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Abstract—An efficient procedure is presented to investigate the
mutual coupling effects and radiation characteristics of dielectric
resonator (DR) antennas operating in an array environment.
The procedure is based on the method of moments (MoM) as
applied to a system of surface integral equations (SIE’s) for the
coupling of a dielectric body of revolution (BOR) to a nonBOR
geometry. The antenna array elements are situated on a ground
plane and fed by coaxial probes. Multiport network impedance
parameters computed by this method show good agreement
with those obtained by measurement. Computed driving point
impedances are given for arrays exhibiting optimum pattern
performance in terms of low cross polarization and good pattern
symmetry.

Index Terms—Dielectric antennas.

I. INTRODUCTION

SINCE the early experimental studies to determine the radi-
ation characteristics of dielectric resonator (DR) antennas

[1], [2] and the numerical evaluation of several of the lowest
source-free modes of cylindrical DR’s situated in free-space
[3], [4] there has been continued interest in the development of
DR antennas. Recently, it has been experimentally established
that DR’s are effective as antenna array elements [5]. To date,
most numerical modeling for DR antennas has been focused
on single elements [6]. By use of a single-mode approximation
together with reaction concepts, the mutual coupling between
each element of a two-element array of hemispherical DR an-
tennas was theoretically investigated [7]. Even upon replacing
the single-mode approximation with a full modal expansion,
this technique is limited to spherical bodies since it utilizes the
Green’s function for a current element located vertically inside
a dielectric sphere. In order to completely characterize an
antenna array, the design engineer must have at his disposal a
tool that takes into account all mutual coupling effects. This is
especially important for large phased arrays where the effects
of mutual coupling can cause significant impedance variation
with scan angle as well as introduce blindness effects [8]. A
rigorous numerical model based upon the method of moments
(MoM) was introduced in [9] to determine the driving point
impedances and radiation patterns of ground-plane-backed
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linear arrays of rotationally symmetric DR elements. Simple
methods such as the electromagnetic force (EMF) method may
not be suitable for the study of mutual coupling effects. Indeed,
it has already been established that the EMF method is not of
sufficient accuracy to determine self and mutual impedances
[10] of antenna arrays since it is in fact merely an integral
identity and not directly related to the currents at the driving
points of the antenna [11].

In this paper, a procedure is presented for the accurate
characterization of a linear array of coaxial probe fed DR
elements in terms of its multiport impedance, admittance, or
scattering matrix. These antenna arrays should find utility in
tracking and supergain applications because of the DR’s high
power handling capability and low loss, which is of special
concern in millimeter wave applications.

II. FORMULATION

A. The Field Equivalences

The electromagnetic field equivalence principle [12] is used
to obtain a system of surface integral equations (SIE’s) similar
to the body of revolution (BOR) formulation of [13], for
composite radiators consisting ofN homogeneous regions,
each of which may have embedded wires. The generalized
geometry for such a radiator is illustrated in Fig. 1. The
whole space is divided intoN +1 homogeneous regions with
permittivities �i and permeabilities�i for i = 0; 1;2; � � � ; N .
Each regionVi is surrounded by a closed-surfaceSi and
is associated with an inward normal unit vectornnni. The
surface interface between regionsVi and Vj is Sij ; i 6= j.
Thus, Si is the set of all interface surfacesSij, where j

represents all region numbers that interface with regionVi.
Note that the surfaceSij = Sji; however, the normal unit
vectorsnnni andnnnj are in opposite directions to each other on
Sij . The total fields in each region are denoted byEEEi and
HHHi, where i = 0; 1; 2; � � � ; N for the electric and magnetic
fields, respectively. The time variationej!t is assumed and
suppressed throughout. The total fields in each region are the
fields due to the equivalent currents surrounding this region
plus the fields due to the impressed current sources. From
Maxwell’s equations, and the equivalence principle, one can
express the field in each region in terms of unknown electric
and magnetic equivalent surface currents.

0018–926X/98$10.00 1998 IEEE



426 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 3, MARCH 1998

Fig. 1. General geometry of the composite dielectric body with embedded
wires.

According to the equivalence principle, the original problem
can be decomposed into a number of auxiliary problems
that are equal to the number of dielectric regions. To obtain
the ith auxiliary problem, the boundaries of the regionVi
are replaced by equivalent surface currents radiating in a
homogeneous medium with the constitutive parameters of
region Vi. Electric currents are used for the embedded wire
surfaces and equivalent electric and magnetic currents are
used for the dielectric boundaries. The electric and magnetic
currents appearing on opposite sides of a dielectric interface
in different auxiliary problems are taken equal in magnitude
and opposite in direction to assure continuity of the tangential
components of the fields on these boundaries as they were
continuous in the original problem. In this procedure, the
fields produced within the region boundaries by the equivalent
currents are the same as those in the original problem, while
the zero field is produced outside these boundaries. The electric
and magnetic surface currents alongSi are

JJJ i =nnni �HHHi (1)

MMM i =�nnni �EEEi: (2)

The unknown surface electric current on the embedded wires
is directed along its surfaceSiw and is denoted asJJJ iw. By
enforcing the boundary conditions of continuity of tangential
components of the electric field on the wire surface as

EEEiwjtan = 0 on Siw (3)

and continuity of both the tangential components of the electric
and magnetic fields on the dielectric surfaces as

EEEijtan =EEEj jtan on Sij (4)

nnni �HHHi =nnni �HHHj on Sij (5)

a system of surface integrodifferential equations can be written
in an operator form in terms of the equivalent surface currents

as

EEEi(JJJ i + JJJ iw;MMM i)jtan = �EEEi(JJJ
inc

i ;MMM inc

i )jtan on Siw

(6)

[EEEi(JJJ i + JJJ iw;MMM i) +EEEj(JJJj + JJJjw;MMM j)]tan

= [EEEj(JJJ
inc

j ;MMM inc

j )�EEEi(JJJ
inc

i ;MMM inc

i )]tan on Sij (7)

nnni � [HHHi(JJJ i + JJJ iw;MMM i) +HHHj(JJJj + JJJjw;MMM j)]

= nnni � [HHHj(JJJ
inc

j ;MMM inc

j )�HHHi(JJJ
inc

i ;MMM inc

i )] on Sij:

(8)

The above system of equations is known as the E-PMCHW
formulation [14]. The integrodifferential operatorsEEE(JJJ;MMM )
andHHH(JJJ;MMM ); are defined in terms of the magnetic and electric
vector and scalar potential functions [12]. The argumentsJJJ inc

i

andMMM inc

i represent the incident electric and magnetic currents
in region i, respectively.

B. Moment Method Solution

The coupled system of SIE’s (6)–(8) are to be specialized
to dielectric bodies such that the regionsVi are delineated
by surfaces of revolution. These coupled equations are then
numerically solved by employing a Galerkin MoM proce-
dure [15]. In the free-space equivalent problem, the antenna
geometry (excluding the embedded wires) is defined by a
surface of revolution swept out by rotating a generating
arc about the body’s symmetry axis. Due to this symmetry,
two components of equivalent electric and magnetic currents
can be identified: one directed along the generating arc,
i.e., the ttt component, and the other in the circumferential
direction, i.e., the��� component. Hence, the unknown currents
on the BOR are modeled as harmonic(ejn�) entire domain
expansion functions for the circumferential variation, where
n is thenth Fourier mode and as piecewise linear subdomain
functions for the dependence on axial curvature. The unknown
equivalent current on the wires, in this case the actual currents,
are modeled as piecewise linear subdomain functions. After
application of the Galerkin procedure to the above system
of equations, the resulting matrix equation is of the form as
in (9), shown at the bottom of the next page. The vectors
jJM in represent the electric and magnetic current coefficients
for thenth Fourier mode of the basis functions, which reside
on surfaceSi and are given as

�
jJii
jMii

�
n

: (10)

Since the surfaceSi is the sum of all the boundariesSij of
regionVi wherei 6= j and, sincej represents all the region
numbers adjacent to the regionVi, the equivalent currentJJJ i
is given as

JJJ i =
X
j

JJJ ij on the boundaries ofVi (11)
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(a) (b)

Fig. 2. Geometry of the test array. (a) The two-element array of half-split CDR’s. (b) The coordinate system.

(a) (b)

Fig. 3. Measured and computed self and mutual impedances versus frequency for the antenna of Fig. 2(a) withrd = 24:5 mm, h = 39:5 mm, t = 4:2
mm, d = 16 mm, xf1 = xf2 = 14:4 mm, zf1 = �27:75 mm, zf2 = 27:75 mm. (a) Z11. (b) Z12.

and is given similarly forMMM i. The vectorjJwi represents the
current expansion coefficients for the currentsJJJ iw that reside
on the wire surfaceSiw. The large square submatrix involving
the partitions[BB] represent the inner products in the Galerkin
procedure for the case that the testing and basis functions are
on the surfaceSij. The banded nature of this part of the matrix
is due to the orthogonality of the exponential functionejn�.
The partitioned row matrix comprising the submatrices[WB]

and the partitioned column matrix comprising the submatrices

[BW ] represent inner products resulting from the Galerkin
procedure when the testing functions are onSij and the basis
functions are onSiw for [BW ] and vice versa for[WB]. The
square matrix[WW ] represents the results of the Galerkin
procedure when both the testing and basis functions are on
Siw. Additional details for these definitions can be found in
[6] and details about the matrix elements can be found in [16].
The extended delta source [17] is used to model the impressed
(incident) electric field to get the right-hand side of (9).

2
6666666664

[BB]
�n � � � � � � � � � � [BW ]

�n

� [BB]
�n+1 � � � � � � � � 0 [BW ]

�nn+1

� � � � � � � � � � � � � � � � � � � �
� � � � � [BB]0 � � � � � [BW ]0
� 0 � � � � � � � � � � � � � �
� � � � � � � � � [BB]n�1 � [BW ]n�1
� � � � � � � � � � [BB]n [BW ]n

[WB]
�n [WB]

�n+1 � � � [WB]0 � � � [WB]n�1 [WB]n [WW ]
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�n
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�n+1
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(a) (b)

Fig. 4. Computed self and mutual impedances for various spacingsd versus frequency for the antenna of Fig. 2(a) withrd = 24:5 mm, h = 39:5 mm,
t = 0:0 mm, xf1 = xf2 = 14:4 mm, zf1 = �(27:75 + d=2) mm, zf2 = (27:75 + d=2) mm. (a)Z11 . (b) Z12.

Fig. 5. Computed driving point impedances for various spacingsd versus
frequency for the antenna of Fig. 2(a) withrd = 24:5 mm, h = 39:5 mm,
t = 0:0 mm, xf1 = xf2 = 14:4 mm, zf1 = �(27:75 + d=2) mm,
zf2 = (27:75 + d=2) mm.

Since the quantity of interest is the short-circuit admittance
matrix, the procedure described in [6] is used to obtain
the current on the wires. Once the current on the wires is
found, the current on the dielectric surfaces can be obtained.
These currents can then be used to determine the radiation
characteristics of the antenna in regionV0. Available in the
literature are expressions for the elements of[BW ] and[WB]
[6], as well as[WW ] [18].

The most direct way to obtain the multiport network descrip-
tion of the antenna array from the MoM model is to determine
the short-circuit multiport admittance matrix[YYY ]. The elements
of the admittance matrix can be determined by driving thepth
port with the appropriate voltage source while the remaining
elements are treated as parasitic, i.e., their input terminals are
short circuited. The admittance matrix elements are given as
Ypi = Jp=VijVj=0 for j = 1;2; � � � ;Nw and j 6= p. After ob-
taining the elements of[YYY ], other network descriptions such as

Fig. 6. Computed principal plane patterns for the antenna array of Fig. 2(a)
with rd = 24:5 mm, h = 39:5 mm, t = 0:0 mm, xf1 = xf2 = 14:4 mm,
zf1 = �(27:75+d=2) mm,zf2 = (27:75+d=2)mm,Vp1 = Vp2 = 1 6 0�.

the open circuit impedance matrix[Z] and the scattering matrix
[SSS] can be obtained from basic microwave network theory [19].

III. N UMERICAL RESULTS

A. Experimental Verification

Since it has been established that a half-split cylindrical
dielectric resonator (CDR) can support a variety of desirable
quasi-TE modes [20], it should prove advantageous in an array
environment and, as such, it is the element of choice for
the test antenna. It has been shown that careful fabrication
procedures must be employed in order to build a test antenna
which can be used to verify theoretical models of DR antennas.
Therefore, the techniques presented in [21] were employed
to construct the test array. The antenna under consideration,
together with its coordinate system, is illustrated in Fig. 2(a)
and (b), respectively. This antenna consists of two half-split
PVC tubes of lengthh = 39:5 mm, radiusr = 24:5 mm,
and wall thicknesst = 4:2 mm displaced on thez axis by
a distanced = 16 mm. Each end of the tube is closed by a
thin half-circular disk of clear butyrate sheet stock and filled
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Fig. 7. Computed principal plane patterns for the antenna array of Fig. 2(a)
with rd = 24:5 mm, h = 39:5 mm, t = 0:0 mm, xf1 = 14:4 mm,
xf2 = �14:4 mm, zf1 = �(27:75+ d=2) mm, zf2 = (27:75+ d=2) mm,
Vp1 = 16 0�; Vp2 = 16 180�.

with Emerson & Cumin Hi-K dielectric powder of relative
permittivity �d = 12:0. The powdered material was used to
ensure that all conducting parts of the antenna were in good
mechanical contact with the dielectric material. All plastic
components were fixed in position with silicone adhesive.
The TE01 mode was excited by operating at its resonant
frequency and choosing the proper coaxial probe position [20].
TheTE01 mode was chosen because of the desire to fabricate
two elements that were essentially identical. Use of elements
with identical characteristics reduces experimental errors. To
excite this broadside mode, the 0.381-mm radius coaxial feed
probes, which extend 15 mm from the top of the ground plane
into the dielectric material, are positioned atxf = 14:4 mm
and zf = +27:75 mm. Precision 3.5 mm connectors with
solder pot contacts are used to connect the coaxial probe to
an HP8510B network analyzer.

The half-split CDR’s of Fig. 2(a), can be treated as axisym-
metric by invoking image theory and removing the ground
plane. The parameters of the two-element array are shown
in Fig. 2(b). Doing so results in full CDR’s in free-space
each excited by a thin wire dipole. Fig. 3(a) and (b) plots
the measured and computed self and mutual impedances,
respectively, for the experimental array as a function of
frequency. It should be mentioned that one element was driven
and the other was terminated by a 50-
 load. The electrical
length of the 3.5-mm connector was taken into consideration
as a result of the full two-port Hewlett-Pakard calibration
procedure. Since the measured data forZ11 andZ22 exhibited
overlay agreement when plotted, only measured data forZ11

is presented. In all the numerical models presented in this
paper, 19 basis functions per dielectric wavelength were used
to model the feed probe and the�3 to +3 Fourier azimuthal
modes were found to be adequate to ensure convergence. Two
different numerical models were considered. The first model
completely neglected the presence of the container while the
second modeled the PVC container and neglected the butyrate
sheet stock. The numerical model, which neglects the presence
of the PVC container, indicates that there is a peak in the
resistive part of the self impedance near 1.584 GHz, which
is 3.9% higher than that of the test array where the resistive
peak occurs near 1.524 GHz. However, upon modeling the

PVC container with a dielectric constant of 2.3, the frequency
at which the peak of the real part of the self impedance occurs
dropped to 1.56 GHz, which is only 2.6% higher than that
measured. The levels of the computed self impedance varied
only slightly upon introduction of the PVC container into the
numerical model. This result indicates that the PVC container,
which could represent a protective cover cannot always be
neglected in the numerical model, even though its dielectric
constant is low. This is especially true when the feed probe is
in close proximity to the “walls” of the resonator. Since the
resistive part of the self impedance is directly related to the
radiation resistance and peaks at the frequency that results in
maximum radiated power, mutual coupling effects should be
the strongest at this frequency. Hence, as expected, the peak
of the mutual resistances (though negative) occur at the same
frequencies as that of the self-resistance peaks, as indicated
in Fig. 3(b). Though not very meaningful by themselves, it is
interesting to note that for these closely spaced DR elements,
the self and mutual impedances are of approximately the same
order of magnitude thus indicating very strong coupling.

B. Numerical Study

To numerically investigate the effects of mutual coupling
upon terminal parameters and radiation characteristics of
the test array, the distance between the array elements was
increased from 16 to 30, 60, and 90 mm, respectively. It should
be pointed out that the “container” that encased the dielectric
material of relative permittivity�d = 12 was neglected in the
numerical study. Fig. 4(a) shows the self impedances plotted
as a function of frequency for various element spacings when
the other element is passive together with the input impedance
of an isolated element. As can be seen from the figure, the self
impedances (in this case, the driving point impedance for the
active element in the presence of a parasite) for spacings of 60
and 90 mm exhibit only a small change in frequency response
from the driving point impedance of the isolated element.
This is not to say, however, that the effect of mutual coupling
can be ignored for these element spacings when modeling
the array in terms of its microwave multiport impedance
matrix. As can be seen from Fig. 4(b), the mutual impedances
are not insignificant and, therefore, cannot be neglected
when determining the driving point impedances when both
elements are active. Fig. 5 plots the driving point impedances
for the two-element array whenVp1 = Vp2 = 16 00V . As
can be seen, the driving point impedances for spacings of
60 and 90 mm are no longer in good agreement with each
other or with the input impedance of the isolated element.
Note that the array resonant frequency, as determined by
the peak of the driving point resistances, increases upon
increasing element spacing from 30 to 60 mm and then
begins to decrease toward that of an isolated element when
the separation distance was increased to 90 mm. Fig. 6 shows
the principal patterns for the two-element array with both
element ports driven in phase and operating at 1.5 GHz for
various element spacings. Since this configuration results in
an H-plane array, as expected, theE-plane pattern (E�, x-y
plane) is essentially unchanged throughout the spacing range;
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(a) (b)

Fig. 8. Computed principal plane patterns for the antenna array of Fig. 2(a) withrd = 24:5 mm, h = 39:5 mm, t = 0:0 mm, xf1 = xf2 = 0:0 mm,
zf1 = �(6:0 + d=2) mm, zf2 = (33:5 + d=2) mm, Vp1 = Vp2 = 16 0�. (a) E� (y-z plane). (b)E� andE� (x-y plane).

(a) (b)

(c)

Fig. 9. Computed self and mutual impedances for various spacingsd versus frequency for the antenna of Fig. 2(a) withrd = 24:5 mm, h = 39:5 mm,
t = 0:0 mm, xf1 = xf2 = 0:0 mm, zf1 = �(6:0 + d=2) mm, zf2 = (33:5 + d=2) mm. (a)Z11 . (b) Z22 . (c) R12 andX12 .

however, there is someE-plane pattern asymmetry due to
the presence of weak high-order modes. Upon increasing
element separation, it is noted thatE� in the H plane (y-z
plane) becomes more directive and sidelobes appear at the 90-
mm spacing. The cross-polar componentE� decreases upon
increasing the element spacing from 30 to 60 mm and then

increases upon the appearance of sidelobes at the spacing of
90 mm. To further investigate the slight lack of symmetry, the
positions of the feed probes were changed so that the probe
at port 1 was positioned atxf = �14:4 mm and driven 180�

out of phase from the feed probe at port 2. As seen from
Fig. 7, this effectively cancels higher order modes and results
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(a) (b)

Fig. 10. Computed principal plane patterns for the antenna array of Fig. 2(a) withrd = 24:5 mm, h = 39:5 mm, t = 0:0 mm, xf1 = xf2 = 0:0 mm,
zf1 = �(33:5 + d=2) mm, zf2 = (33:5 + d=2) mm, Vp1 = 16 0�; Vp2 = 16 180�. (a) E� (y-z plane). (b)E� andE� (x-y plane).

(a) (b)

Fig. 11. Computed self and mutual impedances for various spacingsd versus frequency for the antenna of Fig. 2(a) withrd = 24:5 mm, h = 39:5 mm,
t = 0:0 mm, xf1 = xf2 = 0:0 mm, zf1 = �(33:5 + d=2) mm, zf2 = (33:5 + d=2) mm. (a)Z11 . (b) Z12 .

in a symmetricE-plane pattern. However, the cross-polar
components for all three element spacings have increased. The
cross polarization increased because the feed probes are not
situated in the same plane and, as such, they couple to modes
having undesirable characteristics.

The TE01 mode can also be excited to create anE-plane
array with these elements for an axisymmetric array. This can
be accomplished for the spacingd = 30 mm by positioning
the feed probes atxf1 = xf2 = 0:0 mm, zf1 = �21:0

mm, andzf2 = 48:5 mm and driving both ports in phase.
Fig. 8(a) is a plot of theE-plane patterns (E� in the y-z
plane) and Fig. 8(b) is a plot of theH-plane patterns (E�

in the x-y plane) and the cross-polarization patterns (E� in
thex-y plane). The array is operating at 1.7 GHz for element
spacings ofd = 30, 60, and 90 mm along thez axis. Note
that there is a lack of symmetry in theE-plane patterns for
all element spacings. This asymmetry is caused by coupling
of modes other than the dominantTE01 mode. Fig. 9(a) and
(b) showZ11 andZ22, respectively, and Fig. 9(c) showsR12

andX12. As can be seen from Fig. 9(a) and (b)Z11 andZ22

are not the same. Since the frequencies at which the peaks
of the self resistances occur are spread over a certain range

of frequencies, it may be possible to increase the impedance
bandwidth of an antenna by intentionally causing the peaks
of R11 and R22 to occur at slightly different frequencies.
However, given that the pattern is of primary concern, this
observation concerning impedance bandwidth may not always
prove fruitful. To alter the array to operate as a symmetric array
and yield a broadside pattern, the feed probes are positioned
at zf = �48:5 mm and the two ports are driven 180� out of
phase. The principle plane patterns are given in Fig. 10(a) for
E� in the y-z plane and in Fig. 10(b) forE� in the x-y plane
for three element spacings and the same operating frequency.
Note that theE-plane pattern is no longer distorted and that
the cross-polar component is not shown because it has been
effectively reduced to well below�30 dB. In this case, the
feed probes remained in the same plane and, as such, the cross-
polar component did not increase as it did for theH-plane
array. TheH-plane pattern is essentially unchanged from that
of the previous array. The self and mutual impedances for the
array elements are shown in Fig. 11(a) and (b), respectively.
Compare the mutual impedances of the array, which is driven
out of phase to those of the in-phase array. Note that the slope
of the curves for the mutual impedances is much greater than
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Fig. 12. Computed driving point impedances for various spacingsd versus
frequency for the antenna of Fig. 2(a) withrd = 24:5 mm, h = 39:5
mm, t = 0:0 mm, xf1 = xf2 = 0:0 mm, zf1 = �(33:5 + d=2) mm,
zf2 = (33:5 + d=2) mm, Vp1 = 1 6 0�; Vp2 = 1 6 180�.

the slope of the curves for the array with the distortedE-plane
patterns. This is because in the latter case, the radiation due
to coupling with the undesirable higher order modes, excited
by the in-phase feed configuration, contributed to radiation
over a greater range of frequencies. Finally, Fig. 12 plots the
driving point impedances obtained from the impedance matrix
elements presented in Fig. 11. Note that as the element spacing
increases, the resonant frequency of the array decreases in a
monotonic fashion apparently due to the fact that modes other
than the dominant mode have been effectively eliminated.

IV. SUMMARY

A rigorous numerical technique for the analysis of linear
arrays of ground-plane-backed coaxial probe fed DR anten-
nas has been presented. The self and mutual impedances
determined using this technique for a two element DR array
operating in theTE01 show good agreement with those
obtained by measurements. Results of basic studies have
been presented for DR arrays operating in theTE01 modes.
Criteria for optimizing pattern performance based upon feed
positioning and source phasing have been presented. This data
can be used for meeting initial design criteria for large linear
arrays since it concerns the effects of feed-probe position
element spacing and port excitation upon the impedance and
radiation characteristics of the antenna array.
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