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FDTD Analysis of Wave Propagation in
Nonlinear Absorbing and Gain Media
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Abstract—An explicit finite-difference time-domain (FDTD)
scheme for wave propagation in certain kinds of nonlinear media
such as saturable absorbers and gain layers in lasers is proposed
here. This scheme is an extension of the auxiliary differential
equation FDTD approach and incorporates rate equations that
govern the time-domain dynamics of the atomic populations in the
medium. For small signal intensities and slowly varying pulses,
this method gives the same results as frequency-domain methods
using the linear susceptibility function. Population dynamics for
large signal intensities and the transient response for rapidly
varying pulses in two-level (absorber) and four-level (gain) atomic
media are calculated to demonstrate the advantages of this
approach.

Index Terms—FDTD methods, nonlinear wave propagation.

I. INTRODUCTION

T HERE are two main aspects to the interaction of elec-
tromagnetic radiation with a collection of atoms: 1)

the effects of the medium on the field and 2) the change
in the material parameters due to the incident field. When
an electromagnetic wave propagates in a medium, the field
induces a time varying dipole moment in the individual atoms
that comprise the medium. The oscillating atoms lose energy
through radiative and nonradiative mechanisms. The total
field, which is the sum of the incident field and the fields
radiated by the atoms, can thus be attenuated or amplified and
phase shifted by the medium. The effects of the medium on
electromagnetic wave propagation can be modeled by suitably
defining the polarization vector of the medium and solving
the equation for the macroscopic polarization along with
Maxwell’s equations. In this way, the standard finite-difference
time-domain (FDTD) methodology [1] can be extended to
model linear dispersive media [2], [3]. This method, known
as the auxiliary differential equation finite-difference time-
domain (ADE-FDTD) method has also been modified to model
nonlinear dispersion [4], [5] due to Kerr and Raman effects.

The ADE-FDTD approach has been modified to model gain
in lasers [6], [7] by using a frequency-dependent negative
conductivity term in Maxwell’s equations. These formulations
assume that the gain and absorption due to the medium are
independent of signal intensity and only vary with frequency.
For small signal intensities and for slowly varying pulses the
above approximations are reasonable and give the correct re-
sults. At larger signal intensities and for rapidly varying signals
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the materials response may become strongly nonlinear. The
origin of this nonlinearity is the change in atomic populations
with time due to signal induced transitions. The effect of gain
saturation has been incorporated phenomenologically into the
gain model [8] and was utilized to demonstrate saturation
of oscillation intensities and to calculate output power levels
in a Fabry–Perot laser cavity. A complete nonlinear model
for wave propagation in a two-level system of atoms, capa-
ble of predicting saturation effects as well as self-induced
transparency, has been demonstrated [9] using an iterative
predictor-corrector FDTD method to solve the Maxwell–Bloch
system of equations.

We present here an alternative formulation that incorporates
the atomic rate equations in the ADE-FDTD model. The rate
equations describe the time evolution of the atomic energy
level populations under the influence of applied signals. Since
this model takes into account the effect of the propagating
waves on the material parameters, it is capable of describing
nonlinear gain and absorption effects and is valid over a large
range of signal intensities. The formulation presented here
is fully explicit and so the electromagnetic fields and atomic
energy level populations at any time step can be calculated
in terms of known fields and populations, thus eliminating
the need for an iterative scheme. Also, the approach used
here is easily generalized to more complex situations such
as media with multiple resonances and having more than two
atomic energy levels. The model is applied to an absorber
comprising a two-level atomic system and also to a gain
medium consisting of a four-level atomic system. Small signal
frequency responses of the two media are computed using
FDTD and compared with theoretical models for the same.
Population dynamics under the influence of varying incident
signal intensities are also calculated for both media. Tran-
sient responses of the medium are studied by observing the
propagation of fast pulses through the medium.

II. CLASSICAL ELECTRON OSCILLATOR MODEL

Using the classical electron oscillator (CEO) model [10]
(also known as the Lorenz Model), the net macroscopic
polarizationP (t) for an isotropic dielectric medium can be
described by the following equation:

d2P (t)

dt2
+ 
ceo

dP (t)

dt
+ !2

a
P (t) = N

e2

m
E(t) (1)

where e is the charge of an electron,m is the mass of an
electron, andN is the number of electrons per unit volume.
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The resonance frequency of the material!a is related to the
atomic energy levels through

!a =
E2 � E1

�h
transition frequency [rad/s] (2)

where �h is the reduced Planck’s constant andE1 and E2

are the energy levels involved in the transition. If multiple
energy levels are involved, then each transition is modeled as
a separate CEO with a unique oscillation frequency and decay
rate. Classically, the energy decay rate
ceo is given by


ceo =

�
e2

m

�
!2

a

6��0c3
[1=s]: (3)

This accounts for radiative energy loss using a simple
oscillating dipole model. The radiative energy decay rate


r

for a real atomic transition may be different from that of a
classical electron oscillator. To account for the difference in
these decay rates an oscillator strengthFosc is defined as [10]

Fosc =


r

3
ceo
: (4)

The factor of “three” assumes the atomic dipoles are fully
aligned with the applied field, but can be modified to account
for more complex situations [10]. These changes are incorpo-
rated in the polarization equation by replacing the term(e2=m)
in (1) by �, which is defined as

� = 3Fosc

�
e2

m

�
: (5)

Another important change that needs to be made is due
to the fact that real atoms undergo dephasing processes that
destroy the coherence between the individual atomic dipole
oscillations. Equation (1) implicitly assumes that all the atomic
dipoles are oscillating in phase. The effect of the dephasing
events is to increase the decay rate of the net macroscopic
polarization over that of a single oscillator. The atoms in real
transitions can also lose energy through other nonradiative
processes. It can be shown [10] that the total energy decay rate
�!a, which describes the actual linewidth of the transition, is
given by

�!a = 
r + 
nr +
2

T2
total energy decay

rate for real transitions (6)

for the homogeneously broadened case with mean time be-
tween dephasing eventsT2 and nonradiative energy decay rate


nr

.
The polarization vector for a collection of classical electron

oscillators depends only on the number densityN of oscillators
per unit volume. The response of a collection of real atoms
depends on the relative number of atoms in the two energy
levels, hence, the total number of oscillators is replaced by
the instantaneous population difference

N ! �N (t) =N1(t) �N2(t)

instantaneous population difference.

An important change from the classical case is the explicit
time dependence of the population difference�N (t) as a

Fig. 1. Populations in the simplified four-level atomic system.

result of stimulated emission, pumping effects, and relaxation
effects. If the population difference remains constant or is a
slowly varying function of time (rate equation limit), then
the frequency-domain susceptibility method is adequate to
describe wave propagation in the medium. For large signal
intensities and rapidly varying signals the time variation of
�N (t) becomes important. Hence, the equation for the macro-
scopic polarization of the medium is essentially a nonlinear
equation.

Consolidating all the changes discussed in this section, we
see that the electric polarization in real atomic transitions can
be described by the following equation:

d2P (t)

dt2
+�!

a

dP (t)

dt
+ !2

a
P (t) = ��N (t)E(t): (7)

III. RATE EQUATIONS

The rate equations are used to model the evolution of the
atomic energy level populations with time. Consider here an
ideal two-level system with energy levelsE1 and E2 with
populationsN1 andN2, respectively. For this system, the rate
equations may be written [10] as

dN1(t)

dt
= �

dN2(t)

dt
= �

1

�h!a
E(t) �

dP (t)

dt
�

N2(t)

�21
(8)

where�21 is the lifetime of the atoms in the upper energy level.
This assumes the thermally stimulated transitions are negligi-
ble, which is appropriate for optical transitions. The key term
here is that which relates the populations to the electric field
and the macroscopic polarization associated with the transition
given by E(t) � (dP (t)=dt)=�h!a. This is just the classical
expression for instantaneous energy transfer divided by the
energy per photon and is equivalent to the term involving
stimulated transition probabilities in the rate equations more
commonly used in texts. For computational purposes, these
equations can be more conveniently expressed in terms of the
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Fig. 2. Comparison of the field absorption factor as computed by FDTD
and linear susceptibility theory. The FDTD results are obtained by allowing
a Gaussian pulse with carrier frequencyfa to propagate a distance of 0.6�m
through an absorbing medium with a resonance frequencyfa = 5 � 1014

Hz and linewidth of 5� 1013 Hz.

Fig. 3. Phase shift experienced by the various frequency components of a
Gaussian pulse with carrier frequencyfa after propagating a distance of 0.6
�m through an absorbing medium with a resonance frequencyfa = 5�1014

Hz and linewidth of 5� 1013 Hz.

population difference�N as follows:

d�N(t)

dt
= �

2

�h!a
E(t) �

dP (t)

dt
�

�N (t)��N0

�21
(9)

where�N0 is the population difference at thermal equilib-
rium, which is an initial condition for the computation.

We also consider here a simplified yet realistic four-level
atomic system (depicted in Fig. 1) with energy levelsE0, E1,
E2, E3, and populationsN0, N1, N2, andN3, respectively.
The ground-state populationN0 is assumed to be very large
compared to the populations of the higher energy levels and is
basically constant with time. There is some external pumping
mechanism that transfersWp(t) atoms per unit time from the
ground stateE0 into the levelE3. The energy level spacing
is assumed to be sufficiently large so that the thermally stim-
ulated transition rates are small. Thus, we consider here only
spontaneous emission and signal-induced stimulated emission.
Furthermore, we consider a system where the applied signal
has a frequency that is close to the transition frequency

Fig. 4. Time evolution of the population difference�N(t) = N1(t)
�N2(t) for applied step signals of varying amplitudes. (a) The curve is
plotted for an incident electric field amplitude of 100 V/m. (b) The curve
for 2.5� 108 V/m and curve (c) for 5� 109 V/m.

associated with energy levelE1 and E2 and differs from
the transition frequencies associated with the other transitions
by several linewidths. Thus, signal stimulated transition terms
appear only in the rate equations for populationsN1 andN2.
Under the above mentioned approximations, the populations
can be modeled by the following rate equations:

dN3(t)

dt
=Wp(t)�

N3(t)

�3
dN2(t)

dt
=
N3(t)

�32
+

1

�h!a
E(t) �

dP (t)

dt
�
N2(t)

�2
dN1(t)

dt
=
N3(t)

�31
�

1

�h!a
E(t) �

dP (t)

dt
+
N2(t)

�21
�
N1(t)

�1
(10)

where
ij = 1=�ij is the transition probability per unit time
from level Ei to Ej and 
i = 1=�i is the total transition
probability per unit time from levelEi to all lower levels.
This system has been studied extensively [10] and the steady-
state solutions in the absence of an applied signal are known.
From these it is readily seen thatWp> 0 and �2> �1 are the
necessary conditions for population inversion to take place
between the energy levelsE1 andE2. Thus, if these conditions
are satisfied then the four-level atomic system will behave like
a gain medium for signals with frequencies within a linewidth
of the transition frequency!12 = (E2 � E1)=�h.

IV. FDTD FORMULATION

The effects of the nonlinear medium on the propagation
of electromagnetic waves is incorporated into the analysis
through the polarization response of the medium. Maxwell’s
equations for such a medium may be written in the form

r�E(t) =�
@B(t)

@t

r�H(t) = J(t) + �
@E(t)

@t
+
@P (t)

@t
(11)

where the macroscopic polarizationP (t) is given by (7)
in Section II. Equations (7) and (11) and the rate equation
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Fig. 5. Transient response of the medium (in the linear regime) to a square
pulse with extremely small rise and fall times. The incident pulse shape and
the pulse shapes recorded at progressively larger distances into the absorbing
medium are depicted here.

(9) for �N (t) form a self-consistent set of equations that
accurately models the two-level atomic system. For the four-
level atomic system, (9) is replaced by (10). Another minor
variation required is the use of�N12(t) = N1(t) � N2(t)

instead of�N (t) in (7).
Let us consider a one-dimensional problem of a TEM wave

propagating in the+z direction so thatEx andHy are the only

field components present. Correspondingly, the macroscopic
polarization has a nonzero component in thex direction alone.
Using the central differencing scheme and spatial and temporal
interleaving of the fields [1], we can write the discretized
equations for the electric and magnetic fields as

Hn+1=2
y [i+ 1=2] =

��t

�0�z
(En

x [i + 1]�En
x [i])

+Hn�1=2
y [i+ 1=2]

En+1
x [i] =En

x [i]�
1

�0
(Pn+1

x [i]� Pn
x [i])

+
�t

�0�z
(Hn+1=2

y [i � 1=2]

�Hn+1=2
y [i+ 1=2]): (12)

For the macroscopic polarization, we use

Pn+1
x [i] =

2�t2

2 +�!a�t

�
��Nn[i]En

x [i]

+

�
2

�t2
� !2a

�
Pn
x [i]

+

�
�!

2�t
�

1

�t2

�
Pn�1
x [i]

�

(13)

and, similarly, the discretized rate equation for the two-level
atomic system is

�Nn+1[i] =

�
2�21�t

2�21 +�t

��
�Nn[i]

�
1

�t
�

1

2�21

�

+
�N0

�21
�

(En+1
i + En

i ) � (P
n+1
x [i]� Pn

x [i])

�t�h!a

�
:

(14)

Equation (10), which describes the population levels for
the four-level atomic system, can be discretized similarly. An
important point is that the polarizationP (t) and the atomic
level populations are colocated in space and time with the
electric fields.

In order to keep the formulation explicit, the time derivatives
of Px(t) in (13) are centered at time stepn, while in all other
equations they are centered about time stepn+ 1

2
. It has been

demonstrated previously [11] that inconsistent time centering
of the discretized derivatives results in a more restrictive
stability condition than the original FDTD formulation for
nondispersive media. There it was determined that choosing
the time step�t such that it finely resolves the smallest time
scale in the problem ensures the stability of the algorithm.
The guidelines provided by [11] suggest that the time step be
chosen such that

�t<
Ta
100

: (15)

Here, Ta = 1=fa is the time period associated with the
material resonance and is the shortest time-scale characteristic
of the medium. Note that the above condition is also ordinarily
required for a high level of accuracy [11], thus, it is not an
overly restrictive requirement.
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Fig. 6. Transient response of the medium to a strong pulse with small rise
and fall times. The shape of the pulse after it has traveled a distance of 1.2�m
into the absorber is shown. The time evolution of the population difference
at the same point is also depicted.

V. VALIDATION OF THE FDTD PROGRAM

Wave propagation in a two-level system of atoms was
studied and the results compared with existing theory. The
resonance frequencyfa was taken to be 5� 1014 Hz with
a homogeneously broadened linewidth�fa of 5 � 1013

Hz. The radiative decay rate
r was chosen to be 5�
107/s. The contribution to the linewidth due to radiative

Fig. 7. Comparison of small signal gain versus frequency response for a
four-level atomic system as predicted by theory and computed using FDTD.

Fig. 8. Contribution of the atomic media to the phase shift versus frequency
response. This phase shift is in addition to the normal phase shift that
the different frequency components would have experienced if they had
propagated the same distance in free space.

and nonradiative decay rates was assumed to be negligible
compared to the effect of the population dephasing timeT2
(which can be estimated from the linewidth to be 6.3 fs).
For the simulation, the nonradiative decay rate was assumed
to be much smaller than the radiative decay resulting in a
population recovery time�21 = 1=
r = 20 ns. The thermal
equilibrium population difference�N0 was set to be 1�
1026/m3. The relative dielectric constant�r was chosen to be
one and the conductivity of the medium was assumed to be
zero. The FDTD parameters were chosen as per the guidelines
in [11] to ensure stability and accuracy of the algorithm. The
values�z = �a=100 = 6 nm and�t = 1:8 � 10�17 s
were used in the simulations. Note that the time step is
chosen to be slightly smaller than the value dictated by the
Courant condition as the phase velocity exceeds the free-space
propagation velocity in the vicinity of the resonance.

To obtain the steady-state small-signal frequency response
of the medium, a Gaussian pulse of peak amplitude 100 V/m
and RMS width 9 fs, modulated at the resonance frequency
of the medium, was allowed to propagate through the medium
and the fields were recorded at two different locations that
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Fig. 9. Population dynamics of the four-level atomic system under the influence of strong applied electric fields. Shown here is time evolution of the
population difference�N(t) = N1(t) � N2(t) along with the input signal.

were a distancel = �a apart. The recorded fields were
Fourier transformed to calculate the frequency response of the
medium. As shown by Figs. 2 and 3, the FDTD data shows
extremely good correlation with linear susceptibility theory.
The maximum error in the field absorption factor was found
to be 0.02% while the maximum error in the phase shift was
0.1%. Good agreement with linear susceptibility theory was
to be expected here since the signal intensity was too small to
appreciably perturb the populations.

The next step was to model the population dynamics due
to signal stimulated transitions and the results are shown in
Fig. 4. A step function with carrier frequency at the resonance
frequency of the medium was turned on at timet = 0 and
the population at some point in the medium was recorded
as a function of time. Curve (a) corresponds to an electric
field amplitude of 100 V/m and it can be seen that the
population difference remains constant. In this regime, the two-
level system of atoms behaves like a linear absorber. Curve
(b) shows the population response to a step function with a
peak amplitude of 2.5� 108 V/m and shows saturation of the
population difference. This is the mechanism responsible for
absorption saturation in nonlinear absorbers. Curve (c) which
is drawn for a peak field amplitude of 5� 109 V/m shows
an interesting feature of the population response under strong
signals—Rabi flopping. The exact theoretical response of the
population has been calculated before [10] and the results from
the FDTD solution show good agreement.

The main utility of the FDTD approach, however, is its
ability to model the transient response of the medium as
well as large signal effects. A pulse with rise time and fall
times that are small compared to the time constantT2, but
overall duration (36 fs) that is several timesT2 is allowed
to propagate through the medium. The fields are recorded at
different distances into the medium. Fig. 5 shows the evolution
of the pulse shape as it propagates into the medium. The pulse
shape can be explained qualitatively based on the argument
that the total field is the sum of the incident pulse and the fields

reradiated by the medium. Since the material is an absorber,
the reradiated fields are 180� out of phase with the incident
pulse and tend to reduce the amplitude of the total fields.
However, the atomic media has a finite response time and,
hence, the leading edge of the pulse undergoes only a small
attenuation as it propagates through the medium. Similarly, at
the trailing edge the incident pulse dies out very quickly but the
medium continues to radiate a canceling signal till the coherent
polarization dies out with the time constantT2. This explains
the 180� out-of-phase signal that trails the falling edge of the
incident pulse. This is commonly referred to as free induction
decay. It is important to note that this behavior results entirely
from the linear or small signal transient behavior of the
absorbing medium.

Fig. 6 shows interesting nonlinear effects of the medium
when an intense pulse with short rise and fall times is allowed
to propagate through the medium. The leading edge shows
behavior similar to the pulse in Fig. 5. However, due to signal
stimulated transitions the population difference goes to zero
and even becomes negative implying that population inversion
has taken place. Thus, the later portions of the pulse undergo
smaller absorption and, finally, even some gain. These kinds
of amplitude modulation effects have been known to exist in
saturable absorbers [12]. Note that the amplitude modulation of
the pulse follows the oscillation in the population difference
and has the same period. Another interesting feature that is
not predicted theoretically is the flattening of the population
response curve at times where the electric field goes to zero.
Similar behavior has been observed in other FDTD simulations
[9] and is shown there to be due to time derivative effects of
the field.

A four-level system of atoms with population inversion
between levelsE2 andE1 was also simulated. The transition
frequency associated with the energy levelsE2 andE1 was
chosen asf21 = 1 � 1014 Hz and the linewidth was taken to
be 2.0� 1012 Hz corresponding to a dephasing timeT2 of
1.59 � 10�13 s. The radiative decay rate for this transition



340 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 3, MARCH 1998

from E2 to E1 was taken to be 7.4� 106/s. The time
constants for the population rate equations were chosen as
�3 = 1 � 10�10 s, �32 = 0:99 � 10�10 s, �31 = 1 � 10�6 s,
�2 = �21 = 1:35�10�7 s, and�1 = 1�10�9 s. The pumping
rate into levelE3 was set to be 1� 1029 m�3 and was assumed
to be uniform over the entire spatial domain. This may be
easily modified to account for nonuniform spatial pumping
effects. The FDTD parameters used for the simulations were
�z = 30 nanometers and�t = 9� 10�17 s. Here again, the
time step was chosen slightly smaller than the Courant limit
due to anomalous dispersion close to the resonance frequency.

A Gaussian pulse of amplitude 1 V/m and rms width 9 fs
with carrier frequency1� 1014 Hz was allowed to propagate
through the medium and the fields were recorded at two points
separated by a distance of 3�m. The small signal field gain is
shown in Fig. 7 and the additional phase shift contribution of
the atomic media is plotted in Fig. 8. The results obtained from
FDTD show good agreement with theory and the maximum
error in field gain was 0.02% and the maximum error in phase
was 0.12%. The time evolution of the population difference
�N12(t) under the influence of signal stimulated transitions
was studied by using a step signal with carrier frequency same
asf12 and peak amplitude 2� 108 V/m. The electric field and
the population difference atz = 3 �m is shown in Fig. 9. The
time-derivative effects [9] of the field on the population are
seen as flattening of the population difference at points where
the electric field goes to zero.

VI. CONCLUSIONS

The ADE-FDTD approach for modeling dispersive me-
dia was extended to accurately model nonlinear effects in
absorbing and gain media by including the effects of the
signal on the atomic populations through the rate equations.
The results show extremely good correlation with existing
theoretical models for the small-signal frequency response.
Population dynamics under the influence of strong incident
fields were also successfully modeled using this technique.
The utility of FDTD modeling to calculate exactly transient
effects in nonlinear media was demonstrated by studying pulse
propagation.
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