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Abstract—Triangular prism elements are useful in numerical v )
solutions of electromagnetic field problems since they permit a St 25
three-dimensional (3-D) geometry to be generated by the extru- l, «f"“\x,,\ﬂng‘ s
sion of a triangular mesh. To date, however, few applications bs 7
have employed vector basis functions on prism elements and the V¢,
extension to distorted prisms reported in the literature apparently ve h, ‘
does not ensure cell-to-cell continuity. In this paper, we de- DLy S L »~h, Ve
fine interpolatory higher order curl- and divergence-conforming j h, :
vector basis functions of the Nedelec type on prism elements,
with extension to curved prisms, and discuss their completeness I}
properties. Vector bases of arbitrary polynomial order are given D -

and various results to confirm the faster convergence of higher =
order functions are presented. A7

Index Terms—Electromagnetic fields, finite-element methods, Fig. 1. Edge, height, and gradient vectors for prism elements.
numerical analysis.

|. INTRODUCTION In numerical applications, prism elements are particularly
.. _convenient for discretizing finite layered structures of different
rT’¥‘|<31terials such as conformal patch antennas or arrays [4].

procedure for defining interpolatory higher order V€Gh such cases, the structure can be discretized using a two-

tor basis functions of the Nedelec variety [2] for the mo imensional (2-D) mesher to define triangular cells on one
common element shapes. The procedure has been pre_segllﬁ ce of a layer boundary; the three-dimensional (3-D) mesh

In thls_paper, we apply the same procgdure to define h'grheére provide cell-to-cell tangential continuity even in the
order interpolatory vector bases on prism elements. For éﬁrvilinear case

exhaustive treatise on vector bases for all these elements the

reader is referred to [3]. Here, for prism elements, we con-

sider both curl- and divergence-conforming bases, which have

continuous tangential or normal components, respectively, Il. ELEMENT GEOMETRY REPRESENTATION

across adjacent elements. Curl conforming basis functions arg, this section, we define normalized parametric coordinates

ar;]r_)lrorzjr_late for dlscreftlzmg th? Ve?tor Helmholtz Operat?&nd related geometrical quantities by assuming rectilinear
while divergence conforming functions are appropriate fofiiqy, elements; extension to curvilinear elements is easily ob-

integral operators such as the electric field integral equati Dined by use of the results of [1, Appendix]. The geometrical

equations and simplify the enforcement of boundary Conditio'ﬂﬁrametric coordinates: that is, thin face of the prism is

on current or fields in a numerical approach. the zero-coordinate surface for the normalized coordifigte
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TABLE |
ZEROTH-ORDER BASES ON PrRISM ELEMENTS
curl-conforming divergence-conforming
bases bases

214(r)=&(EVE - 6VE) | v « .(214(r):% (Eslas — EaLss + 2slas)
215(r)=6(&:VE — £VE) | V x le(r):% (€xbss — Exbas — 24las)
Pou(r)=E:(6V 6 — E1VE) | V x Daalr)= L (Erks — atas — 2sbss) | 1(r)=F (€t — Eatad)
Rus(r) =661V s — EVE) | 7 x Das(r) = (€sbs — Eubss + 26uss) | Aolr) = (65brs — 850)
(1) =6(6VE ~ EVE) | T X Zaalr)=F (s — Eutss + 26580) | As(r)=F (6utos — £22)
() =661V~ 69E) | 7 Balr) = (Eae ot 2eti) | Au(r)=Ei0
215(r) =6V V X i5(r)=Fbas As(r)zﬁ%
215(r)=£VE, V x 012(7):%1334
Ry(r)=6VE& V x 923(”:%&4

The coordinates appearing in each dependency relation foglament can be expressed as
a group of dependent coordinates. In listing the coordinates or
indexes of interpolation points, it is convenient to highlightr
dependencies by writing groups of dependent coordinates . . <~
together, with each group separated by a semicolon. All the 7" S _ _

independent quantities in a group are listed first so that the last m{2:65), itjtk=£f+m=gq 3)

variable in the group is the dependent one. Therefore, we lifhere the index quintuplet is used to label the position vector

the coordinates a$¢1,¢s,£3;€4,¢5} to put in evidence that i1 0m interpolating the point with normalized coordinates

&1, &2, and¢, are the independent coordinates wiffleand & S (&1,60, 6360, 65) = (i/a, i/ 0, k/a: ¢/ 3, m/q).

are dependent; we similarly list the indexes corresponding%’k”‘m) T R

sampled values of the coordinates {asj, k; ¢, m} to put in

evidence thak andm are dependent indexes. Ill. CURL-CONFORMING INTERPOLATORY

The element edges are formed by intersection of pairs of BASES ON PRISM ELEMENTS

zero-coordinates surfaces and the edge vectors are directed

along the cross product of the associated coordinate gradieftsZeroth-Order Bases

The edges are given a two-index label deriving from the Taple | reports the zeroth-order curl-conforming bases

two coordinate indexes appearing in this cross product. T?ﬁj (r) on prism elements. Basis functid®; () interpolates

so-called unitary basis vectorst' ,¢*,¢' are derivatives of the vector component tangent to the midpoint of the edge

the element position vector with respect to the independ&Bimed by the intersection of faceésand j. While the bases

coordinates [1] and determine the following edge-vectors: of Taple | are unnormalized, their normalized forms are easily
deduced from the normalizedh-order forms presented below

= Z Tijk;mei(fL& )Rj(‘1a€2)Rk(‘1;fB)Rﬂ(q:&)

by =—83 =0y = ¢ upon settingp = 0.
—fyy =5 = A
for — o — O B. Completeness of Zeroth-Order Bases
24 — — 425 — ) ) -
by =l =07 — 0. @) Despite the appearance of linear and quadratic terms, the

curl-conforming set of Table | is clearly complete only to

zeroth-order since, for example, the set is unable to represent
In the special case, whefé, £2, and¢* are constant vectors, linear vectors of the forng; V¢; (¢ = 1,2,4). Completeness to

the prism is a right prism. zeroth order follows from the following linear combinations
The independent gradient vectors feciprocal basis vec- which produce three independent constant vectors:

tors) V¢, V&, V¢, are derived from (41) of [1]; the

remaining coordinate gradients are determined by applying the 24(r) = 234(r) — 255(r) + $235(r) = V&
gradient operator to (1) 88¢3 = —V& — V&, Vs = —VE,. 234(r) — 214(r) — 235(r) + 215(r) =V
For curvilinear elements, all these geometrical quantities, 215(7) + 2o3(r) — 2,5(r) = VE,. (4)
including the Jacobiat/ = £' - €° x £', vary with position.

By use of the Silvester polynomial, (¢,¢,) (see [1]), a Note thatVé; = —V& — V& = 214(r) — 204(r)—

Lagrange parameterization of orderfor a curvilinear prism £2;5(r) + £255(r).
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Completeness of the curl of the bases to zeroth order follows

from e
. o aT
nglgr =—|=—-—— HE St
(r) J J A
20 &
V x 923 ri=—l=—-——
(r)=-=7 7
2o [ £
V x [934(1") — 935 (T‘)] = 7 = 7 . (5)
(@) (b)
On curvilinear elements, completeness is with respect k@. 2. Interpolation points for curl-conforming bases of orge= 2 on
; ; prism elements (interior interpolation points omitted for clarity). (a) Nodes in
these vectors as weighting factors. basis subse2!%,. ... (b) Nodes in basis SUbSE!% ..

C. Orderp Bases . . . -
arrangement of interpolation points for the remaining bases

Curl-conforming interpolating vector bases complete to Opay pe determined from the figures by rotating the pattern to
derp on a prism element may be written as put the edge interpolation points along a new edge. Note that
A no vertices of the prism element are interpolated and only a

(p+ 1)€7€ﬁaiik;ﬁm(€) 2,5(r) (6) single basis function interpolates a component tangential to a
iytg " given edge. The tangential components at each interpolation
. . oint on a face are interpolated by the bases containing as
where i, is taken to bei, j, k, £, or mfor y = 1,2, 3, 4, ?actors zeroth-order basispfunctionsywhich are associated %vith

or 5, respectively, and swn_ﬂarly for;. In (6), the ranges he edges bounding that face. But on a face, only two of
of v and  are such as to include all the zeroth-order curl; : .

. -~.these tangential components can be independent. Hence two
conforming bases of Table I. The ranges on the remaini

) .. . . lE'J%sis functions on rectangular faces and one basis function on
indexesi, j, k, £, m are{1,2,---, p+ 1}, except fori, andig, 9

. triangular faces at each interpolation point must be eliminated.
418 : . : :
whose ranges ar¢0,1,- -, p}. The polynomlala”k;m(ﬁ) For interpolation points on rectangular faces, only pairs of

isl defin_ed |7n terrr]ns of shifthed Eilvester—fLigrange pOIYEimi%%sis functions with zeroth-order basis factors associated with
[1] as in (7), shown at the bottom of the page, wih= edges bounding the face and having a common vertex should

o’

ijk;dm

(r) = NP

ijk;dm

(61,62, 85584, &5) and with be eliminated. Similarly, on the interior, only three bases that
o 1), € 12,13,23 !nterpolat_e each interior pqlnt should be retained to provide
i+j+k= { EZ+ 2) Zﬁmrvﬁise ) interpolation of the three independent components. One of

) these should have a zeroth-order basis factor associated with an
f4+m :{ p+2), B€ {_12’ 13,23} (8) edge formed by intersecting rectangular faces; the remaining
(p+1), otherwise. two should have zeroth-order basis factors associated with any

The arrangement of interpolation points is similar to that /0 €dges of, say, one of the triangular faces. The dependency

scalar Lagrange bases of the same order on a prism exd&gtions for face and interior nodes are given below.

that the pattern contracts away from the three faces wherel N€ normalization constants in (6) are chosen to ensure that
component omﬁm(r) along £, at the interpolation

tangential components of the zeroth-order bases vanish. NOHE% X X _
that the zero in the interpolation polynomial along fagesnd point is unity. They are given by
£ for interior nodes is explicitly exhibited in (6). For face or

edge nodes, however, the denominator factorsnd/or is (p+1) (i k)
E 27 kifm

are also zero and [1, eq. (5)] together with (7) above must be pFL—1, —i5 8

used to evaluate the ratio. Conversely, forig nonzero, the Vg ~6 € {12,13,23} ©)
interpolation functior@]ﬁim may be viewed as an ordinary {gkitm (p+1(p+2) (i§ k;0m)
Silvester-Lagrange polynomial of total ord2fp — 1), with p+2—iy)(p+1—ig) 78
interpolation nodes shifted to the interior (as indicated by the otherwise

caret).
Interpolation points for bases of the fori2;}..,, (r),

(ijk;tm) . _ i i
2,70 (r) are shown in Fig. 2(a) and (b), respectively. Thiheret, 5 is the value of, 5 = |£,] at the interpolation

P+ DRi(p+1,6)Ri(p+1,&)Ri(p+1,6) Re(p+ 2,60) R (p + 2,&5)
a1, (€)= 78 € {12,13,23} ) ) ) @
wm (P+2)Ri(p+2,6)R;(p+2,&)Ri(p+2,&)Re(p+ 1, &) Ry (P + 1,&5)
otherwise
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linear terms able to model the following linear vectors:

T, (T‘) :€1V€4 - €4V€1 = 923(7') + 925(7') — 935(1")

To(r) =& VE — & VE = 8255(r) — £234(r)

Ya(r) =& V& — EVE = 8215(r) + £215(r) — 255(r).
(13)

In the Appendix, these vectors are used together with
multiplying polynomials of inhomogeneous form to prove
completeness to order in the curl.

@) (b)

Fig. 3. Interpolation points for divergence-conforming bases of gsder2
on prism elements (interior interpolation points omitted for clarity). (a) Nodes

in basis subsezl”k ¢m- (b) Nodes in basis subsﬂﬁ’ kylm

E. Dependency Relations at Face and Interior Nodes

point As discussed following (8), only two of the three or fquh
; k , m order bases for triangular or rectangular faces, respectively,
( , J , ; , ) which are nonvanishing at an interpolation point on a face,
p+lip ""1% 1%";; pt2p+2 are independent. Similarly, only three bases that interpolate an
&/ iikiem) — .76 € {. 13,23} interior point of the prism are independent. The dependencies
(igkitm) = i J k L m . : L .
, , : , ) arise from linear combinations of the bases that contain one
pt2 p+2 p+2 p+lptl of the following eight identities as factors:
otherwise
(10)
. . . 51 91]( ) +€292](T‘) +€‘39‘3](T‘) IOJ fOI’j :4,5
As a matter of practical implementation, we note that the . .
. . . 4(1") 5(1")—0J forz_1,2,3
three linear combinations 5 Q (") - f (r) =0
144127 23\T) =
B+1,4 S4+1.5 B—1.4 B—15
szk Zm(r) . gzyk Zm(r) . gzyk Zm( ) gijk;ﬁm(r) 51 913(1‘) 52923(1") =0
Nﬁ+1 4 Nﬁ+1 5 Nﬁ 1,4 B-15 (11)
ijkiim ijkiim ijk; Zm ijk;dm 52912(7') +€3913(T) =0 (14)

for 8 = 1,2,3 and with index arithmetic performed modulo
three reduce tdV¢, at interior interpolation nodes; whereas Indeed, at face and interior nodes the previous identities

the linear combination immediately yield
12 23 13
Q]Z\]]qc;m( ) + g;\]]l;fm(r) - g;\]]?-fm(r) (12) ZQZ]k Zm( ) ngyk Zm( )

ijkidm ijkidm ijkidm Nﬂ]‘k o Nf;k o
reduces toVé, = —V¢&; at interior nodes. Therefore, (12) kﬂ?fk (1)
together with any two of the three linear combinations (11), fﬁ o for i, j,k 0
suitably renormalized, provide convenient alternative bases zf)”k,m( ) jQ”k,m( ) [’ b
for interpolating interior points. On the quadrilateral face N5 N25
B (= 1,2,3), the tangential components ®¢; and, hence, ”kkﬁg% (r) kit
those of the corresponding linear combinations (11) vanish at % =
the interpolation point; one of the two remaining combinations ijk;tm

in (11) together with (12), however, can serve as convenient M)zyk m(T) mglljk om(T) -0 \

bases for interpolating nodes on fagd= 1,2, 3). Similarly, }]‘i . }]"’k .

on the triangular face four or five, the tangential components of  ¢27", ., (r)  m2}’ . (r)

(12) vanish at the interpolation point and any two of the three 2 e =0, forf;m#0
combinations (11) can serve as bases for interpolating nodes 34" g
(11) P g 9?]4k i (T) mg?;k /m( )

on the triangular face. With (11), (12) interpolating interior and = = =0

face nodes, and with (6) interpolating edge nodes, the degrees Nikitm N tm /

of freedom simply become the covariant vector components at ZQW am(T) kﬂ?;k o (7) — 0 fori k0

each interpolation point. Since the bases are normalized and Nj]?L i B Nfﬁ o or i, k #

interpolgte tangen_tial components, it becomes trivial to_enforce i3 (r) iR%, (1)

tangential continuity of fields across element boundaries. ](?ffm + ]y;“fm =0, fori,j#0

ijkiim ijk;im

D. Completeness to Orderin the Curl G2 () RS20 (7) —0, forjk£0

Completeness in the curl follows as a consequence of the Nﬂﬁ m Nf]r’}v m ’ 4 '

fact that the zeroth-order curl conforming functions contain (15)
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F. Number of Degrees of Freedom

The number of degrees of freedom for curl-conforming
bases of ordep on a prism element may be determined ag
follows:

 one componenk (p+ 1) DOF’s x nine edges= 9(p+1)

edge degrees of freedom;

* two components<(p(p + 1)/2) DOF’s x two triangular

faces= 2p(p + 1) face degrees of freedom;

» two components<p(p + 1) DOF’s x three rectangular

faces= 6p(p + 1) face degrees of freedom; (a) (b)
* two components (p*(p-+1)/2) interior DOF's= p*(p+ Fig. 4. (a) Prism cavity. (b) Prism cavity discretized with 64 equilateral
1) prism interior degrees of freedom; prisms.

» one componentx(p(p — 1)(p + 1)/2) interior DOF’s
= (p(p—1)(p+1)/2) prism interior degrees of freedomB. Order p Bases

for a total of 3(p + 1)(p + 2)(p + 3)/2 degrees of freedom  pjyergence-conforming interpolatory vector bases complete

per prism element. to orderp on a prism element are given by the following
polynomial products with the zeroth-order bases of Table I
IV. DIVERGENCECONFORMING BASES ONPRISM ELEMENTS A?jk;zm('")
& ) kyem (€)
:N?jk;lim ]iy A’V(T)J y=12--,5 (18)

A. Zeroth-Order Bases

Table | reports the unnormalized forms of the zeroth-orderere i, is taken to bes, j, k, ¢, or m for v = 1, 2, 3, 4,
divergence-conforming basek(r) on prism elements; their or 5, respectively. The ranges on the indexeg k, ¢, m are
normalized forms are easily deduced from the normalizdd, 2, --,p+ 1}, except fori,, whose range i40,1, - --, p}.
pth order forms presented below upon setting= 0. Basis The Silvester—Lagrange interpolating polynomial is (19), as
function A;(r) interpolates the vector component normal tshown at the bottom of the page, with

.y

the c_ent_roid of face:i. Although these zeroth-order bases o ((p+2), v€{1,2,3}
contain linear terms, they are complete only to zeroth order. i+j+k= (p+3), 7€ {4,5)
Completeness to zeroth order follows from the following ’ ’
linear combinations, which produce three independent constant l+m= { (p+2), vedl,2,3} (20)
vectors: (r+1), 7v€{4,5}
) Interpolation points for bases of the form;jwm(r),
As(7) — As(r) :£1_4<: _£_> A?ij(r) are shown in Fig. 3. The interpolation points
J J are arranged similar to those of scalar Lagrange bases of
£, Vi the same order on a prism, except that the pattern contracts
As(r) — Ai(r) = T (I 7) away from the four faces where normal components of the

zeroth-order bases vanish. The arrangement of interpolation
As(r) — Ay(r) = _<: _>, (16) points for the remaining bases may be determined from the
figure by rotating the pattern to put the face interpolation
N _ o points along a new face. Note that no vertex or edge points
On curvilinear prisms, completeness is with respect to theggine prism element are interpolated and that only a single

vectors as weighting factors. basis function interpolates a component normal to a given
Completeness of the divergence of the bases to zeroth orggle. On the interior, only three of the five bases, which
follows from interpolate each interior point should be retained to provide
9 interpolation of the three independent components. One of

, 1=1,2,3 these should have a zeroth-order basis factor associated with

V-A(r) = { (17) a triangular face; the remaining two should have zeroth-order

7 i=4,5. basis factors associated with any two of the rectangular faces.

The dependency relations for interior nodes are given below.
tIn this case, the normalization constants are chosen to ensure

Again, on curvilinear elements, completeness is with respec : _
(r) along the height unit vector

N
to 1/7 as a weighting factor. that the component o,

7
)

- _ [+ DR+ 2,E)R (p+2,&)Re(p+2,&)Re(p+ 2,60) R (p+ 2,65), 7 €{1,2,3}
azyk;ﬁm(é') p R (19)

(p+ DRi(p+3,6)R(p+3,&)Ru(p+3,&)Re(p+ L&) Rm (p+ 1,&), v € {4,5}
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TABLE I

EIGENVALUES OF THE EQUILATERAL PrismM CaviTy OF FiG. 4(a)
CoMPUTED WITH TENTH-ORDER COMPLETE FUNCTIONS

447

modal bd kd
order mode;  degeneracy . % error
exact numerical

number

1 - . 5 5.2359877666 | 2.0 x 10~7
Fo -1 2 3T 5.2359878015 | 8.7 x 1077

3 TMy1(-2)0 %n 7.2551974558 |—1.6 x 10~®
4 . 2/13 7.5514489320 |—1.0 x 10~8
5 | TRontne 2 3 | 7.5514480354 | 3.6 x 10-®
6 TMy 1 -2 19 7.9061681227 |~1.2 x 10”7
7 TE 11,421 VT 7.9061681346 | 2.6 x 1078
8 1%‘“_73 89472598127 | 1.5 x 10~7
g | TPoat-a1 2 T 8.9472698179 | 2.1 x 107
10 TMi 1 (-2)2 221 9.5977240908 |—1.2 x 1078
11 TE 1,1 22 37 9.5977241043 | 1.3 x 1077
12 i . 1997 10.313700246 4.6 x 107°
13 TEou(-1)3 2 T 10.313700250 4.6 x 1078
14 TE ) 10 10.471975510  [-2.3 x 1078
15 0,2,(~2),2 37 10471975518 | 5.5 x 10~8
16 N 11.08249777 5.4 x 106
17 | ™Mz 2 T 11.08249781 5.7 x 1076
18 11.51917367 5.3 x 107°
19 TMy 2,31 2 1, 11.51917367 5.3 x 107
20 | TE,, s, 2 N 11.51917370 5.5 x 107°
21 e 11.51917373 5.7 x 107¢
55 TM, (42 5 /T3, | 15812333 —2.1 x 1073
56 TE 55(-4)2 3 15.812351 9.3 x 1073
57 ‘ 511 16.266 5.7 x 1072
ss | TEore-ns 2 37| 16.266 5.7 x 1072
59 16.3579 9.3 x 107*
60 TM3,(-1),2 2 261, | 163579 9.3 x 107*
61 TE 1, 1)z 9 3 16.3581 1.9 x 1073
62 e 16.3581 1.9 x 1073

}sz at the interpolation point is unity. They are given by

10 T
®
®
* [ I ]
10° s .
Z A
o 4
IS A
2 o 4a,
510 4
a
3 A
] <o
e °
| 107 1
® <
5 *
5 Lo
1073 ® Zeroth order
. A First order
<& Second order | *
% Third order | *
4 )
1075 5 4
10 10 10

Number of unknowns

Fig. 5. Average error in computation of first nine resonant frequencies versus
number of unknowns for a conducting prism cavity.

% error (magnitude)

1

50

1 1
10 100 130

Modal order number
Fig. 6. Error in computation of resonant frequencies versus the modal order

number for the conducting prism cavity of Fig. 4(a) studied with complete
vector basis functions of order ten.

+2
%h’j“m, v €1L,2,3} product of the zeroth-order bases andgtteorder polynomial
Dkim = p prl - (21) is found to be
p+1—1 h;] o 76{4’5} &wgﬁ&ﬁ
Y 2 P
T . . V-G A(r) = (a4 B+ 2) 220 =4,5
wherehl? ¥ is the value of7/|h, | at the interpolation point ‘ZB
Qe ey
( i _J k€ m ) Vfgafa;/lz(r)z(wm?)g?’g%, =4,5
p?12;p34£2’p+2’p+2’p+2 creter
€ ) 4y It 255
Cihem) = E ; j koot m (22) V& 555]/13(1“) =(a+8+ 2)%; =4,5
p+3 p+3 p+3 p+1'p+1 o o oY ¢
Ve s V- Gdgeam =6+t
To ensure continuity of the normal component of a face- coglered
node basis across elements, it is only necessary to adjust ity - €765 €3 &5 As(r) = (8 + 1)%- (23)

sign to correspond to an arbitrarily selected reference direction
across adjacent elements. For curvilinear prisms for which7 is not a constant,
polynomial completeness is with respeci 1qQ7 as a weighting

C. Completeness to Orderin the Divergence factor.

Completeness to order in the divergence is most easily _ )
shown using an inhomogeneous multiplying polynomial df- Dependency Relations at Interior Nodes
order p [1]. In this case, completeness follows from the fact As discussed following (20), only three of theh order
that terms of like order are generated. The divergence of thases that are nonvanishing at an interior interpolation point
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<~ e >

u Fig. 9. Discretization of a pie-shell cavity. (a) A triangular mesh is defined
Fig. 7. Circular cylinder cavity discretized with 72 prism elements. on one face of the structure. (b) Seventy-two prism elements are then obtained
by extrusion.

3
)
® .
®e
0 ’ b ..
210 L4
= LAY °
© A o °
o
pt o 10
] A (X
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=4 < A 3 b
3 L3 8
& A = A
3 A 2 A
= ¢ <
(ST ° 2
1 a A
A |yt o A
o 10
L 0
g T °
5 g A
S o N 7]
@ Zeroth order o
102k A First order | — ©
© Second order @® Zeroth order °
1072} A First order
: o °
10? 10° 10° A Seicir}d order
Number of unknowns *
i ] ] ] ) ) 10° 10° 10*
Fig. 8. Average error in computation of first eight resonant frequencies Number of unknowns

versus humber of unknowns for a conducting circular cylinder cavity. ) . . ! . .
Fig. 10. Average error in computation of first eight resonant frequencies

versus humber of unknowns for a conducting pie-shell cavity.
are independent. The dependencies arise from linear combi-
nations of the bases which contain the following identities as
factors:  two componentsx(p(p + 1)?/2) plus one component
x(p(p + 1)(p + 2)/2) interior DOF's = (p(p + 1)(3p +
& A (r) + & A (r) +E345(r) =0 4)/2) prism interior degrees of freedom

Ealy(r) + & As(r) = 0. (24) for a total of (p + 1)(3p® + 12p + 10)/2 degrees of freedom.

Indeed, at interior nodes the previous identities immediately

ield
y V. NUMERICAL RESULTS
AL A kAD . : ,
! ”f?zm(r) 47 ”Q’“Zm(r) + ”%“m(r) =0, Here, we present some results to illustrate the benefits
Nijkiom N kiim N kiim of using higher order vector bases on prism elements. The
fori,j,k#0 examples we consider are relative to resonant cavities, where
EA?jk;Zm (r) mA?].k;em (r) o fort 0 - the resonant fre_quen_cies were determined by find_ing_the eigen-
N N =0, forf,m#0.  (25) values of the discretized vector Helmholtz equation involving

ijk;dm ijk;dm

the cavity electric field [5]. A Galerkin form of the finite-
element method was used to discretize the Helmholtz equation
and curl-conforming bases on triangular prisms were used to
The number of degrees of freedom for divergencenodel each cavity; curvilinear prisms with quadratic distortion
conforming bases of ordep on a prism element may bewere used on the cavity boundary when necessary.
determined as follows: The first geometry we consider is the prism cavity shown
 one componenk((p+ 1)(p+2)/2) DOF's x two faces in Fig. 4. The cavity has an equilateral triangular base and
plus one componenk(p + 1) DOF’'s x three faces the heightd of the cavity is equal to the length of the
= (p+ 1)(4p + 5) face degrees of freedom; triangular side [Fig. 4(a)]. Fig. 4(b) shows a discretization of

E. Number of Degrees of Freedom
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this cavity with 64 equilateral prisms; the cavity problemectangle having one side of lengthand the other of length

of Fig. 4(b) yields 644 and 2310 unknowns when first antl2d; this planar mesh is thesmearedon one curved face of
second order elements are used, respectively. This probltra pie shell [Fig. 9(a)] and, finally, by extrusion, the prism

is an ideal test case to assess the performance of cunkesh of Fig. 9(b) is obtained. The mesh of Fig. 9(b), which,
conforming functions on prism elements of different orddsy the way, is not optimum consists of 72 triangular prisms;
because there is no need to distort the elements in ortlas yields systems of 776 and 2718 unknowngfer 1 and2,

to match the geometry and, hence, equilateral cells can fespectively. The numerical error for the first eight computed
used. The analytical solution of this waveguide problem &igenfrequencies (eight nondegenerate modes) of this structure
apparently due to Schwinger (unpublished lecture notes snreported in Fig. 10 fop = 0, 1, and 2.

electromagnetic fields in waveguides) and is reported in detalil

in [6]. In [6], the modes of the triangular waveguide are labeled Vi
with three indexes/(m, n, with £ +m + n = 0); we adopt ) ) )
Schwinger’s notation, thereby labeling the cavity modes with ThiS paper presents curl-conforming and divergence-
four indexes (as in Table I1), where the fourth index denot&@nforming vector basis functions of the Nedelec variety for
the number of oscillations along the axis of the cavity. Fig. BfiST elements. The functions, which are derived for arbitrary
is a plot of the error in the computed resonant frequencies Rglynomial order, can be consistently used to deal with
the prism cavity versus the number of unknowns. The errorqgrvn_mear eIer_nents._Propertles of the vecFor basis functions
averaged over the first nine eigenfrequencies, which inclu® discussed in detail. The reported numerical examples show
eight degenerate modes. From this figure one can apprec hlgher_order fu_nctlons provide more accurate results than
the faster convergence of the results for increasing gectgir th0ose obtainable with low-order elements.

the vector bases. Asymptotically, for a giverand decreasing

. CONCLUSIONS

mesh sizes, the error appears to behavesd$'t!). However, APPENDIX
the quality of the results strictly depends on thelity of the COMPLETENESS IN THECURL FOR HIGHER ORDER
mesh and this can also be appreciated in Fig. 5 since it was CURL-CONFORMING BASES

not always possible to use equilateral cells. Using polynomials of inhomogeneous form [1], we first

The same (_:avity problem was solved with yector bases (%serve that any polynomial vector of order+ 1) can be
order ten defined on the single element of Fig. 4(a) so ﬂ?{pressed as the sum of a curl-free vector of ofger ) plus a

the functions were actually entire-domain \_/ect(_)r bases. T &ctor, which can be represented in terms of curl-conforming
total number of degrees of freedom for this single elemep

of order ten is 2574, yielding a fully populated system o

equations with 1595 unknowns (number of interior degrees of

freedom). In this connection, it is important to observe that the(p + 2)5?5551V€1

sparsity of the finite-element matrices decreases for increasing = w(eo+Lel ¢]) 4 pecel = eIy — v el eI

nctions of orderp

order of the bases while higher accuracy is required in the Nl T

integration routines used to compute the matrix coefficients.(p+ IS

As a matter of fact, in general applications, it is usually = V(EGET D) + €008 T — ag) T
convenient, as a rule of thumb, to work with vector bases of no(p + 2)¢%¢2¢1 Ve,

higher than third or fourth order. Nevertheless, we present the _ v(gagﬁ 7+1) T lelar, — gecelb-tar
results of Table Il to prove that our construction scheme can Loz LoS2h4 Loz Sata
easily be applied to arbitrarily high orders. In this case, we p=a+ft+y-120,

obtained 450 zero eigenvalues and our numerical code was a, B,y =0 (26)

able to clearly distinguish the first 130 modes. No spurious

nonz'ero ei.genvalues were observed. As shpwn in Fig. 6, (%ere the vectors’,, T», T, defined in (13), are linear
the first thirty modes the percentage error is less thar® 10.0mbinations of curl-conforming basksNote that vectors
and it remains always below the 10 level up to the 46th v( ?“6551) V(f?{fgﬂgz) andV(f?«Sﬁ 7+ of order(p+

mode. 2 ? ' 2

_ . ) ) 1) are the gradients of inhomogeneous polynomials of order
The seconfj test_case is a cm_:ular cavity (_)f_radlus e_md hei t 2) and, because they are gradients, are curl-free. Taking
equal tod, discretized as in Fig. 7 by defining a triangula

he curl of both sides of (26), one finds that the curl of any

mesh on one qf the _cylinder bases and then_by extruo!iogctor of order(p + 1) (yielding a vector of ordew) can
these trlz?\ngles Into prism c_ells. The mesh of Fig. 7 Cons'%ﬁlvays be expressed as a linear combination of the curl of
of 72 prism cells, which yields _systems of 762 and 269c!url-conforming bases of order. Hence, the curl of curl-
unknowns forp = 1 and 2, respectively. The percentage erMOlSnforming bases of order are complete to ordep within

in the computed resonant frequencies versus the numberyf ¢4 e of vectors derivable from the curl of vectors of order
unknowns are reported in Fig. 8 fgr = 0, 1, and 2; the

reported error is averaged over the first eight eigenfrequencieshis proof also applies to tetrahedral and brick element functions; in these
which include six degenerate modes. cases one has only to replageby & andY's by Ts = £VEs — £ VEs in
. . . . . 26) sincegs is the third independent variable used to define those cells [1].
Fma”y' We_ studied _the ple_-s_hell CaY'ty of Fig. 9(a). The 3- bviously, in those cases, one has to express the vector fundfipn¥':,
mesh is obtained by first defining a triangular mesh on a par@nd T in terms of the relevant zeroth-order bases.
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p+ 1. These bases appear in inhomogeneous polynomial foRaberto D. Graglia (S'83-M’83-SM’90-F'98), for photograph and biogra-
in (26), but they are, of course, linear combinations of tH#Y: see p. 314 of the March 1997 issue of thimisacTions
interpolatory polynomial bases defined in (6).
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