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Time-Domain Sensing of Targets Buried
Under a Rough Air–Ground Interface
Traian Dogaru,Student Member, IEEE, and Lawrence Carin,Senior Member, IEEE

Abstract—We consider plane wave time-domain scattering
from a fixed target in the presence of a rough (random) sur-
face with application to ground penetrating radar. The time-
domain scattering data are computed via a two-dimensional (2-D)
finite-difference time-domain (FDTD) algorithm. In addition to
examining the statistics of the time-domain fields scattered from
such a surface, we investigate subsurface target detection by
employing a (commonly used) matched-filter detector. The results
of such a detector are characterized by their receiver operating
characteristic (ROC), which quantifies the probability of detec-
tion and probability of false alarm. Such ROC studies allow
us to investigate fundamental assumptions in the matched-filter
detector: that the target response is deterministic and the clutter
signal stochastic, with the two signals treated as additive and
independent.

Index Terms—Buried object detection, time-domain analysis.

I. INTRODUCTION

OVER the last few decades, significant research has been
undertaken on the scattering of electromagnetic and

acoustic waves from rough (random) surfaces [1]–[9] with
the scattered-field properties parametrized statistically. Initial
work in this area was based on approximate formulations,
while more recently, there has been a significant focus on the
application of numerical algorithms. In most of these analytical
and numerical analyses, frequency-domain operation has been
considered with results presented as the mean and variance of
the angular-dependent scattered field. There has been very little
work done on time-domain operation (although some results
were calculated using time-domain algorithms [2]) or on the
characterization of the field scattered from a deterministic
target in the presence of a rough (random) interface.

There are many applications for which one would be inter-
ested in detecting/identifying a target in the presence of a rough
surface. In electromagnetics, one may encounter the problem
of detecting/identifying a low-flying aircraft over ocean or
a buried target under a rough air–ground interface. Similar
problems can be posed in acoustics. In this paper, we consider
the case of a deterministic (fixed) target in the presence of a
rough surface, the latter being parametrized statistically. This
study is motivated by electromagnetic sensing of buried targets
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[10]–[17] (e.g., mines, unexploded ordnance, etc.), while, as
alluded to above, this general problem has wide applicability.

For electromagnetic scattering from the ocean surface, a
stochastic surface parametrization is clearly required since
the sea-surface characteristics generally change with time
in a seemingly random fashion. However, for the sensing
of an underground target, the air–ground interface is fixed
(deterministic), calling into question the need for a statistical
analysis. However, although a given portion of the air–ground
interface is fixed, it will, in general, be different from that of
another (fixed) region of the interface. Thus, while the fields
scattered from any particular portion of the rough surface
are deterministic, to characterize the fields scattered from
such a general surface, the surface (roughness) parameters
must be characterized statistically and, therefore, so must the
associated scattered fields. Consequently, to characterize the
fields scattered from such a rough air–ground interface, the
surface properties are modeled as a random process with any
particular surface constituting one realization of an ensemble,
each of which is parametrized by thesameprobability density
function. In turn, the scattered fields from such a surface are
also treated as a random process.

As discussed above, most previous analyses of scatter-
ing from rough surfaces have been performed in the fre-
quency domain. However, there has been significant interest
recently in time-domain ground-penetrating radar (GPR) sys-
tems [10]–[19] motivating the work presented here on time-
domain scattering. The time-domain field scattered from a
rough (random) surface constitutes a random process, which,
in general, is nonwhite. Therefore, for detecting a target in the
vicinity of such a rough surface, optimal detectors [20] (under
appropriate conditions) are preceded by a whitening filter [20]
such that the clutter becomes a white (uncorrelated) time
sequence. The whitening filter employs the clutter’s correlation
matrix, which for wide-sense stationary (WSS) clutter can be
represented in the Fourier domain in terms of the clutter’s
power spectral density (PSD). As discussed below, in the cases
we have examined thus far, the WSS model has been found to
be quite accurate and, therefore, here we quantify the transient
clutter statistics via the PSD.

Although the statistical properties of time-domain scattering
from a rough (random) surface are of interest in their own
right and are investigated here in the context of their PSD, the
principal focus of the present paper is a detailed examination
of the underlying assumptions used in classical optimum
detectors with emphasis on time-domain GPR. Matched filters
preceded by a whitening filter are commonly utilized for the
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detection of a known target in noise/clutter. For the case of
GPR, such detectors are useful because there are generally
a relatively small number of target types (e.g., mines) of
interest, the signatures of which can in principle be measured
or computed. In its simplest (and most common) manifestation,
such a matched filter assumes that the target signature is
deterministic and known exactly with the clutter/noise treated
as stochastic and additive. While such properties result in a
simple detector, in practice they are often not rigorously valid.
To test such a detector and its underlying assumptions, our
results are presented in the form of receiver operating charac-
teristic (ROC) curves, which describe how the probability of
false alarm varies with the probability of detection (as detailed
below, these probabilities are varied by adjusting the detector
threshold). Using classical detection theory [20],theoretical
ROC curves are computed based on the clutter statistics.
Monte Carlo simulations are then performed for a target in
the presence of a random surface to get “empirical” detector
performance. Where the theoretical and empirical ROC curves
agree, we deem the underlying detector assumptions valid. Of
interest is the discrepancy in the theoretical and empirical ROC
curves as a function of target position, angle of incidence,
and surface statistics. Such studies are important for when the
simplifying assumptions are inappropriate, more sophisticated
detectors, which, for example, exploit the random character of
the target signature [20], may yield better performance than
the simple matched filter (at the price of greater complexity).

To perform the aforementioned study, many realizations of
the air–ground interface must be considered (each described
by the same probability density function) and, therefore,
the numerical scattering model must be versatile and highly
efficient. Consequently, all results are computed using a two-
dimensional (2-D) finite-difference time-domain (FDTD) al-
gorithm [21]–[23], which incorporates a lossy half space,
surface roughness, plane-wave incidence, a near-to-far-zone
transformation, and a perfectly matched layer (PML) absorbing
boundary condition (ABC) [24]–[29]. Acquiring statistics from
a three-dimensional (3-D) surface would require prohibitive
computational resources; however, it is felt that the basic issues
studied here using a 2-D model are also relevant to the more
realistic case of 3-D GPR systems.

The remainder of the text is organized as follows. A brief
discussion of the FDTD algorithm is given in Section II with
careful attention directed on the near-to-far-zone transfor-
mation. The matched-filter detector and whitening filter are
discussed in Section III, wherein basic underlying assumptions
are summarized. Results are presented in Section IV for sev-
eral realizations of a target in the presence of a rough (random)
air–ground interface, presented in the form of PSD’s for the
clutter and ROC curves for the matched-filter detector. This
work is summarized and conclusions are given in Section V.

II. NUMERICAL SCATTERING MODEL

A. Basic Numerical Algorithm

All numerical scattered-field data are calculated via a 2-D
FDTD code, utilizing the classic Yee algorithm [21]. Results

Fig. 1. Schematic of (a) FDTD computational model and (b) the Huygens
surfaces used to calculate the far-zone scattered fields.

are presented forTMz polarization(Hz = 0) with similar
results found (but not presented) for theTEz (Ez = 0) case
(see Fig. 1). As described in [25] and [26], the plane wave
incident field is modeled via the use of Huygens currents
placed along a closed contour with total fields inside and
scattered fields outside. We refer to “the incident field” as
the plane wave that impinges on the half-space plus the
fields reflected and transmitted at the planar interface in the
absence of any target or surface roughness. The scattered field
is produced by any perturbations to this half-space problem
(target and/or surface roughness).

At the boundaries of the computational domain, we use a
PML [27] to absorb the outwardly propagating scattered fields.
It has been well established that the Berenger [27] PML yields
a reflection coefficient at the boundary of the computational
domain that is orders of magnitude smaller than absorbing
boundary conditions derived from the one-way wave equation
[30]. However, the PML introduced by Berenger in his original
paper cannot be applied directly to lossy media and, therefore,
we use a PML formulation based on [28] and [29] appropriate
for lossy soils.

The far-zone scattered fields are the quantities of interest in
most radar problems. Therefore, we implement a near-to-far-
zone transformation in a manner similar to [26]. In particular,
the perturbations (target and/or rough surface) are enclosed
by Huygens surfaces and the equivalent currents thereon
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(minus the incident field) are integrated with an analytic
approximation [31] to the half-space Green s function. As
shown in Fig. 1, separate near-to-far-zone Huygens surfaces
are used for the rough surface and the target (when present).
The fields are observed in backscatter for the near-grazing case
applicable to many airborne subsurface radars [18].

Near-to-far-zone transformations have been used for many
years to propagate FDTD computed near-zone fields into the
far zone. However, much of this work has been for free-space
scattering with far fewer results presented for the half-space
problem [26] considered here. Therefore, we elaborate on
several points germane to the half-space problem recognized
in the course of this research. First, as discussed above, the
far-zone fields are computed via an approximate half-space
Green’s function derived via an asymptotic evaluation of its
exact Sommerfeld-integral representation [31]. In all such
asymptotic analyses, one must first identify the highly oscilla-
tory and relatively slowly varying portions of the integral. The
Sommerfeld integrals are evaluated approximately via saddle-
point integration in the vicinity of its stationary point(s) [31],
the latter determined by the phase of the highly oscillatory
terms [31]. For evaluation of the scattered fields above the half-
space far from the interface, one usually treats the exponentials
characteristic of propagation in air as the highly oscillatory
terms and the remaining exponentials that describe propagation
in the dielectric half-space as slowly varying. However, if the
currents in the dielectric are at electrically large depths, a more
accurate asymptotic representation of the Green s function may
be necessary. In particular, some of the aforementioned terms
may no longer be deemed slowly varying in which case they
must be included when determining the stationary point(s)
[32]. This issue is particularly relevant for GPR applications
in which the dielectric constant of the soil is often large and,
therefore, the target need not be too deep physically for the
above issues to be of concern (this is especially true for the
wide-band signals of interest here).

A second issue involves numerical dispersion [33], [34].
As the time-domain fields propagate through the FDTD grid,
there is a inherent (nonphysical) pulse distortion caused by
the difference-equation approximations to Maxwell s equations
[33], [34]. This issue is exacerbated for electrically large
structures, of interest for the high-dielectric-constant half-
space region. Numerical dispersion is mitigated by increasing
the spatial sampling in the FDTD grid, but the physical size of
the problem and finite computer memory ultimately dictate the
discretization limits. Therefore, to improve the accuracy of the
far-zone fields, we have found it useful to place the Huygens
surface as close as possible to the target to minimize the range
over which FDTD computed scattered fields must propagate
(of course, similar concerns are relevant for the incident-field
Huygens surface as well).

For the target depths and soil properties considered in
Section IV, the simple Green’s function approximation has
proven very accurate after performing exhaustive tests. How-
ever, similar tests also showed numerical dispersion to be a
concern, requiring one to be very careful about the spatial
discretization and requiring the Huygens surface to circum-
scribe the target (and rough surface) tightly. In the results

presented below, the spatial discretization was 12 samples per
wavelength (in the soil), at the highest frequency of interest in
the incident fields. Petropoulos [33], [34] has demonstrated
that the required sampling rate is predicated by both the
dielectric constantand the length over which the FDTD fields
must propagate. We are confident in the FDTD and near-to-far-
zone results presented below, but it must be emphasized that
this confidence has been obtained after a rigorous examination
of numerical dispersion and its pitfalls.

B. Rough-Surface Generation

For the GPR problem, clutter can be generated from mul-
tiple sources, including surface roughness and/or subsurface
inhomogeneities (e.g., rocks, roots, inhomogeneous soil, etc.).
In this paper, we restrict ourselves to clutter generated by
surface roughness under the assumption that the subsurface
is characterized by a homogeneous lossy dielectric. Although
other or additional forms of clutter may occur in practice,
there has been very little work done to date on wide-band
time-domain scattering from rough surfaces or from targets
situated in such environments. Moreover, as discussed in
Section V, the general insight from this problem may yield an
appreciation for the physics inherent in more general clutter
scenarios.

We assume that the surface heightf(x) at each transverse
location x is a zero-mean Gaussian random variable with
heightsf(x) andf(x +�x) related by the autocorrelation

E[(f(x)f(x +�x)] = h2 exp(��x2=l2) (1)

whereh2 is the variance,l is the correlation length, andE(�)
represents the expectation operator. In actual implementation,
the random process is generated in the Fourier domain [7]
by passing a Gaussian white-noise process through a filter
with a spatial-frequency response corresponding to the desired
rough-surface power spectrum [the Fourier transform of (1)].

As described in Secion II-A, we calculate the scattered
fields using a standard, 2-D Yee FDTD algorithm [21]. In
such a scheme, the rough surface must be approximated
in a staircase fashion [2], [21] due to the Cartesian spatial
discretization. However, it has been demonstrated that if the
spatial gridding is sufficiently fine, the scattered fields are
in very good agreement with those calculated via a more
sophisticated FDTD algorithm in which the surface roughness
is modeled using a contour-integral procedure [2].

III. T IME-DOMAIN STATISTICS AND DETECTION

A. Time-Domain Statistics

Frequency-domain scattering from rough (random) surfaces
has been characterized in terms of the mean and variance of
the scattered fields [1]–[9]. This parametrization is natural
since at a given frequency the scattered field is a random
variable. However, in the time domain, the scattered field
is a time-dependent random process. For all the cases we
have considered in the course of this work using the surface
roughness in (1), the time-domain fields scattered from the
rough surface are approximately wide-sense stationary (the
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correlation matrix [35] computed via averaging hundreds of
Monte Carlo realizations has Toeplitz symmetry with less than
5% error). Therefore, we describe the statistical properties of
the rough-surface scattered field in terms of its autocorrelation
[35]. One drawback of this procedure is that the autocorrelation
is dependent on the incident-pulse temporal shapeg(t), viz.,
if r�(t) represents the autocorrelation of the scattered fields
when the incident pulse shape is a delta function, then the
autocorrelation of the scattered field for the input-pulseg(t) is

rg(t) =

Z
1

�1

Z
1

�1

d
 d� g(
)g(�)r�(t� � + 
): (2)

The power-spectral density (PSD) of the scattered fieldSg(!)
is represented by the Fourier transform ofrg(t) and is ex-
pressed as

Sg(!) = jG(!)j2S�(!) (3)

where S�(!) and G(!) are the Fourier transforms ofr�(t)
andg(t), respectively. Therefore, although the autocorrelation
and PSD of the field scattered from a rough (random) surface
are dependent on the incident-pulse shape, with knowledge of
G(!), one can calculate the incident-pulse-independent PSD
S�(!) characteristic of the clutter alone.

B. Optimal Detector

In addition to studying the transient fields scattered from
a rough (random) surface, a major focus of this investigation
involves the detection of a fixed target in the vicinity of such
a surface. As discussed in Section I, this is a basic problem
of interest for many applications. Detection theory has been
investigated for decades [20] and, therefore, the purpose here is
not to develop a new detector. However, in classical detection
theory, one often makes assumptions that simplify detector
design. In practice, such detectors often do not work as well
as expected and it is of significant interest to understand why,
such that improved detectors can be developed, if necessary.
The FDTD allows us to perform controlled experiments with
which underlying detector assumptions can be investigated
systematically here with application to GPR.

A concise summary of simple detection theory [20] is
given, such that the underlying assumptions are understood
for subsequent examination. We consider a binary test for
hypothesesH0 and H1, whereH0 states that the scattered
signal consists of clutter alone andH1 that the signal consists
of the superpositionof clutter and thedeterministicresponse
from a known target. Implied in this test are the assumptions
that: 1) there are only two possibilities for the source of the
scattered field (i.e., that the binary hypothesis test is valid);
2) the target and clutter signatures are additive; and 3) the
target has a deterministic signature. Assumption 1) constitutes
a simplification of the general problem of multiple hypothesis
testing [20] and allows a direct examination of 2) and 3). Our
numerical experiment is easily designed such that 1) is valid.
Therefore, we undertake a detailed examination of 2) and 3),
which are of importance for multiple hypothesis testing as
well.

Under the above hypotheses, a given polarization of scat-
tered field e(t) can be expressed ase(t) = c(t) under
hypothesisH0 and e(t) = E1=2s(t) + c(t) underH1, where
E1=2s(t) is the known deterministictarget signature (with
energyE) andc(t) is thestochasticclutter characterized by a
joint probability density (in the remainder of the text whenE
appears alone, it represents the energy of the deterministic
scattered field and when it appears asE(�) it represents
expectation). If the clutterc(t) is white (E[c(ti)c(tk)] =
�2W �(ti � tk), where �2W is the variance ifc(t) is a zero-
mean process, then the optimal detector is a matched filter
[20], [36]. In general, the clutter is not white and the optimal
detector consists of a matched filter preceded by a whitening
filter [20], [37]. If hw(t) represents the impulse response of
the linear time-invariant whitening filter, then the new noise
responsec�(t) and signal responses�(t) after whitening are

c�(t) =

Z
1

�1

c(� )hw(t� � ) d�

s�(t) =

Z
1

�1

s(� )hw(t � � ) d�: (4)

If hypothesisH0 is true, the filter output ise�(t) = c�(t),
while if H1 is true, e�(t) = E1=2s�(t) + c�(t). Finally, the
output of the whitening filter is projected onto the function
E1=2s

�
(t) resulting in the random variablel

l =

Z
1

�1

p
Es

�
(t)e

�
(t) dt: (5)

If p(ljH0) is the probability ofl under hypothesisH0 and
p(ljH1) is the probability ofl underH1, the decision as to
whether a target is present is effected via the statistic

� =
p(ljH1)

p(ljH0)
=

exp

�
� (l �m)2

2�2

�

exp

��l2
2�2

� (6)

where the right side of (6) is valid ifc�(t) is a zero-mean
Gaussian process (it is approximately white as a consequence
of the whitening filter) withm = E1=2 and �2 representing
the variance ofc�(t). For a given thresholdT , we choose
H1 if �>T andH0 if �<T [20]. If c�(t) is a zero-mean
white Gaussian process, it is easy to see from the right side of
(6) that the statistical properties of� are dependent entirely on
the statistics ofl and, therefore, the latter is termed a sufficient
statistic [20] (andl alone can be compared against a threshold).

For the surface characteristics in (1) and the examples
studied here, we have foundc(t) to be well characterized by
a Gaussian density function (this is not surprising, as dictated
by the central limit theorem [35]). Therefore, we specialize
the discussion to the Gaussian case. The detector performance
is parametrized by computing the probability of a false alarm
at thresholdT

PF (T ) = Pr(l > T jH0) =

Z
1

T

p(ljH0) dl (7)

as well as the probability of detection

PD(T ) = Pr(l > T jH1) =

Z
1

T

p(ljH1) dl: (8)
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Detectors are usually characterized by plotting thePF and
PD as a function of the thresholdT and this representation is
termed the receiver operating characteristic (ROC) [20]. One
can adjust the parameterT to operate the detector at aPF and
PD that is appropriate for a given application.

Summarizing, we will use the classical (whitening-filter)-
(matched-filter) detector discussed above to investigate the
radar detection of subsurface targets. Other more-complicated
detectors could be used if the aforementioned assumptions
breakdown, although this results in a significant escalation in
detector complexity [20]. With regard to the results presented
below, the whitening filter is implemented via a forward
(linear-prediction) error filter [37], the parameters of which
are computed by solving the classical Wiener–Hopf equations
[37], which require the autocorrelation matrix of the clutter
c(t) (in the absence of the target). The autocorrelation matrix
was computed by averaging the scattered fields from 300
realizations of the rough surface, each of which is described
by the same rough-surface density function.

IV. RESULTS

For all examples presented here, the excitation is in the form
of an obliquely incident plane wave with incident pulse shape
and spectrum shown in Fig. 2. This waveform is representative
of signals generated routinely by ultra-wide-band SAR systems
[17]–[19]. While we consider various statistical models for the
rough-surface properties, the electrical characteristics of the
soil itself are kept fixed. In particular, the soil is modeled
with a frequency-independent dielectric constant�r = 6
and conductivity� = 0:005 S/m. While this model does
not correspond to any particular soil, it is consistent with
data measured for various soil types of interest [38]. Note
that although the dielectric constant and conductivity are
frequency independent in this model, the incident and scattered
waveforms are dispersed as they propagate through the soil
due to the frequency dependence of the index of refraction
n(!) = [�r � j�=!�o]1=2. Thus, the equivalent (Huygens)
currents used to model the incident plane wave were computed
in the frequency domain before Fourier conversion to the time-
domain form used in the FDTD algorithm. The 2-D target
considered has a square cross section (37.5 cm� 12.5 cm) and
is composed of a homogeneous lossless dielectric. Moreover,
the top of the target is buried 25 cm beneath the mean position
of the rough air–ground interface. The dielectric target was
considered because it presents a particularly challenging case
for radar systems.

In the following results, the rough-surface profile in (1) has
been used, with various parameters for the standard deviation
of the surface heighth and the correlation lengthl. Moreover,
two angles of incidence are considered. Finally, with regard
to the target, although its shape and depth are fixed, we
consider several examples for its relative dielectric constant.
The purpose of this study is to explore basic target (rough
surface) interactions and their impact on the performance of a
common detector (the matched filter). We note, however, that
there are clearly other possibilities for the surface roughness
statistics, target type, and soil type. Such issues will be
considered in future work.

(a)

(b)

Fig. 2. (a) The incident pulse and (b) its spectrum used in all scattered-field
computations.

Before proceeding, recall that for the examples considered
here, we have assumed plane wave incidence. This is moti-
vated by the SAR problem [17]–[19] for which the sensor
is quite distant from the region under interrogation. Other
authors have considered a tapered excitation [2] in the FDTD
computations, which may be representative of the antenna
pattern for some applications; moreover, such tapers mitigate
numerical difficulties at the edges of the rough surface from
which fields are diffracted in a manner uncharacteristic of
the surface itself. While this latter issue is important for the
computation of rough-surface statistics, it is not necessary for
the detection examples considered here. In particular, note
from (5) that the decision test statisticl is computed by
projecting the total measured waveforme�(t) ontos�(t)—the
latter representing the target signature for aflat surface.
Therefore, nonzero values ofs�(t) only exist over a very
limited temporal support (for the targets considered here) and,
therefore, the only portion ofe�(t) of interest for computation
of l is that for whichs�(t) is nonzero. In our computations,
we have carefully examined diffractions from the edges of
the rough surface and these occur well outside the meaningful
temporal support ofe�(t). We note as well that the clutter
statistics (used in the whitening filter) were also computed
by considering those portions ofc�(t) with support around
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Fig. 3. Power spectral density (PSD) of the transient fields backscattered from the rough surface in (1), using the incident pulse in Fig. 2. The Gaussian
rough surface has correlation lengthl = 18:75 cm and standard deviationh = 3:95 cm and the soil is characterized by�r = 6 and � = 0:005 S/m.
Results are plotted for angles of incidence�i = 30

� and 70
�.

the principal portion ofe
�
(t). Therefore, edge-diffraction-

induced vitiation of the detector computations was avoided by
exploiting the temporal filtering of the short-pulse time-domain
excitation.

A. Clutter Characteristics

As discussed in Section III-A, the clutter statistics are char-
acterized by their power spectral density (PSD)—assuming
the clutter is wide-sense-stationary, as we have found to be
approximately the case for all examples considered here. In
Fig. 3 we address the variation in the PSD with respect to the
angles�i = 30� and70� (see Fig. 1), for a surface roughness
characterized byh = 3:95 cm andl = 18:75 cm. The most
striking feature of these results is the significant decrease in
the strength of the PSD as one gets closer to grazing, which is
expected due to the fact that the backscattered fields excited
by the rough surface diminish in strength as one approaches
grazing. As a comparison with the PSD’s, we consider the
spectrums of waveforms backscattered from a buried target,
for the same angles considered in Fig. 3. In Fig. 4, we plot
the angular-dependent backscatter spectrums for a 37.5 cm
� 12.5 cm target of�r = 2 buried 25 cm under aflat
air–ground interface. For the target considered here, we see
from Fig. 4 that theshape of the backscatter spectrum is
relatively insensitive to angle, while, as in Fig. 3, there is
a pronounced reduction in its strength as one approaches

grazing. To avoid problems inherent in deconvolving the
incident pulse, the spectrums in Figs. 3 and 4 represent delta-
function responses filtered by the incident pulse in Fig. 2 [see
discussion concerning (2) and (3)].

The remaining results will be presented in the form of
ROC curves, which depict the variation in the probability of
detectionPD and probability of false alarmPF as a function
of the detector thresholdT (see Section III-B). For the case
of additive white Gaussian noise, detector performance(PD
andPF ) is dictated entirely by the parameterd = m=� [20],
where from Section III-Bm2 is the signal energy and�2 is
the variance of the clutter. Consequently, a reduction in the
strength of the backscattered signaturedoes notnecessarily
imply that detector performance will diminish. In fact, if the
clutter variance reduces as well, then it is possible that the
ratiod = m=� may actually increase (note in Figs. 3 and 4 the
commensurate decrease in the clutter and target responses with
increasing angle of incidence). As demonstrated below for the
examples considered here,d = m=� increases with increasing
angle of incidence (although individuallym and� decrease)
yielding improved detector performance. However, asm and
� decrease (near grazing) other sources of noise (e.g., receiver
noise, radio-frequency interference (RFI), etc.) may become
dominant, which may deteriorate detector performance in
practice. Such issues are not addressed here, as we concentrate
on the effects of rough-surface-induced clutter on buried-target
detection.
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Fig. 4. Spectrum of the fields scattered from a 37.5 cm� 12.5 cm lossless dielectric target(�r = 2) buried 25 cm beneath a flat air–ground interface, with
the soil properties�r = 6 and � = 0:005 S/m. Results are plotted for angles of incidence�i = 30� and 70�.

B. Detector Performance After Prewhitening

We have developed a (linear-predictor) error filter (ten taps)
to whiten the clutter response [37]. Using the concepts in (7)
and (8), we can calculatetheoreticalROC curves, under the
assumption that the detector model fits the data in question.
From Section III-B, the principal detector assumptions are
that the target response and the clutter are additive and that
the target signature is deterministic. Under these assumptions,
(7) and (8) demonstrate that the whitening filter does, in
theory, improve detector performance relative to the similar
computations for the case of no whitening. However, in
the context of our Monte Carlo simulations from which we
compute simulated (empirical) ROC performance (using the
FDTD computed scattered fields in which the clutter need not
be additive nor the target response deterministic), we have not
seen the significant whitening-induced performance enhance-
ment predicted by (7) and (8). The degree of improvement
in Monte Carlo computed ROC performance increases as the
angle of incidence decreases (as the wave approaches normal
incidence), but not to the degree that (7) and (8) predict (we
use 300 Monte Carlo realizations for a given surface-roughness
statistics).

To demonstrate whitening-induced ROC improvement as a
function of incidence angle, in Fig. 5 we reconsider a 37.5 cm
� 12.5 cm target of lossless dielectric constant�r = 2 buried
25 cm under the rough surface in Fig. 3. From the results in
Fig. 5(a), we see that for�i = 30� the Monte Carlo simulations
reveal a whitening-filter-induced ROC enhancement, which

is relatively close to that found, theoretically, from (7) and
(8). On the other hand, for the near-grazing case of�i =
70� [Fig. 5(b)], the Monte Carlo simulations demonstrate
whitening-filter-induced enhancement that is substantially less
than that expected theoretically. However, it should be pointed
out that the absolute Monte Carlo predicted detector quality
is better near grazing(�i = 70�) than it is closer to normal
incidence(�i = 30�) despite the fact that the enhancement
due to prewhitening is not as great as expected theoretically.

One can understand the discrepancy between the simulated
(Monte Carlo) and theoretical [(7) and (8)] ROC performance
by recognizing that the fieldincident on the target (after
transmission through the rough surface) is a random process
and, therefore, so are the scattered fields. Similarly, there
is additional randomization induced as the scattered fields
propagate out of the soil and into air through the rough surface.
One can parametrize the cumulative effect of this random
transmission in and out of the soil as a random process, added
onto the (deterministic) response of the target (calculated when
the air–ground interface is flat). This random process need not
have the same statistical properties as the fields backscattered
from the rough surface (in the absence of the target) with
which the whitening filter was designed (in practice, there
will be surface-scatter-induced clutterand the aforementioned
random-transmission-induced clutter). The mismatch between
the actual clutter and that with which the whitening filter
was designed will clearly deteriorate detector performance.
Alternatively, instead of viewing the random transmission
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(a)

Fig. 5. Comparison of the ROC with and without prewhitening. The soil and rough air–ground interface are as in Fig. 3 and the target is a lossless dielectric
(�r = 2) of cross section 37.5 cm� 12.5 cm buried 25 cm beneath the mean position of the interface. The theoretical ROC [20] is calculated under
the assumptionthat the scattering data fits the detector model perfectly and the simulated ROC curves (based on 300 Monte Carlo realizations) represent
actual detector performance with and without prewhitening. (a) Angle of incidence�i = 30�.

through the air–ground interface as a random processaddedto
the deterministic target signature, we can parametrize the target
response itself as a random process. However, this reality
runs counter to the assumptions under which our (classical)
detector was designed, namely, that the target signature is
deterministic (see Section III-B). In either case, the mismatch
between the detector model and the physical problem is due
to a randomization of the field upon entering and leaving the
rough (random) air–soil interface.

For the cases considered here, the correlation length is
comparable to the target width (as it often will be in practice).
Therefore, the variation in the surface roughness is relatively
small over the target width (the target is also relatively
shallow). Thus, for near-normal incidence, the field incident
upon the target and the fields backscattered from same are
randomized relatively weakly, since there is modest variation
(randomness) over the surface area with which these fields in-
teract. However, as one approaches grazing the fields incident
on the target interact with a wider range of the air–ground
interface, sustaining more randomization (the same holds true
for the backscattered fields as they are transmitted from the
soil to the observer). Thus, the degree of transmission-induced
randomization (upon entering and leaving the soil) increases
as one approaches grazing. From the previous paragraph, it
is this randomization, which is not necessarily matched to the

surface clutter on which the whitening filter was designed, that
causes the deterioration in detector performance. Coalescing
these concepts, we can understand the reduced effectiveness
of pre-whitening as the incident angle approaches grazing.
However, we reiterate that in this paper, we consider one class
of surface roughness, one target type, and one target depth, so
the aforementioned interpretation requires further study to be
stated confidently.

Finally, we reiterate that the ROC performance improves as
the incidence angle approaches grazing (Fig. 5), despite the
fact that the target-signature strength is smaller near grazing
(Fig. 4). This implies that the variance in the clutter decreases
more quickly with increasing incidence angle than does the
energy in the backscattered target response. We have found
this interesting result to hold for all examples considered
thus far. However, in future work this phenomenon must be
further tested as a function of target type and surface-roughness
statistics.

In the remainder of the text, we present Monte Carlo
calculated ROC curves for which the whitening filterhasbeen
utilized with the understanding that these results are inferior to
those predicted by (7) and (8), with this disparity increasing as
the incidence angle approaches grazing. However, these results
are useful for they represent the type of performance one may
expect from an actual system (the FDTD allows us to model
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(b)

Fig. 5. (Continued.) Comparison of the ROC with and without prewhitening. The soil and rough air–ground interface are as in Fig. 3 and the target is a
lossless dielectric(�r = 2) of cross section 37.5 cm� 12.5 cm buried 25 cm beneath the mean position of the interface. The theoretical ROC [20] is calculated
under theassumptionthat the scattering data fits the detector model perfectly and the simulated ROC curves (based on 300 Monte Carlo realizations) represent
actual detector performance with and without prewhitening. (b) angle of incidence�i = 70�.

most of the relevant physics) using the type of detector often
applied in practice. The type of performance demonstrated here
may be inadequate for certain applications and, therefore, in
Section V, we discuss the implications of the results presented
here on the development of new detectors, which properly
account for the physics in question.

C. Detector Performance as a Function
of Roughness Properties

We next investigate detector performance (ROC) for a
fixed target and fixed angle of incidence (near grazing), when
the statistical properties of the rough surface are varied. As
mentioned above, the ROC’s are computed using whitening
filters and in these examples the change in the surface statistics
implies a different whitening filter for each example studied.

A decrease in the correlation lengthl constitutes an increase
in the variation of the rough air–ground interface and, there-
fore, an anticipated deterioration in detector performance. To
quantify such, we consider an incident angle of�i = 70�

a roughness standard deviationh = 3:95 cm and the same
target as investigated in Figs. 4 and 5. From Fig. 6, we see
that the correlation lengthl = 31:25 cm results in improved
ROC performance relative tol = 18:75 cm. Additionally,
we consider an example in which the correlation length is
kept fixed at l = 18:75 cm and rough-surface standard

deviationsh = 6:85 cm andh = 3:95 cm are considered.
The anticipated reduction in ROC performance with increased
surface variation (largerh) is demonstrated in Fig. 7.

D. Target Properties

In the final example, we fix the surface-roughness properties
(l = 18:75 cm andh = 3:95 cm) and consider an angle of
incidence�i = 70�. The 37.5 cm� 12.5 cm lossless target is
buried 25 cm under the mean soil height (as in all previous
examples) and we consider targets with dielectric constants
�r = 2; 3; and 4 (recall that the soil electrical properties
are characterized by�r = 6 and � = 0:005 S/m). As with
the results in Figs. 6 and 7, thequalitativeROC performance
can be predicted in advance (improved detector performance
with increase target-soil dielectric contrast). However, here
as there, the accuracy of the FDTD computation allows us
to quantify this phenomenon using the detector discussed
above. In particular, the results in Fig. 8 demonstrate a marked
improvement in detector performance with decreasing tar-
get dielectric constant (heightened target-soil contrast). For
the surface roughness considered here, we see that detector
performance is relatively poor for the case of a weak target-
soil contrast (target with�r = 4), underscoring the difficulty
of detecting such targets with radar systems. Unfortunately,
many buried mines have dielectric properties very similar to
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Fig. 6. Receiver operating characteristic (ROC) for a lossless dielectric target(�r = 2) of cross section 37.5 cm� 12.5 cm buried 25 cm beneath the
mean position of the air–ground interface (soil properties:�r = 6 and � = 0:005 S/m). The incidence angle is�i = 70� and the standard deviation
of the roughness ish = 3:95 cm. Results are plotted for the two correlation lengthsl = 31:25 cm andl = 18:75 cm and the results were computed
via 300 Monte Carlo iterations employing a whitening filter.

the surrounding soil [39], making the radar-based detection
such a particularly challenging problem. In this case, the need
for an improved detector, which properly accounts for the
transmission randomness (Section IV-C), may be necessary to
achieve useful system performance.

V. CONCLUSIONS

We have considered short-pulse electromagnetic scattering
from rough (random) air–ground interfaces, with deterministic
targets buried underneath (see [40] for the related problem
of frequency-domain scattering; we also cite [41], which was
brought to the authors attention during review). In addition
to investigating the statistics of rough-surface scatteringper
se, we have addressed processing the time-domain scattered
fields for the detection of buried targets. The controlled nature
of the FDTD computations used to perform this study allows
a systematic investigation of the assumptions underlying con-
ventional detectors. The matched-filter detector used here, with
clutter pre-whitening, invokes the assumptions that the target
response is deterministic and the clutter additive. If the theoret-
ical and calculated (via Monte Carlo simulations) agree, then
we deem these assumptions valid. When such assumptions are
inappropriate, more-sophisticated detectors must be designed
(or one can live with the suboptimal detector performance, if
such is adequate for the application in question).

After propagating through the rough air–ground interface,
the fields incident upon the target are a random process, as
are the fields transmitted through the interface after scattering.
Therefore, the target signature is in factnot deterministic.
At issue, therefore, is the degree to which this undermines
detector performance. For the examples investigated here, we
have found that such a mismatch between the physics and
the detector does, in fact, result in a deterioration of detector
performance relative to theoretical expectations based on a
perfect fit between the data and the detector. Further, the
deterioration is more noticeable as one approaches grazing.
An explanation of this phenomenon was given in Section IV-
C, but future research is required to investigate detector
performance for a wider range of surface-roughness statistics
and target types.

The results of this research indicate that, under certain
conditions, classical detectors may be inadequate for the
important problem of detecting targets under a rough (random)
interface. To ameliorate this problem, more sophisticated
detectors must be developed. Detectors in which the target
response is random have been developed [20]. However,
such detectors incorporate conditional probability density
functions, which imply a statistical analysis of the target
signature. Using the FDTD, we can parametrize the statistics
associated with wave propagation into and out of the soil (for
the case of a random surface), the results of which can then be
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Fig. 7. Receiver operating characteristic (ROC) for the parameters in Fig. 6 except here the correlation length is fixed atl = 18:75 cm and the two standard
deviationsh = 6:85 cm andh = 3:95 cm are considered. The results were computed via 300 Monte Carlo iterations employing a whitening filter.

Fig. 8. Receiver operating characteristic (ROC) for a surface-roughness defined by the parametersl = 18:75 cm andh = 3:95 cm (soil properties:�r = 6
and � = 0:005 S/m). The backscattered fields are observed for incidence angle�i = 70�, the target shape and position are as in Figs. 6 and 7, and we
consider target dielectric constants�r = 2; 3; and4. The results were computed via 300 Monte Carlo iterations employing a whitening filter.
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utilized in the context of an improved detector. This is an
example wherein the statistical results from forward modeling
(e.g., FDTD) can be used to improve detector performance,
which is of particular importance because the measurement
of such transmission statistics may be difficult (in contrast to
the backscatter statistics that are measured routinely). Thus,
one can measure the statistical topography of a region in
question from which the transmission statistics can be modeled
numerically, subsequently effecting an improved detector.

The accuracy of the FDTD allows a controlled investigation
of expected detector performance for various scenarios of
interest—the rough-surface scattering investigated here repre-
senting one example. Such forward modeling yields access to
the fully polarimetric scattered fields, while here our detector
was based on only a single polarization (a time-dependent
scalar function). A fully polarimetric system, however, is far
more complicated than the case considered here. Thus, it is of
interest to investigate theoretically the expected improvement
in ROC performance one can ideally attain if a fully polarimet-
ric detector is effected. Thus, another important topic of future
research involves polarimetric processing with the goal of
quantifyingultimate detector improvements with polarimetric
systems. Vector detection theory has been developed [20] and
will be exploited in this context.

Finally, this paper has focused on investigating and utilizing
the statistics of scattering from randomness introduced by
a rough (random) air–ground interface. Inhomogeneities in
the soil may also necessitate a stochastic treatment. Re-
call from Section I that in the case of scattering from a
rough surface, the scattering itself is completely determin-
istic. However, the details of the rough surface change as
one considers different regions of the same surface. Thus,
to characterize scattering or detection in such an environ-
ment, the results must be described statistically for an en-
semble of surface-roughness profiles, each characterized by
the same probability distribution. By extension, rocks, roots,
shrapnel, and other soil inhomogeneities also induce a de-
terministic scattered waveform when interrogated by elec-
tromagnetic excitation. However, the location and charac-
teristics of such inhomogeneities can only be parametrized
stochastically, resulting as well in a statistical model for
the fields scattered from such environments. Thus, soil inho-
mogeneities give rise to another important class of clutter,
which may impact the radar detection of underground tar-
gets. Moreover, as the incident wave propagates through
such inhomogeneities, it will experience distortion that must
be treated statistically. Therefore, the same issues addressed
here with regard to surface roughness are relevant for the
problem of statistical soil inhomogenities. Following the ba-
sic constructs in this paper, this will be a subject future
research.
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