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Higher Order Interpolatory
Vector Bases on Prism Elements

Roberto D. Graglia,Fellow, IEEE, Donald R. Wilton,Fellow, IEEE,
Andrew F. Peterson,Senior Member, IEEE, and Ioan-Ludovic Gheorma

Abstract—Triangular prism elements are useful in numerical
solutions of electromagnetic field problems since they permit a
three-dimensional (3-D) geometry to be generated by the extru-
sion of a triangular mesh. To date, however, few applications
have employed vector basis functions on prism elements and the
extension to distorted prisms reported in the literature apparently
does not ensure cell-to-cell continuity. In this paper, we de-
fine interpolatory higher order curl- and divergence-conforming
vector basis functions of the Nedelec type on prism elements,
with extension to curved prisms, and discuss their completeness
properties. Vector bases of arbitrary polynomial order are given
and various results to confirm the faster convergence of higher
order functions are presented.

Index Terms—Electromagnetic fields, finite-element methods,
numerical analysis.

I. INTRODUCTION

RECENTLY [1], we presented a unified and consistent
procedure for defining interpolatory higher order vec-

tor basis functions of the Nedelec variety [2] for the most
common element shapes. The procedure has been presented
for triangular and quadrilateral elements in two dimensions
and for tetrahedral and brick elements in three dimensions.
In this paper, we apply the same procedure to define higher
order interpolatory vector bases on prism elements. For an
exhaustive treatise on vector bases for all these elements the
reader is referred to [3]. Here, for prism elements, we con-
sider both curl- and divergence-conforming bases, which have
continuous tangential or normal components, respectively,
across adjacent elements. Curl conforming basis functions are
appropriate for discretizing the vector Helmholtz operator,
while divergence conforming functions are appropriate for
integral operators such as the electric field integral equation.
These bases avoid the spurious modes usually encountered
when scalar representations are used with one of the foregoing
equations and simplify the enforcement of boundary conditions
on current or fields in a numerical approach.
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Fig. 1. Edge, height, and gradient vectors for prism elements.

In numerical applications, prism elements are particularly
convenient for discretizing finite layered structures of different
materials such as conformal patch antennas or arrays [4].
In such cases, the structure can be discretized using a two-
dimensional (2-D) mesher to define triangular cells on one
surface of a layer boundary; the three-dimensional (3-D) mesh
is then obtained by extruding the triangles into prism cells. In
contrast to [4], the curl-conforming prism elements presented
here provide cell-to-cell tangential continuity even in the
curvilinear case.

II. ELEMENT GEOMETRY REPRESENTATION

In this section, we define normalized parametric coordinates
and related geometrical quantities by assuming rectilinear
prism elements; extension to curvilinear elements is easily ob-
tained by use of the results of [1, Appendix]. The geometrical
parameters for prism elements are shown in Fig. 1. The faces
are numbered to correspond to the indexing of the associated
parametric coordinates; that is, theith face of the prism is
the zero-coordinate surface for the normalized coordinate�i,
which varies linearly across the element, attaining a value of
unity at the edge or face opposite the zero-coordinate surface.
For the prism element we choose asindependentcoordinates
�1, �2, and�4, so thatrrr�4 � (rrr�1 �rrr�2) is strictly positive,
while �3 and �5 are dependentcoordinates. In this case, the
dependency relations are

�1 + �2 + �3 =1

�4 + �5 =1: (1)
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TABLE I
ZEROTH-ORDER BASES ON PRISM ELEMENTS

The coordinates appearing in each dependency relation form
a groupof dependent coordinates. In listing the coordinates or
indexes of interpolation points, it is convenient to highlight
dependencies by writing groups of dependent coordinates
together, with each group separated by a semicolon. All the
independent quantities in a group are listed first so that the last
variable in the group is the dependent one. Therefore, we list
the coordinates asf�1; �2; �3; �4; �5g to put in evidence that
�1; �2; and�4 are the independent coordinates while�3 and�5
are dependent; we similarly list the indexes corresponding to
sampled values of the coordinates asfi; j; k; `;mg to put in
evidence thatk andm are dependent indexes.

The element edges are formed by intersection of pairs of
zero-coordinates surfaces and the edge vectors are directed
along the cross product of the associated coordinate gradients.
The edges are given a two-index label deriving from the
two coordinate indexes appearing in this cross product. The
so-called unitary basis vectors̀̀̀ 1; `̀̀2; `̀̀4 are derivatives of
the element position vector with respect to the independent
coordinates [1] and determine the following edge-vectors:

`̀̀12 =�`̀̀13 = `̀̀23 = `̀̀4

�`̀̀14 = `̀̀15 = `̀̀
2

`̀̀24 =�`̀̀25 = `̀̀
1

`̀̀34 =�`̀̀35 = `̀̀2 � `̀̀1: (2)

In the special case, where`̀̀1, `̀̀2, and`̀̀4 are constant vectors,
the prism is a right prism.

The independent gradient vectors (orreciprocal basis vec-
tors) rrr�1, rrr�2, rrr�4 are derived from (41) of [1]; the
remaining coordinate gradients are determined by applying the
gradient operator to (1) asrrr�3 = �rrr�1�rrr�2, rrr�5 = �rrr�4.
For curvilinear elements, all these geometrical quantities,
including the JacobianJ = `̀̀

1 � `̀̀2 � `̀̀
4, vary with position.

By use of the Silvester polynomialsR�(q; ��) (see [1]), a
Lagrange parameterization of orderq for a curvilinear prism

element can be expressed as

rrr =

qX

i;j;k;`;m=0

rrrijk;`mRi(q; �1)Rj(q; �2)Rk(q; �3)R`(q; �4)

�Rm(q; �5); i + j + k = `+m = q (3)

where the index quintuplet is used to label the position vector
rrrikj;`m interpolating the point with normalized coordinates
���(ijk;`m) = (�1; �2; �3; �4; �5) = (i=q; j=q; k=q; `=q;m=q).

III. CURL-CONFORMING INTERPOLATORY

BASES ON PRISM ELEMENTS

A. Zeroth-Order Bases

Table I reports the zeroth-order curl-conforming bases



ij(rrr) on prism elements. Basis function


ij(rrr) interpolates
the vector component tangent to the midpoint of the edge
formed by the intersection of facesi and j. While the bases
of Table I are unnormalized, their normalized forms are easily
deduced from the normalizedpth-order forms presented below
upon settingp = 0.

B. Completeness of Zeroth-Order Bases

Despite the appearance of linear and quadratic terms, the
curl-conforming set of Table I is clearly complete only to
zeroth-order since, for example, the set is unable to represent
linear vectors of the form�irrr�i (i = 1;2;4). Completeness to
zeroth order follows from the following linear combinations
which produce three independent constant vectors:




24(rrr)�


34(rrr)�


25(rrr) +


35(rrr) =rrr�1




34(rrr)�


14(rrr)�


35(rrr) +


15(rrr) =rrr�2




12(rrr) +


23(rrr) �


13(rrr) =rrr�4: (4)

Note thatrrr�3 = �rrr�1 � rrr�2 = 


14(rrr) � 


24(rrr)�



15(rrr) + 


25(rrr).
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Completeness of the curl of the bases to zeroth order follows
from

rrr�


13(rrr) =
`̀̀25
J

�
= �

`̀̀1

J

�

rrr�


23(rrr) =
`̀̀14
J

�
= �

`̀̀2

J

�

rrr� [


34(rrr) �


35(rrr)] =
2`̀̀12
J

�
=

`̀̀4

J

�
: (5)

On curvilinear elements, completeness is with respect to
these vectors as weighting factors.

C. Order p Bases

Curl-conforming interpolating vector bases complete to or-
der p on a prism element may be written as





�

ijk;`m(rrr) = N
�

ijk;`m

(p+ 1)�
���̂

�

ijk;`m(���)

i
i�i
 i�i
i�




�(rrr) (6)

where i
 is taken to bei; j; k; `; or m for 
 = 1; 2; 3; 4;
or 5, respectively, and similarly fori� . In (6), the ranges
of 
 and � are such as to include all the zeroth-order curl-
conforming bases of Table I. The ranges on the remaining
indexesi; j; k; `;m aref1; 2; � � � ; p+1g; except fori
 andi� ;
whose ranges aref0; 1; � � � ; pg. The polynomial�̂
�

ijk;`m(���)
is defined in terms of shifted Silvester–Lagrange polynomials
[1] as in (7), shown at the bottom of the page, with��� =
(�1; �2; �3; �4; �5) and with

i + j + k =

�
(p+ 1); 
� 2 f12; 13; 23g
(p+ 2); otherwise

`+m =

�
(p+ 2); 
� 2 f12; 13; 23g
(p+ 1); otherwise.

(8)

The arrangement of interpolation points is similar to that of
scalar Lagrange bases of the same order on a prism except
that the pattern contracts away from the three faces where
tangential components of the zeroth-order bases vanish. Notice
that the zero in the interpolation polynomial along faces
 and
� for interior nodes is explicitly exhibited in (6). For face or
edge nodes, however, the denominator factorsi
 and/or i�
are also zero and [1, eq. (5)] together with (7) above must be
used to evaluate the ratio. Conversely, fori
 ; i� nonzero, the
interpolation function�̂
�

ijk;`m may be viewed as an ordinary
Silvester–Lagrange polynomial of total order2(p � 1), with
interpolation nodes shifted to the interior (as indicated by the
caret).

Interpolation points for bases of the form


15
ijk;`m(rrr);




13
ijk;`m(rrr) are shown in Fig. 2(a) and (b), respectively. The

(a) (b)

Fig. 2. Interpolation points for curl-conforming bases of orderp = 2 on
prism elements (interior interpolation points omitted for clarity). (a) Nodes in
basis subset


15

ijk;`m. (b) Nodes in basis subset


13
ijk;`m.

arrangement of interpolation points for the remaining bases
may be determined from the figures by rotating the pattern to
put the edge interpolation points along a new edge. Note that
no vertices of the prism element are interpolated and only a
single basis function interpolates a component tangential to a
given edge. The tangential components at each interpolation
point on a face are interpolated by the bases containing as
factors zeroth-order basis functions which are associated with
the edges bounding that face. But on a face, only two of
these tangential components can be independent. Hence two
basis functions on rectangular faces and one basis function on
triangular faces at each interpolation point must be eliminated.
For interpolation points on rectangular faces, only pairs of
basis functions with zeroth-order basis factors associated with
edges bounding the face and having a common vertex should
be eliminated. Similarly, on the interior, only three bases that
interpolate each interior point should be retained to provide
interpolation of the three independent components. One of
these should have a zeroth-order basis factor associated with an
edge formed by intersecting rectangular faces; the remaining
two should have zeroth-order basis factors associated with any
two edges of, say, one of the triangular faces. The dependency
relations for face and interior nodes are given below.

The normalization constants in (6) are chosen to ensure that
the component of



�

ijk;`m(rrr) along `̀̀
� at the interpolation
point is unity. They are given by

N
�

ijk;`m =

8>>>><
>>>>:

(p+ 1)
p+ 1� i
 � i�

`
(ijk;`m)

�


� 2 f12; 13; 23g
(p+ 1)(p+ 2)

(p+ 2� i
 )(p+ 1� i�)
`
(ijk;`m)

�

otherwise

(9)

where`(ijk;`m)

� is the value of̀ 
� = j`̀̀
� j at the interpolation

�̂
�
ijk;`m(���) =

8>><
>>:

(p+ 1)R̂i(p+ 1; �1)R̂j(p + 1; �2)R̂k(p + 1; �3)R̂`(p+ 2; �4)R̂m(p+ 2; �5)

� 2 f12; 13;23g

(p+ 2)R̂i(p+ 2; �1)R̂j(p + 2; �2)R̂k(p + 2; �3)R̂`(p+ 1; �4)R̂m(p+ 1; �5)
otherwise;

(7)
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(a) (b)

Fig. 3. Interpolation points for divergence-conforming bases of orderp = 2

on prism elements (interior interpolation points omitted for clarity). (a) Nodes
in basis subset���1

ijk;`m. (b) Nodes in basis subset���5
ijk;`m.

point

���
�(ijk;`m) =

8>>>>><
>>>>>:

�
i

p+ 1
;

j

p+ 1
;

k

p + 1
;

`

p+ 2
;

m

p+ 2

�


� 2 f12; 13;23g�
i

p+ 2
;

j

p+ 2
;

k

p + 2
;

`

p+ 1
;

m

p+ 1

�

otherwise:
(10)

As a matter of practical implementation, we note that the
three linear combinations




�+1;4
ijk;`m(rrr)

N�+1;4
ijk;`m

�



�+1;5

ijk;`m(rrr)

N�+1;5
ijk;`m

�



��1;4

ijk;`m(rrr)

N��1;4
ijk;`m

+



��1;5

ijk;`m(rrr)

N��1;5
ijk;`m

(11)

for � = 1; 2;3 and with index arithmetic performed modulo
three reduce torrr�� at interior interpolation nodes; whereas
the linear combination




12
ijk;`m(rrr)

N12
ijk;`m

+



23

ijk;`m(rrr)

N23
ijk;`m

�



13

ijk;`m(rrr)

N13
ijk;`m

(12)

reduces torrr�4 = �rrr�5 at interior nodes. Therefore, (12)
together with any two of the three linear combinations (11),
suitably renormalized, provide convenient alternative bases
for interpolating interior points. On the quadrilateral face
� (= 1; 2; 3), the tangential components ofrrr�� and, hence,
those of the corresponding linear combinations (11) vanish at
the interpolation point; one of the two remaining combinations
in (11) together with (12), however, can serve as convenient
bases for interpolating nodes on face� (= 1; 2; 3). Similarly,
on the triangular face four or five, the tangential components of
(12) vanish at the interpolation point and any two of the three
combinations (11) can serve as bases for interpolating nodes
on the triangular face. With (11), (12) interpolating interior and
face nodes, and with (6) interpolating edge nodes, the degrees
of freedom simply become the covariant vector components at
each interpolation point. Since the bases are normalized and
interpolate tangential components, it becomes trivial to enforce
tangential continuity of fields across element boundaries.

D. Completeness to Orderp in the Curl

Completeness in the curl follows as a consequence of the
fact that the zeroth-order curl conforming functions contain

linear terms able to model the following linear vectors:

��� 1(rrr) = �1rrr�4 � �4rrr�1 = 


23(rrr) +


25(rrr)�


35(rrr)

��� 2(rrr) = �2rrr�1 � �1rrr�2 = 


35(rrr)�


34(rrr)

��� 4(rrr) = �4rrr�2 � �2rrr�4 = 


13(rrr) +


15(rrr)�


35(rrr):

(13)

In the Appendix, these vectors are used together with
multiplying polynomials of inhomogeneous form to prove
completeness to orderp in the curl.

E. Dependency Relations at Face and Interior Nodes

As discussed following (8), only two of the three or fourpth
order bases for triangular or rectangular faces, respectively,
which are nonvanishing at an interpolation point on a face,
are independent. Similarly, only three bases that interpolate an
interior point of the prism are independent. The dependencies
arise from linear combinations of the bases that contain one
of the following eight identities as factors:

�1


1j(rrr) + �2


2j(rrr) + �3


3j(rrr) =0; for j = 4;5

�4


i4(rrr) + �5


i5(rrr) =0; for i = 1; 2; 3

�1


12(rrr) � �3


23(rrr) =0

�1


13(rrr) + �2


23(rrr) =0

�2


12(rrr) + �3


13(rrr) =0: (14)

Indeed, at face and interior nodes the previous identities
immediately yield

i


14
ijk;`m(rrr)

N14
ijk;`m

+
j


24

ijk;`m(rrr)

N24
ijk;`m

+
k


34

ijk;`m(rrr)

N34
ijk;`m

= 0

i


15
ijk;`m(rrr)

N15
ijk;`m

+
j


25

ijk;`m(rrr)

N25
ijk;`m

+
k


35

ijk;`m(rrr)

N35
ijk;`m

= 0

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

; for i; j; k 6= 0

`


14
ijk;`m(rrr)

N14
ijk;`m

+
m


15

ijk;`m(rrr)

N15
ijk;`m

= 0

`


24
ijk;`m(rrr)

N24
ijk;`m

+
m


25

ijk;`m(rrr)

N25
ijk;`m

= 0

`


34
ijk;`m(rrr)

N34
ijk;`m

+
m


35

ijk;`m(rrr)

N35
ijk;`m

= 0

9>>>>>>>=
>>>>>>>;
; for `;m 6= 0

i


12
ijk;`m(rrr)

N12
ijk;`m

�
k


23

ijk;`m(rrr)

N23
ijk;`m

= 0; for i; k 6= 0

i


13
ijk;`m(rrr)

N13
ijk;`m

+
j


23

ijk;`m(rrr)

N23
ijk;`m

= 0; for i; j 6= 0

j


12
ijk;`m(rrr)

N12
ijk;`m

+
k


13

ijk;`m(rrr)

N13
ijk;`m

= 0; for j; k 6= 0:

(15)
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F. Number of Degrees of Freedom

The number of degrees of freedom for curl-conforming
bases of orderp on a prism element may be determined as
follows:

• one component�(p+1) DOF’s� nine edges= 9(p+1)
edge degrees of freedom;

• two components�(p(p+ 1)=2) DOF’s � two triangular
faces= 2p(p + 1) face degrees of freedom;

• two components�p(p + 1) DOF’s � three rectangular
faces= 6p(p + 1) face degrees of freedom;

• two components�(p2(p+1)=2) interior DOF’s= p2(p+
1) prism interior degrees of freedom;

• one component�(p(p � 1)(p + 1)=2) interior DOF’s
= (p(p� 1)(p+ 1)=2) prism interior degrees of freedom

for a total of 3(p + 1)(p + 2)(p + 3)=2 degrees of freedom
per prism element.

IV. DIVERGENCE-CONFORMING BASES ONPRISM ELEMENTS

A. Zeroth-Order Bases

Table I reports the unnormalized forms of the zeroth-order
divergence-conforming bases���i(rrr) on prism elements; their
normalized forms are easily deduced from the normalized
pth order forms presented below upon settingp = 0. Basis
function ���i(rrr) interpolates the vector component normal to
the centroid of facei. Although these zeroth-order bases
contain linear terms, they are complete only to zeroth order.
Completeness to zeroth order follows from the following
linear combinations, which produce three independent constant
vectors:

���2(rrr)� ���3(rrr) =
`̀̀14
J

�
= �

`̀̀2

J

�

���3(rrr)� ���1(rrr) =
`̀̀24
J

�
=

`̀̀1

J

�

���5(rrr)� ���4(rrr) =
`̀̀12
J

�
=

`̀̀4

J

�
: (16)

On curvilinear prisms, completeness is with respect to these
vectors as weighting factors.

Completeness of the divergence of the bases to zeroth order
follows from

rrr ����i(rrr) =

8><
>:

2

J
; i = 1; 2; 3

1

J
; i = 4; 5:

(17)

Again, on curvilinear elements, completeness is with respect
to 1=J as a weighting factor.

(a) (b)

Fig. 4. (a) Prism cavity. (b) Prism cavity discretized with 64 equilateral
prisms.

B. Order p Bases

Divergence-conforming interpolatory vector bases complete
to order p on a prism element are given by the following
polynomial products with the zeroth-order bases of Table I:

���


ijk;`m(rrr)

= N

ijk;`m

�
 �̂



ijk;`m(���)

i
i
i

���
(rrr); 
 = 1; 2; � � � ; 5 (18)

where i
 is taken to bei; j; k; `; or m for 
 = 1; 2; 3; 4;
or 5, respectively. The ranges on the indexesi; j; k; `;m are
f1; 2; � � � ; p+ 1g; except fori
 ; whose range isf0; 1; � � � ; pg.
The Silvester–Lagrange interpolating polynomial is (19), as
shown at the bottom of the page, with

i+ j + k =

�
(p+ 2); 
 2 f1; 2; 3g
(p+ 3); 
 2 f4; 5g

`+m =

�
(p+ 2); 
 2 f1; 2; 3g
(p+ 1); 
 2 f4; 5g:

(20)

Interpolation points for bases of the form���1
ijk;`m(rrr),

���5
ijk;`m(rrr) are shown in Fig. 3. The interpolation points

are arranged similar to those of scalar Lagrange bases of
the same order on a prism, except that the pattern contracts
away from the four faces where normal components of the
zeroth-order bases vanish. The arrangement of interpolation
points for the remaining bases may be determined from the
figure by rotating the pattern to put the face interpolation
points along a new face. Note that no vertex or edge points
of the prism element are interpolated and that only a single
basis function interpolates a component normal to a given
face. On the interior, only three of the five bases, which
interpolate each interior point should be retained to provide
interpolation of the three independent components. One of
these should have a zeroth-order basis factor associated with
a triangular face; the remaining two should have zeroth-order
basis factors associated with any two of the rectangular faces.
The dependency relations for interior nodes are given below.

In this case, the normalization constants are chosen to ensure
that the component of���


ijk;`m(rrr) along the height unit vector

�̂

ijk;`m(���) =

�
(p+ 2)R̂i(p+ 2; �1)R̂j(p + 2; �2)R̂k(p + 2; �3)R̂`(p+ 2; �4)R̂m(p+ 2; �5); 
 2 f1; 2; 3g

(p+ 1)R̂i(p+ 3; �1)R̂j(p + 3; �2)R̂k(p + 3; �3)R̂`(p+ 1; �4)R̂m(p+ 1; �5); 
 2 f4; 5g
(19)
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TABLE II
EIGENVALUES OF THE EQUILATERAL PRISM CAVITY OF FIG. 4(a)

COMPUTED WITH TENTH-ORDER COMPLETE FUNCTIONS

ĥhh
 at the interpolation point is unity. They are given by

N


ijk;`m =

8><
>:

p+ 2

p+ 2� i

hijk;`m
 ; 
 2 f1; 2; 3g

p+ 1

p+ 1� i

hijk;`m
 ; 
 2 f4; 5g

(21)

wherehijk;`m
 is the value ofJ =jhhh
 j at the interpolation point

���
(ijk;`m) =

8>>>>><
>>>>>:

�
i

p+ 2
;

j

p+ 2
;

k

p+ 2
;

`

p+ 2
;

m

p + 2

�


 2 f1; 2; 3g�
i

p+ 3
;

j

p+ 3
;

k

p+ 3
;

`

p+ 1
;

m

p + 1

�


 2 f4; 5:g

(22)

To ensure continuity of the normal component of a face-
node basis across elements, it is only necessary to adjust its
sign to correspond to an arbitrarily selected reference direction
across adjacent elements.

C. Completeness to Orderp in the Divergence

Completeness to orderp in the divergence is most easily
shown using an inhomogeneous multiplying polynomial of
order p [1]. In this case, completeness follows from the fact
that terms of like order are generated. The divergence of the

Fig. 5. Average error in computation of first nine resonant frequencies versus
number of unknowns for a conducting prism cavity.

Fig. 6. Error in computation of resonant frequencies versus the modal order
number for the conducting prism cavity of Fig. 4(a) studied with complete
vector basis functions of order ten.

product of the zeroth-order bases and thepth order polynomial
is found to be

rrr � ��2 �
�
3 �



j���1(rrr) = (�+ � + 2)

��2 �
�
3 �



j

J
; j = 4; 5

rrr � ��3 �
�
1 �



j���2(rrr) = (�+ � + 2)

��3 �
�
1 �



j

J
; j = 4; 5

rrr � ��1 �
�
2 �



j���3(rrr) = (�+ � + 2)
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�
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3 �

�
4

J
: (23)

For curvilinear prisms for whichJ is not a constant,
polynomial completeness is with respect to1=J as a weighting
factor.

D. Dependency Relations at Interior Nodes

As discussed following (20), only three of thepth order
bases that are nonvanishing at an interior interpolation point
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Fig. 7. Circular cylinder cavity discretized with 72 prism elements.

Fig. 8. Average error in computation of first eight resonant frequencies
versus number of unknowns for a conducting circular cylinder cavity.

are independent. The dependencies arise from linear combi-
nations of the bases which contain the following identities as
factors:

�1���1(rrr) + �2���2(rrr) + �3���3(rrr) =0

�4���4(rrr) + �5���5(rrr) =0: (24)

Indeed, at interior nodes the previous identities immediately
yield

i���1
ijk;`m(rrr)

N1
ijk;`m

+
j���2

ijk;`m(rrr)

N2
ijk;`m

+
k���3

ijk;`m(rrr)

N3
ijk;`m

= 0;

for i; j; k 6= 0

`���4
ijk;`m(rrr)

N4
ijk;`m

+
m���5

ijk;`m(rrr)

N5
ijk;`m

= 0; for `;m 6= 0: (25)

E. Number of Degrees of Freedom

The number of degrees of freedom for divergence-
conforming bases of orderp on a prism element may be
determined as follows:

• one component�((p+ 1)(p+ 2)=2) DOF’s� two faces
plus one component�(p + 1)2 DOF’s � three faces
= (p + 1)(4p + 5) face degrees of freedom;

(a) (b)

Fig. 9. Discretization of a pie-shell cavity. (a) A triangular mesh is defined
on one face of the structure. (b) Seventy-two prism elements are then obtained
by extrusion.

Fig. 10. Average error in computation of first eight resonant frequencies
versus number of unknowns for a conducting pie-shell cavity.

• two components�(p(p + 1)2=2) plus one component
�(p(p + 1)(p + 2)=2) interior DOF’s= (p(p + 1)(3p+
4)=2) prism interior degrees of freedom

for a total of (p+ 1)(3p2 + 12p+ 10)=2 degrees of freedom.

V. NUMERICAL RESULTS

Here, we present some results to illustrate the benefits
of using higher order vector bases on prism elements. The
examples we consider are relative to resonant cavities, where
the resonant frequencies were determined by finding the eigen-
values of the discretized vector Helmholtz equation involving
the cavity electric field [5]. A Galerkin form of the finite-
element method was used to discretize the Helmholtz equation
and curl-conforming bases on triangular prisms were used to
model each cavity; curvilinear prisms with quadratic distortion
were used on the cavity boundary when necessary.

The first geometry we consider is the prism cavity shown
in Fig. 4. The cavity has an equilateral triangular base and
the height d of the cavity is equal to the length of the
triangular side [Fig. 4(a)]. Fig. 4(b) shows a discretization of
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this cavity with 64 equilateral prisms; the cavity problem
of Fig. 4(b) yields 644 and 2310 unknowns when first and
second order elements are used, respectively. This problem
is an ideal test case to assess the performance of curl-
conforming functions on prism elements of different order
because there is no need to distort the elements in order
to match the geometry and, hence, equilateral cells can be
used. The analytical solution of this waveguide problem is
apparently due to Schwinger (unpublished lecture notes on
electromagnetic fields in waveguides) and is reported in detail
in [6]. In [6], the modes of the triangular waveguide are labeled
with three indexes (̀;m; n; with ` + m + n = 0); we adopt
Schwinger’s notation, thereby labeling the cavity modes with
four indexes (as in Table II), where the fourth index denotes
the number of oscillations along the axis of the cavity. Fig. 5
is a plot of the error in the computed resonant frequencies of
the prism cavity versus the number of unknowns. The error is
averaged over the first nine eigenfrequencies, which include
eight degenerate modes. From this figure one can appreciate
the faster convergence of the results for increasing orderp of
the vector bases. Asymptotically, for a givenp and decreasing
mesh sizes, the error appears to behave ass2(p+1). However,
the quality of the results strictly depends on thequality of the
mesh and this can also be appreciated in Fig. 5 since it was
not always possible to use equilateral cells.

The same cavity problem was solved with vector bases of
order ten defined on the single element of Fig. 4(a) so that
the functions were actually entire-domain vector bases. The
total number of degrees of freedom for this single element
of order ten is 2574, yielding a fully populated system of
equations with 1595 unknowns (number of interior degrees of
freedom). In this connection, it is important to observe that the
sparsity of the finite-element matrices decreases for increasing
order of the bases while higher accuracy is required in the
integration routines used to compute the matrix coefficients.
As a matter of fact, in general applications, it is usually
convenient, as a rule of thumb, to work with vector bases of no
higher than third or fourth order. Nevertheless, we present the
results of Table II to prove that our construction scheme can
easily be applied to arbitrarily high orders. In this case, we
obtained 450 zero eigenvalues and our numerical code was
able to clearly distinguish the first 130 modes. No spurious
nonzero eigenvalues were observed. As shown in Fig. 6, for
the first thirty modes the percentage error is less than 10�5

and it remains always below the 10�4 level up to the 46th
mode.

The second test case is a circular cavity of radius and height
equal tod, discretized as in Fig. 7 by defining a triangular
mesh on one of the cylinder bases and then by extruding
these triangles into prism cells. The mesh of Fig. 7 consists
of 72 prism cells, which yields systems of 762 and 2691
unknowns forp = 1 and 2, respectively. The percentage errors
in the computed resonant frequencies versus the number of
unknowns are reported in Fig. 8 forp = 0; 1; and 2; the
reported error is averaged over the first eight eigenfrequencies,
which include six degenerate modes.

Finally, we studied the pie-shell cavity of Fig. 9(a). The 3-D
mesh is obtained by first defining a triangular mesh on a parent

rectangle having one side of lengthd and the other of length
1:2d; this planar mesh is thensmearedon one curved face of
the pie shell [Fig. 9(a)] and, finally, by extrusion, the prism
mesh of Fig. 9(b) is obtained. The mesh of Fig. 9(b), which,
by the way, is not optimum consists of 72 triangular prisms;
this yields systems of 776 and 2718 unknowns forp = 1 and2,
respectively. The numerical error for the first eight computed
eigenfrequencies (eight nondegenerate modes) of this structure
is reported in Fig. 10 forp = 0; 1; and 2.

VI. CONCLUSIONS

This paper presents curl-conforming and divergence-
conforming vector basis functions of the Nedelec variety for
prism elements. The functions, which are derived for arbitrary
polynomial order, can be consistently used to deal with
curvilinear elements. Properties of the vector basis functions
are discussed in detail. The reported numerical examples show
that higher order functions provide more accurate results than
those obtainable with low-order elements.

APPENDIX

COMPLETENESS IN THECURL FOR HIGHER ORDER

CURL-CONFORMING BASES

Using polynomials of inhomogeneous form [1], we first
observe that any polynomial vector of order(p + 1) can be
expressed as the sum of a curl-free vector of order(p+1) plus a
vector, which can be represented in terms of curl-conforming
functions of orderp

(p + 2)��1 �
�
2 �



4rrr�1

= rrr(��+1
1 ��2 �



4 ) + ���1 �

��1
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��1 �
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2 �


�1
4 ��� 1
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�
2 �
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2 �
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4rrr�4

= rrr(��1 �
�
2 �
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4 ) + ����11 ��2 �



4��� 1 � ���1 �

��1
2 �
4��� 4

p = �+ � + 
 � 1 � 0;

�; �; 
 � 0 (26)

where the vectors��� 1, ��� 2, ��� 4 defined in (13), are linear
combinations of curl-conforming bases.1 Note that vectors
rrr(��+1

1 ��2 �


4 ),rrr(��1 �

�+1
2 �
4 ), andrrr(��1 �

�
2 �


+1
4 ) of order(p+

1) are the gradients of inhomogeneous polynomials of order
(p + 2) and, because they are gradients, are curl-free. Taking
the curl of both sides of (26), one finds that the curl of any
vector of order(p + 1) (yielding a vector of orderp) can
always be expressed as a linear combination of the curl of
curl-conforming bases of orderp. Hence, the curl of curl-
conforming bases of orderp are complete to orderp within
the space of vectors derivable from the curl of vectors of order

1This proof also applies to tetrahedral and brick element functions; in these
cases one has only to replace�4 by �3 and���4 by ��� 3 = �3rrr�2� �2rrr�3 in
(26) since�3 is the third independent variable used to define those cells [1].
Obviously, in those cases, one has to express the vector functions���1 , ��� 2,
and��� 3 in terms of the relevant zeroth-order bases.
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p+1. These bases appear in inhomogeneous polynomial form
in (26), but they are, of course, linear combinations of the
interpolatory polynomial bases defined in (6).
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