the original spectral Green’s function [1], but taking
into account that� is much larger than the real part of
any wave number of a dielectric layer in the structure and
systematically keeping only the slowest decaying exponential
function throughout the recursive calculation. The physical
interpretation of this last operation is that at high values of
�, a very good approximation of the exact Green’s function
can be obtained by considering only the direct wave between
source and observation point. Reflected waves (reflected at the
transitions) always are much smaller because the exponential
decay depends on the total distance traveled. Since only
the slowest decaying exponential function (the direct wave)
is kept in ga—the slowest—but one decaying exponential
function can be used as a measure for the relative error
made by truncating the integration interval. The maximum
relative error made for the entire layer structure depends on
e�2�max�thin ; where �thin is the thickness of the thinnest
dielectric layer adjacent to any sheet current source in the
structure. This can be used to determine�max. The spectral
Green’s functions for large� are proportional to��ne���

with n = 0; 1; or 2. � is thez separation between source and
observation point measured along thez axis. For eachn, the
annihilating spectral function and its spatial equivalent can
be found in Table I. The parametert = 1=kmax, kmax is the
maximum wave number in the layer structure is introduced to
avoid a singularity at the origin of the spectral function. The
spatial functions have a singularity (which can be integrated)
for r = 0 and � = 0.

2) Contributions of the Singularities:The singular behav-
ior of �g(�) determines the contribution further away from
the source. The three types of problematic behavior that matter
can be described by the functionC(�2 � S2)n with S the
problematic� point, C a complex constant, andn equal to
�1 at a surface wave pole and equal to�0.5 or+0.5 at the
branch point. For each type of singularity, a new function is
proposed to annihilate the singular behavior of the integrand.
These functions are chosen very carefully for several reasons:
1) the behavior of the function in the neighborhood of the
singularity should coincide with the behavior of the Green’s
function; 2) the inverse Fourier transform of the function

should be known analytically; and 3) the introduction of a
new asymptote for large� should be avoided since this affects
the truncation procedure described in the previous section.
In the case of a thick substrate, the contribution due to the
surface wave pole will dominate very rapidly and is sufficient
as approximation for a spatial Green’s function at larger
distances. However, it will be shown that for electrically thin
structures, where the surface wave pole is located close to the
branch point, it is necessary to annihilate the singular behavior
of both the surface wave pole and the branch point. Subtracting
both will result in an analytically calculated approximation
for the Green’s function, which is acceptable down to much
lower distances than what is obtained when the pole only is
subtracted.

Surface wave pole singularities:The physical interpreta-
tion of a pole is that it determines an eigenmode of the layer
structure. The numerical test to locate a pole is based on the
eigenmode condition. The residue of a Green’s function at a
pole can be calculated by analyzing the functional behavior in
the immediate neighborhood of the pole and comparing it to
the behavior ofR=(��P ). In [3], some interesting properties
of the surface waves were proven: 1) thez dependence of
the surface wave fields follows the source-free transmission
line equations and, as a consequence, is unique (independent
of the source location); 2) surface wave modes of the same
type (either TE or TM) are orthogonal along thez direction;
and 3) space and surface wave fields are orthogonal along the
z direction. Due to the uniqueness of the surface wave field,
the residue at the poleP of a Green’s functiong for a field
component of the electromagnetic fieldF due to a sourceSj
can be written as a product of az-dependent function and a
source dependent constant

R(z) = lim
�!P

(� � P )gj;F (�; z) = CF;P;�1(z)CP;�1
j (6)

with gj;F (�; z) equal toV (�; z) or equal toI(�; z), depending
on which field component is considered. The behavior of the
spectral Green’s function in the proximity of a surface wave
pole P can be annihilated by subtracting a spectral function
cP;�1(�)

cP;�1(�) = 2P

�
1

�2 � P 2
�

1

�2 + P 2

�
=

4P 3

�4 � P 4
: (7)

The first part ofcP;�1 shows the equal behavior around
the singularity; the second part makes the decay of the
resulting functioncP;�1 large enough (faster than1=�2) to
avoid the introduction of a new spectral asymptote and, thus,
a new singularity at the origin in the spatial domain. The
corresponding spatial function can be calculated analytically

CP;�1(r) =
1

2�

Z
1

0

�cP;�1J0(�r) d�

=�
jP

2
(H

(2)
0 (Pr)�H

(2)
0 (�jPr)): (8)

One can easily verify that this spatial function is smooth
when r tends to zero. The expansion ofCP;�1(r) for larger
r results in

CP;�1(r) ' �jP ej�=4p
2�

e�jP rp
Pr

; jPrj � 1 (9)
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which is the well-known behavior for surface waves at largerr.
Branch point singularities:For half-open structures, a

second type of singularity occurs at the branch point� = K
with K the wave number of the open half space. The Green’s
functions can be expanded in series around
 =

p
�2 �K2 =

0 resulting in (the proof is beyond the scope of this paper)

gj;F (�; z) =AF
�1(z)

1



+ AF

0 (z)
1

K
+ AF

1 (z)



K2

+ AF
2 (z)


2

K3
+ � � � : (10)

The behavior which causes an infinite derivative is propor-
tional to(�2�K2)n with eithern = �0:5, n = +0:5, or both.
The behavior withn = �0:5 can only occur if all the layers
have identical dielectric properties. This is the homogeneous
case, which means that there are no poles. The behavior with
n = +0:5 exists in all types of planar structures, homogeneous
or not.

First, the nonhomogeneous layer structures are considered
wheren equals+0:5 for the dominant singular behavior at
the branch point(AF

�1 = 0). The problem behavior can be
annihilated usingcK;+0:5(�)

cK;+0:5(�) =
1

K2

 p
�2 �K2 � � +

K2

2
p
�2 +K2

!
: (11)

The first part of cK;+0:5 is necessary to annihilate the
singular behavior. The rest ensures that for large� the decay is
large enough to avoid the introduction of a spatial singularity
at the origin. The inverse Fourier transform can be calculated
analytically

CK;+0:5(r) =
K

2�

�
�
�

1

(Kr)3
+ j

1

(Kr)2

�
e�jKr

+
1

(Kr)3
+

1

2Kr
e�Kr

�
: (12)

One can easily verify that this spatial function is smooth
whenr tends to zero. The expansion ofCK;+0:5(r) for larger
r results in

CK;+0:5(r) ' �jK 1

2�

e�jKr

(Kr)2
: (13)

This r�2 contribution will be part of the space wave
launched in the direction parallel to the layer structure. Con-
sequently, a zero in the far field can be observed in directions
close to the ones parallel with the layer structure for a
nonhomogeneous structure. In the Appendix, a very important
property is proven: ”thez dependence of this part of the
space wave follows the source-free transmission line equations
and, as a consequence, is unique (independent of the source
location).” Consequently, at the branch pointK of a Green’s
function g for a field component of the electromagnetic field
F due to a sourceSj , one can write

AF
1 (z) = lim

�!K

K2

2

d2

d
2
(
gj;F (�; z))

=CF;K;+0:5(z)CK;+0:5
j (14)

where gj;F (�; z) equalsV (�; z) or I(�; z), depending on
which field component is considered.

In principle, the problem is solved. However, if a pole
P is located in the immediate neighborhood of the branch
point K, the use of the functioncK;+0:5 causes a problem.
This is illustrated in Fig. 4(a), where a spectral function is
depicted after extraction of the problematic behavior. Although
the infinite derivative atK has disappeared, the derivative
is still quite large aroundK. The consequence can be seen
in the spatial domain [Fig. 4(b)]: the numerical integration
is necessary up to large distances(� 2.6�vacuum) and the
integration technique should be able to handle rapid variations
of the integrand to avoid the oscillations. It is clear that this has
to be avoided. The problem can be solved in an elegant way
by using a subtraction function based on a special expansion
in series around
 = 0 of gj;F (�; z). It is easily proven that
every Green’s function can be written as

gj;F (�; z) =
D0 +D1
 +D2


2 + � � �
E0 +E1
 +E2
2 + � � � ; � ' K: (15)

In the immediate neighborhood ofK, only the first two
expansion terms have to be considered. Taking this into
account together with the singular behavior around the pole
and the branch point, (15) can be worked out yielding an
approximation for the singular behavior of the functiong

gj;F (�; z) 'R
2P

�2 � P 2
+ R

P=
p

 + 
p

+ (AF
1 =K

2 +RP=
3p)
; � ' K (16)

whereP =
p
K2 + (E0=E1)2, R = �2(E0=E1) (�(D1E0)

=E2
1 +D0=E1), and
p = �(E0=E1) =

p
P 2 �K2 with P ,

K, R, andAF
1 known. Consequently, the singular behavior of

the Green’s function can be approximated by

gj;F (�; z) 'CF;P;�1(z)CP;�1
j

�
2P

�2 � P 2

�

+ CF;K;�0:5(z)CK;�0:5
j

�
1


 + 
p
+





2p

�

+ CF;K;+0:5(z)CK;+0:5
j

� 


K2

�
; � ' K

(17)

with CF;K;�0:5(z) = CF;P;�1(z) andCK;�0:5
j = CP;�1

j P=
p.
It is clear that the problem caused at the pole can be annihilated
in the same way as before withcP;�1. The problem caused at
the branch pointK can be annihilated by using the function
cK;+0:5 for the third term and a new functioncK;�0:5 for the
second term

cK;�0:5 =
1p

�2 �K2 + 
p
� 1p

�2 +K2

+
K2


2p
cK;+0:5(�): (18)
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The inverse Fourier transform of1=(
 + 
p) is calculated
approximately. If the pole is located close to the branch point
(which is the case),
p is small and1=(
+
p) ' 1=
 over the
whole spectral region except in the immediate neighborhood
of the branch point. After expansion of1=(
 + 
p) in series
aroundK, the exact singular behavior very close to the branch
point (which determines the spatial dependence at higherr
values) is proportional to�
=
2p . Using

1

2�

Z
1

0

�J0(�r)



d� = �jK ej�=2

2�

e�jKr

Kr
(19)

and

1

2�

Z
1

0

�
J0(�r)


2p
d� = �K

3


2p

ej�=2

2�

e�jKr

(Kr)2

�
1� j

Kr

�
(20)

one can verify that the spatial functionCK;�0:5 can be
approximated in an excellent way by the following function:

CK;�0:5(r) '�jK ej�=2

2�

0
B@e�jKr

Kr

0
B@ 1

1� j
�
p
K

�2
Kr

1
CA

� e�Kr

Kr

1
CA +

K2


2p
CK;+0:5(r):

(21)

The expansion of the first term ofCK;�0:5(r) for larger
r is first proportional toe�jKr=Kr and then for even larger
r, depending on
p=K, proportional toe�jKr=(Kr)2. The
expansion of the second term is already given above.

Second, in homogeneous structures,n equals�0:5 for the
dominant singular behavior at the branch point. This singular
behavior is annihilated using the first term ofcK;�0:5(�)
with 
p = 0. The expansion ofCK;�0:5(r) for larger r
is then proportional toe�jKr=Kr: This r dependence is
part of the space wave launched by an impulse source in a
homogeneous structure in the direction parallel to the ground
plane.cK;+0:5(�) andCK;+0:5(r) are used for the contribution
with n = +0:5.

3) The Numerical Integration:After the removal of the
singularities and the asymptote of the spectral Green’s func-
tion, a smooth function is obtained. Its contribution to the
spatial Green’s function is calculated numerically. The inte-
gration interval is divided intoN equal subintervals(�� =
�max=N ) where the Bessel function is approximated by a third
degree polynominal and the smooth function by a first degree
polynominal. The integration over each subinterval is done
analytically and the contributions are summed.

B. Approximation at Highr Values (Abovermax)

Due to the rapid decrease of the asymptotic contributions
and the numerically calculated contributions, in general, every
spatial Green’s functionGj;F for componentF of the electro-

magnetic field due to a sourceSj evaluated not too close to
the source can be approximated as

Gj;F (x� x0; y � y0; z)

'
X
PTM

CF;PTM;�1(z)CPTM;�1(R)CPTM;�1
j

+CF;KTM;�0:5(z)CKTM;�0:5(R)CKTM;�0:5
j

+CF;KTM;+0:5(z)CKTM;+0:5(R)CKTM;+0:5
j

+
X
PTE

CF;PTE;�1(z)CPTE;�1(R)CPTE;�1
j

+CF;KTE;�0:5(z)CKTE;�0:5(R)CKTE;�0:5
j

+CF;KTE;+0:5(z)CKTE;+0:5(R)CKTE;+0:5
j (22)

wherePTM, PTE, andKTE = KTM = K are the dominant
TM-poles, the dominant TE-poles, and the branch point,
respectively,R =

p
(x� x0)2 + (y � y0)2 and

CPTM=TE;�1(R) � e�jP
TM=TER=

p
PTM=TER (23)

CKTM=TE;�0:5(R) � e�jKR=(KR) or e�jKR=(KR)2 (24)

CKTM=TE;+0:5(R) � e�jKR=(KR)2: (25)

Consequently, the electromagnetic field evaluated in the
layer structure not too close to the source is composed of
a set of waves: a number of surface waves and the part
of the space wave launched in the direction of the ground
plane. Ther dependence andz dependence of each wave is
known analytically and is unique, independent of the source
Sj . Currents of a different type (magnetic or electric) flowing
in different transitions and with a different shape all excite the
same waves, each with its own excitation coefficientCj.

The threshold above which this approximation is used is
called rmax. In the section with the numerical results, it will
be illustrated that this threshold can be reduced down to values
around 0.05� � � 0.15�vacuum. This implicates that coupling
between, e.g., antennas, can be described with analytically
known Green’s functions. This very important property will
be used in the second part of the paper where the expansion
wave concept is introduced.

IV. NUMERICAL RESULTS

The procedures developed and the problems which led to
these procedures can be illustrated.

First, the necessity to extract the branch point singularity
for electrically thin structures is illustrated. The structure
consists of a substrate with relative permittivity 2, backed
by a perfectly conducting ground plane. The frequency is
10 GHz. Consider the transversal electric field on top of the
substrate generated by an arbitrary electric sheet current in
the same layer interface. The product of� and the spectral
Green’s function of this field for the divergence term of
the current is given in Fig. 2 for two substrate thicknesses,
respectively, 3 and 1 mm. The function goes to a constant for
high values of� and both a pole and the branch point can be
observed. The modified spectral function obtained by applying
the techniques of asymptotic extraction and extraction of the
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(a) (b)

(c) (d)

Fig. 3. Spectral function of Fig. 2 after asymptotic extraction and pole extraction and corresponding spatial Green’s function (numerical integration up
to rmax ' 2:6�vacuum).

poles and the resulting spatial Green’s function are given in
Fig. 3. For both thicknesses, the spectral function now goes
to zero for large� and the pole has vanished. However, it is
clearly shown in Fig. 3(b) and (d) that the extraction of the
asymptote and pole alone only yields excellent results for thick
substrates. The ripples and the discontinuity atrmax (which
is chosen' 2.6�vacuum) in the spatial Green’s function for
the thin substrate are caused by the square root behavior near
the branch point. Both can be removed by decreasing��
and by increasingrmax at the cost of a higher calculation
time! Although in principle, these phenomena also occur for
thick substrates, they can hardly be observed in these cases
due to the presence of a dominating pole. Two techniques
to annihilate the singularity around the branch point, which
is necessary for the thin 1-mm substrate, are considered.
Technique 1 only usescK;+0:5; technique 2 makes use of
both cK;+0:5 andcK;�0:5. The results for both techniques are
given in Fig. 4. It is shown that technique 1 even worsens the
problem. The derivative at the branch point is now finite but
very large (this can be seen if the plot is zoomed in at the
branch point). A very large variation in the modified spectral
Green’s function is introduced, which makes the numerical
integration necessary up to very large distances. Consequently,
one would expect that a decrease of�� and an increase
of rmax are necessary� � �. However, technique 2 solves the
problem completely. The modified Green’s function is very
smooth,�� can be chosen rather high without introducing the
ripple problem, andrmax can be reduced. In the calculations
the following numerical parameters were used:�max�thin =
6, �� = 10, andrmax = �=(4��) [at the discontinuity in the
spatial functions in Figs. 3(b), 3(d), and 4(b)].

Second, the results obtained by using the approximation for
high r values are compared with the results of the general
procedure. Some commercially available substrates are used in
the examples. First, four RT/duroid substrates are compared:
two low permittivity substrates (RT/duroid 5880,�r = 2:2,
tan � = 0:0009) with a thickness of respectively 0.38 and
1.57 mm and two high-permittivity substrates (RT/duroid
6010, �r = 10:2, tan � = 0:0024) with a thickness of,
respectively, 0.25 and 1.27 mm. The frequency is 10 GHz. The
influence of the substrate thickness and the dielectric constant
is investigated. The numerical parameters are the same as in
the previous case. It is clearly demonstrated [Fig. 5(a)–(d)]
that the analytical contributions of the space and surface wave
dominate down to relatively small distances, about 0.05� � �
0.15�vacuum, depending on the thickness and the permittivity
of the substrate. Consequently,rmax can be reduced down
to this value. Without the extraction of the branch point
singularity, rmax should be increased to a distance where
the contribution due to the pole dominates. This is strongly
dependent on the substrate thickness and the permittivity. The
contribution due to the branch point would become part of
the numerically inverse Fourier transformed function. This
contribution represents the part of the space wave launched
in the directions parallel to the ground plate. This part cannot
be neglected for coupling between antennas in the case of the
relatively thin structures (
p=K is small) where the surface
wave doesn’t dominate the space wave contribution. A second
example is a very low permittivity two-layer structure. On the
ground plane lies a sheet of Eccofoam (fabricated by Emerson
& Cuming) with �r = 1:03 and a thickness 6.35 mm. On
top of this lies a sheet of 3M Cu Clad with�r = 2:17,
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(a) (b)

(c) (d)

Fig. 4. Spectral function of Fig. 3, substrate thickness 1 mm after branch point extraction, and corresponding spatial Green’s function. Top: technique
1—use ofcK;+0:5 only. (a) Spectral. (b) Spatial; bottom: technique 2—use of bothcK;+0:5 and cK;�0:5. (c) Spectral. (d) Spatial (numerical integration
up to rmax ' 2:6�vacuum).

tan � = 0:0009, and a thickness of 0.5 mm. The frequency
is 3.3 GHz. The influence of the surface wave in this quasi-
homogeneous structure is negligible [Fig. 5(e)]. The results are
very close to the calculations with a perfectly homogeneous
substrate.

The exact calculation time depends on the numerical pa-
rameters used and, of course, on the computer. . .. Our
calculations are made with a DECstation 5000/240. For the
structure of Fig. 5(b) (�max = 4000, evaluated in 400�
points, and evaluated in 200r-points), the calculation of the
spectral Green’s function takes 0.80 s, the inverse Fourier
transformation 0.35 s.

The most important result is the fact that the dominant
contributions to the Green’s functions proportional to1=

p
r,

1=r, and1=r2; are calculated analytically. They can be used
as an excellent approximation down to very low distances to
the source. Together with the use of the properties proven in
the Appendix for this part of the space wave and in [3] for the
surface waves, it allows to describe mutual coupling between
antennas in a new very elegant way. This is the scope of the
second part of the paper.

V. DISCUSSION

In this section, each step of the procedure is examined in
relation to what has been published in literature. The first
fundamental choice made is to use a space-domain formulation
of the electromagnetic field. This allows us to work with
spectral Green’s functions having a dependency only on�,
which results in spatial Green’s functions only dependent on
r [1]. In this way, the double infinite spectral integration

[8] is avoided. The spectral integration can be reduced into
an integration only over�. The convolution of a Green’s
function with the corresponding source function is calculated
in the spatial domain, which is an easy task if a subsectional
expansion scheme is used. A big advantage of the space-
domain formulation is the possibility to change the nature of
the source function after the calculation of the spatial Green’s
functions. It is thus most efficient to store a Green’s function
after its computation and to recall it whenever necessary. Both
the spatial and the spectral formulation are used in literature,
for example, the first one by Mosig and Gardiol in [7] and the
latter one by Pozar in [9] and [10].

For low r, the reduction of the integration domain is
necessary because the decay of the integrand is too low,
introducing a spatial singularity at the origin. It is well
known that this can be solved by using asymptotic extraction
techniques. For specific layer geometries in some cases very
efficient asymptotic functions can be found in literature. An
example is the two-layer case backed by a conducting ground
plane described in [4] and [5]. The asymptotic functions given
in [7] even allow a complete near-field approximation. In
a multilayered structure with magnetic and/or electric sheet
current sources, a generalized technique has to be used as the
one presented here.

The presence of singularities in the integrand can be treated
in several ways. The first one is to choose a different path in
the complex� plane. This can be done directly as in [6] or, in
some cases, using the technique of [7], where eventually no
singularities arise in the functions to be integrated. The second
way is to use an extraction technique, the solution chosen in
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(a) (b)

(c) (d)

(e)

Fig. 5. Spatial Green’s function for the transversal magnetic field for different substrates. Source: magnetic sheet current on top of the ground plate, observation
point in the same layer interface; circles: spatial Green’s function taking all contributions into account; solid line: approximation taking the space and surface
wave contributions into account only; thick dots: space wave contribution; thin dots: surface wave contribution.

this work, and in [4] and [5] for the poles. Choosing a different
path also solves the problem of the branch point. However,
if one prefers to perform the integration along the real axis,
a change of variables [5] or, again, an extraction technique
can be used to solve the branch-point problem. Although
changing the integration path is very popular, in our view
the integration along the real axis combined with the unique
extraction technique presented here, clearly has advantages.
The main advantage is certainly the possibility to express the
Green’s functions, evaluated not too close to the source as a
sum of simple analytical functions with a well-known physical
meaning: surface waves and the dominant parts of the space
wave. It is important to emphasize that in our technique only
rapid variations on the real axis have to be taken into account.
Concerning poles, this implicates that only poles on the real
axis or in the immediate neighborhood of the real axis have to
be located. These poles correspond to surface waves that really
propagate without losses or with small losses, respectively.
Poles away from the real axis corresponding to exponentially
decreasing waves do not have to be taken into account and,

thus, do not have to be located. In most practical cases, even in
cases involving layer structures with many layers, this means
that at most only a few poles have to be located. From the
reasoning followed, it is clear that missing one of these poles
can only be allowed if its contribution is negligible compared
to the contributions of the other singularities (both poles and
branch point). Since the ease to locate a pole is proportional to
its contribution, using an appropriate technique it is relatively
simple to find all the relevant poles in a calculation time
negligible compared to the overall calculation time.

The characteristics of the waves used open an opportunity
to model mutual coupling in a very elegant way, the scope
of the second part of the paper. To our knowledge, this paper
is the first one that treats branch points in much the same
way as poles. Our subtraction functions clearly differ from the
ones used by other authors [4], [5]. In our view, they are very
appropriate since they lead to an unique procedure working for
all r values. The terms proportional to1=

p
r, 1=r, and1=r2

are known in an analytical way. Even at relatively small values
of r, this contribution yields excellent results. This is due to
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the extraction of the branch point singularities. Consequently,
a lot of computational effort can be saved.

Concerning the correctness and the accuracy of the global
procedure, we refer to the agreement between calculated and
measured results for the antenna structures given in [1] and
[11] for which the Green’s functions were calculated with the
procedure given in this paper and to the second part of the
paper. Concerning the efficiency of the procedure, it has to be
emphasized that most of the techniques described in this paper
only take a small amount of calculation time: the asymptotes
and the constantsCj and the functionsCF (z) for poles and
branch point are all calculated using the recursive technique
of [1]. The numerically calculated part of the inverse Fourier
transform has to be determined for lowr values only.

Recently, two very interesting papers were published con-
cerning the problem of calculating the spatial Green’s function
as the inverse Fourier transform of its spectral equivalent. In
[12], a complete set of asymptotic closed-form microstrip sur-
face Green’s functions based on the power series expansion of
the spectral Green’s functions of the two-layer system backed
by a conducting ground plane is given. In [13], the technique
is extended to the case of a three-layer structure backed by
a ground plane. Unfortunately, the authors argue that their
method does not seem to be readily applicable to arbitrary
Green’s functions in multilayered dielectric structures.

VI. CONCLUSIONS

In this paper, an accurate and computationally efficient pro-
cedure is given for the calculation of spatial Green’s functions
as the inverse Fourier transforms of their spectral equivalents.
A general extraction technique is worked out to handle the
asymptotic and singular behavior of the Green’s functions
in the case of an arbitrary stratified dielectric medium. The
asymptotic extraction leads to analytical functions, which
describe the singular behavior at the origin of the spatial
functions. The singular behavior around poles and branch
point are both annihilated using new subtraction functions.
These new functions give rise to analytical expressions for
the Green’s functions at larger distances. Some very in-
teresting characteristics of these functions are proven that
can be exploited in mutual coupling calculations. A simple
but fast technique is given for the numerical integration of
well-behaved integrands. The efficiency of the procedure is
discussed and illustrated. The accuracy can be checked through
comparison between calculated and measured results published
in earlier papers and in the second part of this paper. In our
view, the main advantages of the proposed procedure are its
generality, its relative simplicity, the possibility to implement
it in a straightforward way in the case of multilayered struc-
tures (even if the number of layers is not known in advance),
its special design to be used in cases where a large number
of Green’s functions is needed, and definitely the property
that every spatial Green’s function evaluated not too close to
the source can be approximated as set of waves of which the
characteristics offer some opportunities to be used in part two
of the paper.

APPENDIX

CHARACTERISTICS OF THESPACE WAVE

IN A MULTILAYERED STRUCTURE

Every Green’s functiongF (�; z) (F equalsV or I depend-
ing on the field component) can be expanded in series around

 = 0

gF (z) = AF
�1

(z)
1



+AF

0
(z)

1

K
+AF

1
(z)




K2

+ AF
2
(z)


2

K3
+ � � � ; � ' K (26)

with AF
�1

(z) = lim
!0 
gF (�; z) and AF
1
(z) =

lim
!0
K2

2

d2

d
2
(
gF (�; z)). In each layer i, the Green’s

function follows the transmission line equation derived from
(2) and (3)

d2

dz2
gF (�; z) � 
2i gF (�; z) = 0: (27)

Inserting (26) in (27), multiplying with
 and taking the limit
for 
 ! 0 yields

d2

dz2
AF
�1

(z)� (K2 � k2i )A
F
�1

(z) = 0: (28)

The sources are unit sources independent of� and, conse-
quently, there are no contributions proportional to1=
 or 
.
Thus, AF

�1
(z) is the solution of a source-free transmission

line problem. Consequently, thez dependence ofAF
�1

(z)
given byCF;K;�0:5(z) will be unique for each source in the
multilayered structure independent of its type—magnetic or
electric—or its position.

To determineAF
1
(z), (26) is inserted in (27). The latter is

multiplied by K2
=2 and the limit for
 ! 0 of the second
derivative with respect to
 is calculated, resulting in
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One can verify thatlim
!0

�

2i
�

= K2 � k2i , lim
!0�
d
d

(
2i )

�
= 0 and lim
!0

�
d2

d
2
(1
2

2i )

�
= 1.

In a nonhomogeneous multilayered structure, one can prove
that AF

�1
(z) = 0. The singular behavior around the branch

point is determined byAF
1
(z), which is again a solution of the

source-free transmission line equations. The same conclusion
can be drawn for this function.

In a homogeneous structure (backed by a conducting plate),
the situation is a bit different. In the TE system,AF

�1
(z) = 0

for either an electric or magnetic field Green’s function. In
the TM system,AI

�1
(z) is different from zero. Making use

of (2) and (3) for a homogeneous structure and the boundary
condition at the ground plateV (�; z at ground plate) = 0, it
can be verified that

AI
�1

(z) = C1 andAV
�1

(z) = 0 (30)
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and

AI
1
(z) = C2 + C1

z2

2
and

AV
1
(z) = 0� C1

z

j!�
(31)

if z = 0 at the ground plate. Those functions can also be found
as the limit for
p ! 0 of a quasi-homogeneous structure.
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