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The Expansion Wave Concept—Part I
Efficient Calculation of Spatial Green’s
Functions in a Stratified Dielectric Medium

Filip J. Demuynck,Member, IEEE Guy A. E. Vandenboschylember, |IEEE
and Antoine R. Van de Capelléjember, IEEE

Abstract—A procedure is given to perform the inverse Fourier and many papers have been published describing procedures
transformation relating a spatial Green’s function to its spectral  to perform this task [4]-[6]. In this paper, however, certain
equivalent. The procedure is applied to the spectral Green's ghaific properties of the Green’s functions will be exploited.

functions of the double scalar mixed-potential integral expression First. th . for th lect tic field d i
formulation of the electromagnetic field in a stratified dielectric Irst, the expressions for the electromagnetic e ue 1o

medium. The extraction technique is used to annihilate every arbitrary sheet currents are discussed. Second, the efficient
type of “problematic” behavior of the spectral Green's functions. calculation procedure will be explained. This procedure will

Every annihilating function is inverse Fourier transformed ana-  pe illustrated in a third section. Finally, the procedure will be

Iytically. Itis sho_wn tha_t _the annihilation of bo_th the surfz_ice wave compared to what has been published in literature.
poles and the singularities at the branch point results in a set of

analytical spatial functions, which are a very good approximation
of the exact spatial Green’s function down to relatively small Il. DOUBLE SCALAR MIXED-POTENTIAL INTEGRAL
lateral distances. Some very important characteristics of these EQUATIONS FOR THE ELECTROMAGNETIC FIELD

functions will play a crucial role in Part Il of the paper, where a

new technique is introduced to model mutual coupling. The general layer configuration is described in [1]. For

reasons of simplicity, we will limit ourselves to the case
where only sheet currents are present. The tangential electric
or magnetic field in layef( F;,) due to an electric or magnetic

|. INTRODUCTION sheet current flowing in the transition between layeand

+ 1 can be written as

Index Terms—Green'’s functions, nonhomogeneous media.

HE possibility to analyze printed structures embedded
in a stratified medium containing an arbitrary numfh(xjyj 2) :/ / ]Z’j(xij/) FT7' (g5 #(&,n,2)) d=' dy
ber of layers is of increasing interest. Especially in space ol Jy! o
applications, the need to satisfy all sorts of requirements - N,
(not only concerning electromagnetic behavior of the struc- + Vi ” y,(vf[\f(x ¥))
ture but also mechanical and thermal behavior) in many 1,0 /g
) . -FT A dz' d
cases, can be fulfilled only by using more than one or (9]Z,F(€;77;Z)) r ay 1)

two layers. Due to the presence of the arbitrary numbghere K; is a current derived directly from the sheet cur-
of layers and due to the need for accuracy, in our viewent distribution. The inverse Fourier transforms have to be
the most appropriate technique to perform the analysis d§aluated in(z — &',y — /). The spectral Green’s functions

to solve a set of integral equations describing the structugg the current(g].’;F) and the divergence term of the current

using the method of moments. Recently, double scalar mixeg? ») are derived from the basic TE and TM spectral

. . . o '27
potential integral expressions were formulated for the electidg oo g functions, which are found as the solution of the

field in a stratified dielectric medium containing an arbitrarye 504 T™ system. It can be verified [1]-[3] that the basic
number of Iaye_rs [1_]' These gene_ral EXpressions are the b_ Pectral Green’s functions for the electric and magnetic field
for gorres_pondlng mtegra_ll equations describing any Spe‘?'EBrrespond, respectively, to the voltage (4, z)) and the
configuration under consideration. They are especially suitgfreng(7(3, =)) along the equivalent transmission line circuit
to be used in combination with a subsectional expansiQ,yn in Fig. 1. The circuit is excited by either a series unit
scheme in the method of moments. The core of the f'e\%ltage source(V, = 1) in the case of a magnetic sheet
expressions is a set of recursively determined spectral Greef|Srent or a paréllel unit current sour¢g = 1) in the case
functions, which have to be inverse Fourier transformed {9 o electric sheet current. For each éystem TE or TM. the
obtain their spatial equivalents. This problem is well knowfy) o ing transmission line equations must be fulfilled within

, _ _ each (source free) layer
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Fig. 1. Transmission line equivalent with sources at transition

with Z; = 1/}/2, and Yi = \/(€2 + 7]2) - k’lz = \/62 - k’lz 3mm-substrate, spectral GF

Y; equalsy; /jwp; for the TE system anglve; /+; for the TM 1 e H R e

system, respectively. These equations can be solved making 0 IReal —
- mag ——

use of the appropriate boundary conditions at the transitions
between the layers and at infinity.

Bg 0 A
[ll. EFFICIENT CALCULATION OF THE GREEN'S FUNCTIONS 05 F !

Itis well known that in multilayered structures most Green’s
functions can be derived analytically in the spectral domain.

0 05 1 15 2 25 3

Their spatial equivalents can be calculated using an inverse B/ kvacuum
Fourier transformation. I§(¢, n) is a spectral Green’s function @)
and G(z,y) its spatial equivalent, then the relation between
them is given by lmm-substrate, spectral GF
1 0.5 T I T T
Gl = o [ [ sem e dean @ -] Jleal
After a transformation from Cartesian into cylindrical coor- Bg 0
dinates given byr = rcos¢, y = rsing, £ = [fcosé, and
n = Fsiné and making use of the fact that only spectral -0.25 .
Green'’s functions independent &fare considered, we obtain
a Sommerfeld type integral -0.5 ——! U

0 05 1ﬂ/k1l5 2 25 3
1 00 UVACUUIT
G(r) = o~ /0 Bg(B)Jo(Br) dp (5) (b)

with J, the Bessel function of the first kind and of ordeFi9- 2. Product off and spectral Green’s function for the transversal electric

. figld in a layer structure consisting of a substrate backed by a ground plane.
Zero. The latter equa“(_)n expresses that for sp_ectral Gr_ee§b§rce: divergence term of electric sheet current in air—substrate interface;
functions only depending or#, the corresponding spatialobservation point in the same layer interface; frequercyl0 GHz. (a)
Green’s functions onIy depend on the lateral SepmaﬁonSubstrate 1: thickness 3 mm, e, = 2, tan § = 0. (b) Substrate 2: thickness

. . . =1 mm,e, = 2, tané = 0.

between source and observation point. The integral can be
regarded as an integral in the complex plane. This means
that the integration contour may be deformed. However, oy an almost equal negative part. Only rapid variations,

procedure disregards this possibility and integrates over tivdich occur where the derivative gfg(?) becomes large,

positive real axis. can give a substantial contribution to the integral. This is
especially true at the surface wave poles and at the branch
A. The General Procedure point (3 = K, K is the wave number of the open half-

If the spatial Green’s function is evaluated very closepace). There the derivatives become infinite. Both problems
to the source(r is small), the oscillation period of thear® illustrated in Fig. 2. The solution to both problems consists
Bessel function is very large and the behavior of the spatf subtracting a well-chosen analytic function showing the
Green's function is mainly determined by the asymptotigehavior needed to eliminate the difficulty in question and
behavior for large arguments g@fg(3). The integrand may re-adding the same function after analytical inverse Fourier
decrease very slowly, resulting in an unacceptable convergeti@gsformation. The remaining smooth spectral function will
of the integral in terms of the upper integration limit. Oreontribute substantially at intermediate values-afnly.
the other hand, far away from the sourcei¢ large), the 1) Contributions of the Asymptote§the asymptotic be-
oscillation period becomes very small. Hy(3) is slowly havior of 3¢(3) for large 3 determines the contribution in the
varying, the contribution to the integral is small because withimmediate neighborhood of the source. The decay«i?)
one period of the oscillation, the positive part is annihilateid very slow and a functiorg, () multiplied by a proper
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TABLE | should be known analytically; and 3) the introduction of a
ANNIHILATING - SPECTRAL FUNCTIONS AND THEIR new asymptote for largé should be avoided since this affects
SPATIAL EQUIVALENTS FOR THE ASYMPTOTES . . . . .
the truncation procedure described in the previous section.
n 9.(53) Ga(r) In the case of a thick substrate, the contribution due to the
N ; surface wave pole will dominate very rapidly and is sufficient
0 e P S(r)if A=0 Lt ; ) ;

as approximation for a spatial Green’s function at larger

m ifA#0 distances. However, it will be shown that for electrically thin

|| 1= ea 1 ] 1 structures, where the surface wave pole is located close to the

T c 2 \VAZTZ T \/(A+t)2+r2) branch point, it is necessary to annihilate the singular behavior

9 | Bz PV —pa | _ 1y (A+VATE) (At 2t+4/(A+2t)74r?) of both the surface wave pole and the branch point. Subtracting
s il (Attty/(A+)74r2)? both will result in an analytically calculated approximation

for the Green’s function, which is acceptable down to much

_ _ lower distances than what is obtained when the pole only is
constantC, is subtracted to improve the convergence of thg .o o
integration. If g, is chosen properly, th_e contri_bution above g face wave pole singularitiesThe physical interpreta-
a thresholdﬁmm_ can be neglected. This funct|_on has to k_’ﬁon of a pole is that it determines an eigenmode of the layer
chosen so that it can be re-added after analytical integratiQiy,cyre. The numerical test to locate a pole is based on the
It is calculated using the same recursive procedure as d@enmode condition. The residue of a Green’s function at a
calculate the original spectral Green's function [1], but takinggle can be calculated by analyzing the functional behavior in
into account thatf is much larger than the real part ofihe immediate neighborhood of the pole and comparing it to
any wave number of a dielectric layer in the structure anfe pehavior ofR/(3— P). In [3], some interesting properties
syste_matically keeping only the_slowest de(_:aying exponent@l the surface waves were proven: 1) thedependence of
function throughout the recursive calculation. The physicgle surface wave fields follows the source-free transmission
interpretation of this last operation is that at high values gfe equations and, as a consequence, is unique (independent
f, a very good approximation of the exact Green’s functiogf the source location); 2) surface wave modes of the same
can be obtained by considering only the direct wave betwe%e (either TE or TM) are orthogonal along thedirection;
source and observation point. Reflected waves (reflected at ipg 3) space and surface wave fields are orthogonal along the
transitions) always are much smaller because the exponentigfirection. Due to the uniqueness of the surface wave field,
decay depends on the total distance traveled. Since ofHé residue at the pol® of a Green’s functiory for a field
the slowest decaying exponential function (the direct wavgdmponent of the electromagnetic fiefddue to a source;
is kept in g.—the slowest—but one decaying exponentialan be written as a product of adependent function and a
function can be used as a measure for the relative ergurce dependent constant
made by truncating the integration interval. The maximum . _ P _1
relative error made for the entire layer structure depends on R(z) = ﬁh_I,I};(B — P)gj.r(B,2)=C"" 1(2)017 (6)
e~ WmaxBumin  where Ay, IS the thickness of the thinnest

ith ¢, I't | to/ ,d di
dielectric layer adjacent to any sheet current source in t th ;. (9, 2) equal toV (4, z) or equal tor (3, =), depending

truct Thi b d to determi Th ral fi which field component is considered. The behavior of the
structure. This can be used to determing.... The spectra spectral Green’s function in the proximity of a surface wave

s . . —n ,—FA . . .
G_reen s functions for_ larggs are pro_port|0nal Q5 ~"e ole P can be annihilated by subtracting a spectral function
with n = 0,1, or 2. A is thez separation between source andp,—1 )

observation point measured along thaxis. For each, the 4
annihilating spectral function and its spatial equivalent can P1(B) = 2p< L 1 ) __4r )
be found in Table I. The parameter= 1/ky.x, kmax iS the pr—P: B+ P gt — Pt
maximum wave number in the layer structure is introduced t0The first part ofc”~! shows the equal behavior around

avoid a singularity at the origin of the spectral function. Thgye singularity; the second part makes the decay of the

spatial functions have a singularity (which can be integratefsulting functionc”~! large enough (faster thaty4?) to

for r = 0 and A = 0. _ N _ avoid the introduction of a new spectral asymptote and, thus,
2) Contributions of the SingularitiesThe singular behav- 3 new singularity at the origin in the spatial domain. The

ior of 3¢(3) determines the contribution further away frontorresponding spatial function can be calculated analytically
the source. The three types of problematic behavior that matter

1 (o)
can be described by the functigfi(5> — S*)” with S the ch=(r) = 2—/ BeP =10 (Br) dB
problematics point, ¢' a complex constant, and equal to F.PO
—1 at a surface wave pole and equal-t6.5 or+0.5 at the :—%(HSQ)(Pr) — H(=jPr)).  (8)

branch point. For each type of singularity, a new function is ) ) _ _ o
proposed to annihilate the singular behavior of the integrand.One can easily verify that this spatial function is smooth
These functions are chosen very carefully for several reasoéien tends to zero. The expansion 6f"~(r) for larger
1) the behavior of the function in the neighborhood of thg results in ' '
singularity should coincide with the behavior of the Green'’s CP =1 (r) = —jP eI/ emiPr
function; 2) the inverse Fourier transform of the function a V2r

;P> (9)

S
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which is the well-known behavior for surface waves at larger where ¢; »(53, z) equalsV (3, z) or I(3,z), depending on
Branch point singularities:For half-open structures, awhich field component is considered.

second type of singularity occurs at the branch pgint K In principle, the problem is solved. However, if a pole

with K the wave number of the open half space. The Greerys is located in the immediate neighborhood of the branch
functions can be expanded in series aroyrd \/3” — K? = point K, the use of the functior™ - causes a problem.

0 resulting in (the proof is beyond the scope of this paper) This is illustrated in Fig. 4(a), where a spectral function is

- 1 oo 1 - 5 depicted after extraction of the problematic behavior. Although

95,7 (B, 2) :A—l(z); + Ag (Z)E + 4 (Z)ITQ the infinite derivative atX’ has disappeared, the derivative

2 is still quite large arounds. The consequence can be seen

+ AF(2) ;{3 + (10) in the spatial domain [Fig. 4(b)]: the numerical integration

) _ o S is necessary up to large distandes 2.6A,scuum) and the
~ The behavior which causes an infinite derivative is propoftegration technique should be able to handle rapid variations
tional to(3° — K*)" with eithern = —0.5, n = +0.5, or both. ¢ the integrand to avoid the oscillations. It is clear that this has
The behavior with = —0.5 can only occur if all the layers , pe ayoided. The problem can be solved in an elegant way
have identical dielectric properties. This is the homogeneoH? using a subtraction function based on a special expansion

case, Whlch_megns that there are no poles. The behavior VYhhseries around, = 0 of ¢; (3, ). It is easily proven that
n = +0.5 exists in all types of planar structures, homogeneous !

or not every Green'’s function can be written as

First, the nonhomogeneous layer structures are considered Do 4 Div - Do
wheren equals+0.5 for the dominant singular behavior at ¢, ¢(3, z) = 0 1Y 272 |
the branch poin{ A", = 0). The problem behavior can be Fot Eryt B 1
annihilated using:"+%-7(3)

B~ K. (15)

In the immediate neighborhood df, only the first two
- — K2 expansion terms have to be considered. Taking this into
V7 = R? =0+ N (11)  account together with the singular behavior around the pole
and the branch point, (15) can be worked out yielding an
The first part of X +95 is necessary to annihilate theapproximation for the singular behavior of the functipn
singular behavior. The rest ensures that for latdke decay is
large enough to avoid the introduction of a spatial singularity ~ 2P Plyp
. . . g,p(ﬁ,z)_Rz 2—|—R
at the origin. The inverse Fourier transform can be calculated g2 —-P v+

analytically + (A] /K + RP/¥))y, G~ K (16)

CK7+0A5(5) —

1
K?

K 1 1 .
K,+0.5 _ - f_ - —iKr
g ( ((m)s “ <m>2)6 where P = /K7 (B, /B1)7, R = ~2(Eo/Er) (~(D1 o)
1 1 i /E%—I—D()/E]), and’)/pz—(E()/E1)I\/P2—[(2 with P,
+ "y gyl T) (12) K, R, andAT known. Consequently, the singular behavior of

the Green’s function can be approximated by
One can easily verify that this spatial function is smooth

whenr tends to zero. The expansion ©f+%-(r) for larger P P 2P
r results in 95,p(8,2) =C0 7 ()0} <m>
1 e iKr 1
K,+0.5 ~ K — FK,—05 K,—0.5 e
=R oy (19 HOPRC R (s )
This #—* contribution will be part of the space wave + CF’K’J’“(Z)C]»K’Jro‘5 (1—2), =K
launched in the direction parallel to the layer structure. Con- (17)

sequently, a zero in the far field can be observed in directions
close to the ones parallel with the layer structure for a

. : With CFK.=05(2) = CFP=1(z) andC "% = ¢ 7' P/y,.
m J J p
nonhomogeneous structure. In the Appendix, a very i porta}PltS clear that the problem caused at the pole can be annihilated

property is proven: "thez dependence of this part of the, -
space wave follows the source-free transmission line equatié éhe same way ?S before Wltﬁ . The proplem caused _at
branch point’ can be annihilated by using the function

and, as a consequence, is unique (independent of the soll €05 i o T
location).” Consequently, at the branch poiiitof a Green's ¢+ for the third term and a new functiorf*:=-* for the
function ¢ for a field component of the electromagnetic fiel§&cond term
F' due to a source;, one can write

=05 _ 1 _ 1
) [{2 d2 /62 _ K2 + /62 + K2
AT (2) = Jim, == W(’YQ;’,F(@ z)) e K

LAY
:CF,K,+0A5(Z)C]K,+0A5 (14) + ~ ¢ (3). (18)

p
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The inverse Fourier transform df/(y + v, ) is calculated magnetic field due to a sourcg evaluated not too close to
approximately. If the pole is located close to the branch poitite source can be approximated as
(which is the case)y, is small andl/(y+,) ~ 1/~ over the , ,
whole spectral region except in the immediate neighborhoodGNw(aj ey —y,z)

of the branch point. After expansion of(y + 7, ) in series ~ Z cFPT - (z)(J”TMf1 (R)C]PTM*1
aroundX, the exact singular behavior very close to the branch pPTM
point (which determines the spatial dependence at higher _|_CFVKTMV_(),E,(Z)CKTM7_0,5(R)C]'KTM,—OAS

values) is proportional te- 2 Usin
) is prop 7/%- Using ORI (K 45y K405
J

% /ooo Wof(mdﬁ =k 6]2::2 e_ji:j (19) + 1;;: CPP™ =1 ()P =L ()P
and n CP7KTE’_0‘5(2)CKTE7_0~5(R)C;(TE7—0.5
i h Mdﬁ _ _E ﬁ ﬂ( _ L) + CF,KTEV_FO,S(Z)CKTEV_‘_O.S(R)C]KTEF‘_OAS 22)
e T B (R Kr where P™, PTE and K" = K™ = K are the dominant

(20) TM-poles, the dominant TE-poles, and the branch point,
respectively,R = \/(z — /)2 + (y — ¥')? and
one can verify that the spatial functio6”™ —%% can be

approximated in an excellent way by the following function: CPTM/TEv‘l(R) ~ e‘jPTM/TER/\/PTM/TER (23)
CE™IE 205 (R) ~ eI KR /(K R) or eI KR J(KR)?  (24)
K05y i O [ 1 CF YIRS (R) L~ KR (KR, (25)
2 Kr 1 A Yp 2},
_]<K) v Consequently, the electromagnetic field evaluated in the

layer structure not too close to the source is composed of

B e Kr . ECK*“(r) a set of waves: a number of surface waves and the part
Kr vz " of the space wave launched in the direction of the ground

plane. Ther dependence and dependence of each wave is
(21) known analytically and is unique, independent of the source
S;. Currents of a different type (magnetic or electric) flowing
The expansion of the first term a&f*-="%(r) for larger in different transitions and with a different shape all excite the
r is first proportional toe=/ %" /Kr and then for even larger same waves, each with its own excitation coefficient
r, depending ony, /K, proportional toe=%7/(Kr)?. The  The threshold above which this approximation is used is
expansion of the second term is already given above. called r.x. In the section with the numerical results, it will
Second, in homogeneous structuresequals—0.5 for the be illustrated that this threshold can be reduced down to values
dominant singular behavior at the branch point. This singularound 0.05 - - 0.15\yacuum. This implicates that coupling
behavior is annihilated using the first term of=°%(3) between, e.g., antennas, can be described with analytically
with 7, = 0. The expansion ofC*:=°%(r) for larger r known Green’s functions. This very important property will
is then proportional toe=/%"/Kr. This r dependence is be used in the second part of the paper where the expansion
part of the space wave launched by an impulse source irwave concept is introduced.
homogeneous structure in the direction parallel to the ground
plane.c®1+95(3) andC*+95(r) are used for the contribution IV. NUMERICAL RESULTS
with n = +40.5.
3) The Numerical Integration:After the removal of the

singularities and the asymptote of the spectral Green’s fuﬁt’-es_e procedures can be illustrated. ) _ )
tion, a smooth function is obtained. Its contribution to the FirSt, the necessity to extract the branch point singularity

spatial Green’s function is calculated numerically. The intdor electrically thin structures is illustrated. The structure
gration interval is divided intaV equal subinterval§A3 = consists of a substrate with relative permittivity 2, backed
Bmax /N) where the Bessel function is approximated byathirkay a perfectly conducting ground plane. The frequency is

degree polynominal and the smooth function by a first degr(lzg GHz. Consider the transversal electric field on top of the

polynominal. The integration over each subinterval is dorpelbstrate genergted by an arbitrary electric sheet current in
analytically and the contributions are summed. the same layer interface. The product @®fand the spectral
Green’s function of this field for the divergence term of

the current is given in Fig. 2 for two substrate thicknesses,
respectively, 3 and 1 mm. The function goes to a constant for

Due to the rapid decrease of the asymptotic contributiohggh values ofg and both a pole and the branch point can be
and the numerically calculated contributions, in general, evespserved. The modified spectral function obtained by applying
spatial Green’s functiofr; » for componentt’ of the electro- the techniques of asymptotic extraction and extraction of the

The procedures developed and the problems which led to

B. Approximation at High- Values (Above,.x)
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Fig. 3. Spectral function of Fig. 2 after asymptotic extraction and pole extraction and corresponding spatial Green’s function (numeridahintegrat
2.6 Avacuum)-

t0 rmax =~

poles and the resulting spatial Green’s function are given inSecond, the results obtained by using the approximation for
Fig. 3. For both thicknesses, the spectral function now gobigh r values are compared with the results of the general
to zero for larges and the pole has vanished. However, it iprocedure. Some commercially available substrates are used in
clearly shown in Fig. 3(b) and (d) that the extraction of ththe examples. First, four RT/duroid substrates are compared:
asymptote and pole alone only yields excellent results for thitko low permittivity substrates (RT/duroid 5886, = 2.2,
substrates. The ripples and the discontinuity~at, (which tané = 0.0009) with a thickness of respectively 0.38 and

is chosen~ 2.6A....um) in the spatial Green’s function for 1.57 mm and two high-permittivity substrates (RT/duroid
the thin substrate are caused by the square root behavior r@#0, ¢, = 10.2, tané = 0.0024) with a thickness of,

the branch point. Both can be removed by decreaskiyy respectively, 0.25 and 1.27 mm. The frequency is 10 GHz. The
and by increasing-..» at the cost of a higher calculationinfluence of the substrate thickness and the dielectric constant
time! Although in principle, these phenomena also occur fig investigated. The numerical parameters are the same as in
thick substrates, they can hardly be observed in these cabes previous case. It is clearly demonstrated [Fig. 5(a)—(d)]
due to the presence of a dominating pole. Two techniquiést the analytical contributions of the space and surface wave
to annihilate the singularity around the branch point, whiatbominate down to relatively small distances, about 0.05

is necessary for the thin 1-mm substrate, are consider@dl5\,...um, depending on the thickness and the permittivity
Technique 1 only uses® *0-5; technique 2 makes use ofof the substrate. Consequently,., can be reduced down
both ¢%:+0-5 and ¢& =95, The results for both techniques ardo this value. Without the extraction of the branch point
given in Fig. 4. It is shown that technique 1 even worsens tBegularity, rm.x should be increased to a distance where
problem. The derivative at the branch point is now finite buhe contribution due to the pole dominates. This is strongly
very large (this can be seen if the plot is zoomed in at tltependent on the substrate thickness and the permittivity. The
branch point). A very large variation in the modified spectraontribution due to the branch point would become part of
Green’s function is introduced, which makes the numericdie numerically inverse Fourier transformed function. This
integration necessary up to very large distances. Consequerntbntribution represents the part of the space wave launched
one would expect that a decrease &ff and an increase in the directions parallel to the ground plate. This part cannot
of rmax are necessary--. However, technique 2 solves thebe neglected for coupling between antennas in the case of the
problem completely. The modified Green’s function is verselatively thin structures~(, /K is small) where the surface
smooth,A3 can be chosen rather high without introducing thevave doesn’t dominate the space wave contribution. A second
ripple problem, and-, ., can be reduced. In the calculationexample is a very low permittivity two-layer structure. On the
the following numerical parameters were usggl.. Awnin = ground plane lies a sheet of Eccofoam (fabricated by Emerson
6, Ag = 10, andr,.x = 7/(4Ap3) [at the discontinuity in the & Cuming) with ¢, = 1.03 and a thickness 6.35 mm. On
spatial functions in Figs. 3(b), 3(d), and 4(b)]. top of this lies a sheet of 3M Cu Clad with. = 2.17,
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Fig. 4. Spectral function of Fig. 3, substrate thickness 1 mm after branch point extraction, and corresponding spatial Green’s function. gap: techni
1—use ofc?>+05 only. (a) Spectral. (b) Spatial; bottom: technique 2—use of kétht®-5 and <> —°->_ (c) Spectral. (d) Spatial (humerical integration
up 10 rmax ~ 2~6Avacuum)-

tané = 0.0009, and a thickness of 0.5 mm. The frequenci8] is avoided. The spectral integration can be reduced into
is 3.3 GHz. The influence of the surface wave in this quasin integration only over?. The convolution of a Green's
homogeneous structure is negligible [Fig. 5(e)]. The results dwnction with the corresponding source function is calculated
very close to the calculations with a perfectly homogeneoiurs the spatial domain, which is an easy task if a subsectional
substrate. expansion scheme is used. A big advantage of the space-

The exact calculation time depends on the numerical pdemain formulation is the possibility to change the nature of
rameters used and, of course, on the computer Our the source function after the calculation of the spatial Green'’s
calculations are made with a DECstation 5000/240. For thenctions. It is thus most efficient to store a Green’s function
structure of Fig. 5(b) £..x = 4000, evaluated in 4003 after its computation and to recall it whenever necessary. Both
points, and evaluated in 208points), the calculation of the the spatial and the spectral formulation are used in literature,
spectral Green’s function takes 0.80 s, the inverse Fourief example, the first one by Mosig and Gardiol in [7] and the
transformation 0.35 s. latter one by Pozar in [9] and [10].

The most important result is the fact that the dominant For low r, the reduction of the integration domain is
contributions to the Green’s functions proportionalli,/r, necessary because the decay of the integrand is too low,
1/r, and1/r*, are calculated analytically. They can be usefhtroducing a spatial singularity at the origin. It is well
as an excellent approximation down to very low distances f@own that this can be solved by using asymptotic extraction
the source. Together with the use of the properties proventéthniques. For specific layer geometries in some cases very
the Appendix for this part of the space wave and in [3] for thefficient asymptotic functions can be found in literature. An
surface waves, it allows to describe mutual coupling betwegRample is the two-layer case backed by a conducting ground
antennas in a new very elegant way. This is the scope of h@ne described in [4] and [5]. The asymptotic functions given

second part of the paper. in [7] even allow a complete near-field approximation. In
a multilayered structure with magnetic and/or electric sheet
V. DisCuUssION current sources, a generalized technique has to be used as the

In this section, each step of the procedure is examineddne presented here.
relation to what has been published in literature. The first The presence of singularities in the integrand can be treated
fundamental choice made is to use a space-domain formulatiorseveral ways. The first one is to choose a different path in
of the electromagnetic field. This allows us to work witlthe complexs plane. This can be done directly as in [6] or, in
spectral Green'’s functions having a dependency only3pn some cases, using the technique of [7], where eventually no
which results in spatial Green’s functions only dependent @mgularities arise in the functions to be integrated. The second
r [1]. In this way, the double infinite spectral integratiorway is to use an extraction technique, the solution chosen in
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Fig. 5. Spatial Green’s function for the transversal magnetic field for different substrates. Source: magnetic sheet current on top of theeyroserpdion
point in the same layer interface; circles: spatial Green’s function taking all contributions into account; solid line: approximation takiaceth@dgurface
wave contributions into account only; thick dots: space wave contribution; thin dots: surface wave contribution.

this work, and in [4] and [5] for the poles. Choosing a differerthus, do not have to be located. In most practical cases, even in
path also solves the problem of the branch point. Howeveases involving layer structures with many layers, this means
if one prefers to perform the integration along the real axithat at most only a few poles have to be located. From the
a change of variables [5] or, again, an extraction techniqueasoning followed, it is clear that missing one of these poles
can be used to solve the branch-point problem. Althougian only be allowed if its contribution is negligible compared
changing the integration path is very popular, in our viewo the contributions of the other singularities (both poles and
the integration along the real axis combined with the uniqueanch point). Since the ease to locate a pole is proportional to
extraction technique presented here, clearly has advantagtsscontribution, using an appropriate technique it is relatively
The main advantage is certainly the possibility to express thenple to find all the relevant poles in a calculation time
Green'’s functions, evaluated not too close to the source asegligible compared to the overall calculation time.

sum of simple analytical functions with a well-known physical The characteristics of the waves used open an opportunity
meaning: surface waves and the dominant parts of the sp&@anodel mutual coupling in a very elegant way, the scope
wave. It is important to emphasize that in our technique onbf the second part of the paper. To our knowledge, this paper
rapid variations on the real axis have to be taken into accouist.the first one that treats branch points in much the same
Concerning poles, this implicates that only poles on the reahy as poles. Our subtraction functions clearly differ from the
axis or in the immediate neighborhood of the real axis have émes used by other authors [4], [5]. In our view, they are very
be located. These poles correspond to surface waves that reafigropriate since they lead to an unique procedure working for
propagate without losses or with small losses, respectivesll » values. The terms proportional ig'\/r, 1/r, and1/r?
Poles away from the real axis corresponding to exponentiallye known in an analytical way. Even at relatively small values
decreasing waves do not have to be taken into account aofly, this contribution yields excellent results. This is due to
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the extraction of the branch point singularities. Consequently, APPENDIX
a lot of computational effort can be saved. CHARACTERISTICS OF THESPACE WAVE
Concerning the correctness and the accuracy of the global IN A MULTILAYERED STRUCTURE

procedure, we refer to the agreement between calculated an%very Green’s functioyr(8, z) (F equalsV’ or I depend-
. . )
measured results for the antenna structures given in [1] aad o the field component) can be expanded in series around

[11] for which the Green’s functions were calculated with the "_
procedure given in this paper and to the second part of the . .

. . o | 7
paper Qoncermng the efficiency of the proceo!ure, _|t ha_s to be p(2) = AT ()= + AP (2)— + A" (2) I
emphasized that most of the techniques described in this paper K K
only take a small amount of calculation time: the asymptotes PN .
and the constant§; and the functiong”?'(z) for poles and +4; (%) R FxkK (26)
branch point are all calculated using the recursive technique P . P
of [1]. The numerically calculated part of the inverse Fourié’f’Ith AI;%(;) = lim,_ov9r (5, 2) anq AF(z) =
transform has to be determined for lowalues only. lim,_o %5-7=(y9r(8,7)). In each layeri, the Green’s

Recenﬂy, two very interesting papers were pub“shed Cow.nction follows the transmission line equation derived from
cerning the problem of calculating the spatial Green’s functidgd) and (3)
as the inverse Fourier transform of its spectral equivalent. In 42
[12], a complete set of asymptotic closed-form microstrip sur- T IF (B,2) —vigr(B,2) = 0. (27)
face Green'’s functions based on the power series expansion of
the spectral Green’s functions of the two-layer system backbserting (26) in (27), multiplying withy and taking the limit
by a conducting ground plane is given. In [13], the techniquier v — 0 yields
is extended to the case of a three-layer structure backed by £

a ground plane. Unfortunately, the authors argue that their — AT (2) = (K7 = k])AL  (z) = 0. (28)
method does not seem to be readily applicable to arbitrary dz
Green'’s functions in multilayered dielectric structures. The sources are unit sources independent aind, conse-

quently, there are no contributions proportionalltey or ~.
Thus, A (z) is the solution of a source-free transmission
line problem. Consequently, the dependence ofA’ (z)
VI. CONCLUSIONS given by CF¥:=05(2) will be unique for each source in the
In this paper, an accurate and computationally efficient prewiltilayered structure independent of its type—magnetic or
cedure is given for the calculation of spatial Green’s functiorgdectric—or its position.
as the inverse Fourier transforms of their spectral equivalentsTo determineA{ (z), (26) is inserted in (27). The latter is
A general extraction technique is worked out to handle tigultiplied by K*+/2 and the limit fory — 0 of the second
asymptotic and singular behavior of the Green’s functiomigrivative with respect tg is calculated, resulting in
in the case of an arbitrary stratified dielectric medium. The

2
asymptotic extraction leads to analytical functions, which j—Q(A’f(z)) — lim (v7)Af (2)
describe the singular behavior at the origin of the spatial * ) v=e
functions. The singular behavior around poles and branch — lim (d_(172)>[(214p (2)
point are both annihilated using new subtraction functions. y—0 \dy? 2" -
These new functions give rise to analytical expressions for . d, 5\ . F
the Green's functions at larger distances. Some very in- _th(l) (@(% )> KAy () =0. (29)
teresting characteristics of these functions are proven that
can be exploited in mutual coupling calculations. A simpl®ne can verify thatlim,_, (/) = K? — &7, lim,_,

but fast technique is given for the numerical integration c?‘sdi(ﬁ)) =0 andlim,_, (f—l(%ﬁ) =1.

. .. Y Y
well-behaved integrands. The efficiency of the procedure IS|n 3 nonhomogeneous multilayered structure, one can prove
discussed and illustrated. The accuracy can be checked throggh AT (z) = 0. The singular behavior around the branch
comparison between calculated and measured results publisagmt is determined byA” (z), which is again a solution of the
in earlier papers and in the second part of this paper. In af;rce-free transmission line equations. The same conclusion
view, the main advantages of the proposed procedure aredits, pe drawn for this function.
generality, its relative simplicity, the possibility to implement |, 5 homogeneous structure (backed by a conducting plate),
it in a straightforward way in the case of multilayered strugne situation is a bit different. In the TE systert? | (z) = 0
tures (even if the number of layers is not known in advancg)y ejther an electric or magnetic field Green’s function. In
its special design to be used in cases where a large nUMpRY T\ system, A’ (z) is different from zero. Making use
of Green’s functions is needed, and definitely the propergy (2) and (3) for a homogeneous structure and the boundary

that every spatial Green’s function evaluated not too close dgngition at the ground plat& (43, z at ground plate = 0, it
the source can be approximated as set of waves of which thg, pe verified that

characteristics offer some opportunities to be used in part two
of the paper. Al () =CrandAY, (2) =0 (30)
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and

2
Al(z) = Cy + % and

AV —0— i
1 (Z) 0 01 jw€

if z = 0 at the ground plate. Those functions can also be foul
as the limit fory, — 0 of a quasi-homogeneous structure.
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