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Electric Lines of Force of an Electrically
Small Dipole-Loop Antenna Array

P. L. Overfelt

_Abstract—The electric lines of force of an electrically small class of antennas—an electric-dipole magnetic-loop array—is
dipole-loop antenna array have been determined analytically for the subject of the present work. A complete analysis (including
both the near- and far-fields of the array. It has been found that - ,oment method (MM) modeling) has been published else-

the behavior of the families of electric contours are dependent - . .
upon a coupling parameter, which is the ratio of the loop where [14], [15]. An independent verification of the numerical

and dipole sizes and currents. This parameter also controls the results in [14] has been performed also [16]. A prototype array
appearance (or not) and position of the points of equilibrium with matching networks has been built and is currently being
for the radiated field when analyzed in a real phase plane. The tested [17], [18]. Its performance will be discussed in a future
electric lines of force of the dipole-loop array exhibit increased \york. For now. we are attempting to understand the differences

directivity in the plane of the array when the coupling parameter . lect tic field bet f this t
is purely real, indicating that the respective dipole and loop In an electromagnetic Tield sense between an array of this type

currents must be in phase quadrature for this effect to occur. and a single-element antenna such as a dipole. One way in
which to do this is to determine the electric lines of force in

both the near- and far-field regions of the array. Contour plots
of these lines of force over time give a physical picture of
|. INTRODUCTION how such an antenna radiates.

LECTRICALLY small antennas are often necessary for SInce the mathematics is much simpler, the electric lines of

missile systems due to limited space requirements f&rce in the far field are dlscussed_ |n|t|aII3_/ in Sef:t|on I. 'I_'he
reduction in radar cross section. For some systems, everiggral curves of the coupled ordinary differential equations
UHF and VHF frequencies, the antenna can be isolated GPE’S), which occur as a result of having six nonzero

the single most heavy and bulky component [1]. PerformangiCtric and magnetic field components, are determined and
penalties in bandwidth and efficiency occur from reduction i€lr significance is interpreted geometrically. A phase plane
size resulting in serious problems for the system as a whohalysis of these far-field solutions is considered in Section I1l.
Such performance penalties must be absorbed into the oveldlf Near-field equations of the lines of force are derived in

system performance with subsequent poor reception in Ivgction IV. In Section V, cpntour plots of. the electricllines
signal regions. Matching techniques can be used to incredforce are shown and discussed. Section VI contains the

Index Terms—Antenna arrays.

antenna performance but a drop in total efficiency is stfionclusions.
incurred.
Several methods to counteract the above problems have Il. FAR-FIELD ANALYSIS

been considered. For electrically small antennas/antenna arrayge geometry of the harmonically oscillating electric-dipole
with radiation resistance lower than the ohmic resistance rﬂfagnetic-loop array antenna is shown in Fig. 1. The dipole
their radiating elements and that include feed and matchipgp currentl, and length? runs along the: axis as usual
networks, one such solution has been to obtain higher efficigpile the loop surrounds the dipole without touching it and
cies when all components are composed of high-temperatiig pjane of the loop is thgz plane. Since we are interested
superconducting (HTS) materials [2]-{4]. However, thiS 1€n antenna arrays that are electrically small, we use the
placement of normal conductors with HTS components Cffinjtesimal model for both elements of the array and replace
only partially compensate for the drop in efficiency upog,e loop with an equivalent magnetic dipole along the
size reduction. Thus, it is advantageous to obtain as large 8fis with equivalent magnetic currefit, and lengtht,,,. The
efficiency as possible from a given antenna by other meaggctric field components are given in [15]. '
first. _ . _ For this geometry, all three electric field components (and
A very different method has been investigated for somg,gnetic field components) are nonzero and immediately it is
years and proposes using judicious combinations of electfgyious that thefZ, component is due to the dipole alone, the
and magnetic multipole sources [5]-[9] to attempt to exceeﬂﬁid) component is due to the loop alone, and ofly contains
the small antenna limitations derived by Chu [10], Harringtogyhtributions from both elements.
[11], and Wheeler [12], [13]. The simplest example of this The electric lines of force are given by [19] and [20] (in

, . . _ standard spherical coordinates)
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z Further simplification of (2) occurs via appropriate variable
A substitutions. Setting

u=sinf(z) and & =sing(x) 3

(after a good deal of algebra) we obtain the far-field solutions
for the electric lines of force, i.e.,

S Ch = (v +4Pué +48%)e™" = f(r,0,9) (4a)
s \ and
/ a Cy = —4B(26 + uf)e "/ = g(r,0, ¢). (4b)

These functionsf and ¢ represent the integral curves of (1)
in the far field [21], [22]. A particular pair of valugg’;, Cs)
\ / defines one curve ifr, 6, ¢) space, which is the intersection

L S S of the surfaceg = constant andy = constant. Each surface
is thus swept out by a one-parameter family of integral curves
[15], [22]. C and C; are general constants of integration and
£ can be rewritten in terms of the actual loop parameters as

im (ka)?| I

2 k|

\\—1-—’
Y
<

6 — 6i(¢2—d>1) (5)

Fig. 1. Dipole-loop array geometry. wherea is the loop radius/, is the loop current, and; is the
dipole current. We have written the currents on the loop and
pole in the polar forml, = |I,|e*1, I, = |I;]e'?2. Note that

which are two simultaneous coupled ODE’s. Equation (ﬁ: _ o
in general,7 is complex. However, we are mainly interested

expresses the fact that an elemefitof a line of force is ' : 1) wh B h ; i oh
parallel to the electric field vector. Thus, the componenlig pvl;l?e(?;sae;ﬁazywar?g)ih;gz 0 zn%ug)e\?v:e?r;e n ¢p asf,
fdl = dri+rd0f + rsind do ¢ tional to th » AT 192 =3
© " +~r_ + rsinddé ¢, are proportiona to the and the currents are in phase quadrature, thés pure real,
components oft = £, »+ £y0 + Ly¢. This relationship gives and3? > 0. In each of these case$,can be either negative
the set of equations in [21, €q. (L)]. SinZg, b gnd o are o positive depending on whether the dipole phase leads (or
each functions of, ¢, and¢, they generate a similar system of
curves, any one of which can be considered as the trajectory

5(195) the loop phase, respectively.
. : . R . At this point, we consider the electric lines of force of the
a moving point that continuously alters its direction of motion.

: . small electric dipole alone. An excellent analysis was given
For geometrically simpler antennas, such as the small eléc-

- . ars ago by Lorraine and Corson [23]. In this ca5g, is
tric dipole alone or the small magnetic loop alone, usually . . . ;
- . ro and, thus, only one ordinary differential equation must be
least one of the electric field components is zero and, thus,

reduces to only one equation. In the case of the dipole-lo ved. In the far field foks > 1 [23] and using our notation

array, one is faced with two simultaneous coupled ODE’s. THe have

electromagnetic field components are based priori known O, = sin? e~ Ukr—iwt) (6)
constant currents in an infinitesimal model and are exact (to
within these limits) with respect to both the near and far field§:omparing (6) with (4a) when no loop is present, bgtand

In a far field analysis, if the /+* term in Ej is neglected, C- in (4) must equal zero and the equation oy vanishes
a tremendous simplification is introduced into (1). Assumin@s it should. It is important to note that for the electric dipole
that» = ikr for convenience in (1), the first equation in (1)lone as given in (6), the constant contains the dipole length

can be written as and current, but since it does not have to be related back to an
absolute standard or another elemefit,is simply a scaling
de . . i i i
cos 82 = wsind + Bsin ¢ (2a) p_aranjeter which varies from one I|n_e of force_ to the next. The
x situation for the dipole-loop array is very different. In this

case,(; andC> are both parameters that vary from one line
of force to the next, but they do not contain the currents and
sizes of the array elements and they do not simply scale. The

while the second equation in (1) becomes

9 _ ﬁ(fosqﬁ (2b) parameter? contains this information explicitly rather than
dz sind having it embedded i or C..
wherea = 3, and# = g=t=. o and ¢ are ratios of the

constants appearing in the field components [15]. Thuis IIl. FAR-FIELD LINES OF FORCE IN THE PHASE PLANE

the ratio of the loop and dipole equivalent lengths and currents. A nonlinear variable transformation can be used to put (2)
It is a constant for a given geometry and excitation wath into extremely simple form. Using® = u£ = sinfsin¢ and
priori specified constant current distributions. @ = v’ = sin” @ in (2), the coupled ODE’s in the far field
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reduce to an inhomogeneous constant coefficient first-orderce in the near field of the antenna. This is by no means the
system. Usinge = #k» while P, @, and G are complex in usual case. It is usually impossible to obtain analytic near-field

general, it is obvious that solutions for any geometries other than very simple single-
Co s element antennas. Keeping thé- term in theF, component
P(x) = —@6” -2 (7a) in (1) and using the variable transformation in Section IlI, (1)
and becomes
Qz) = Cre” + Cre™/? 4 452, (7b) fl—P = %wu)P +0 (10a)
Viewing the P@Q plane (or, alternately, thé¢ plane) as 5pg v
the phase plane of the system [15], [24] and writifig= dQ
51 + 12, an equilibrium point of the system occurs wherever dr w(@)Q@+26 P (10b)
dRAPD - 4R — , je., whereRe[P] = —24, and _ _ _ _
Re[Q] = 4(8? — 32). Thus, in the reab¢ plane, an equilibrium Where w(z) is a ratio of two polynomials, i.e.w(x) =
point occurs at % =1+ (x,j—ﬂ) Obviously w(x) approaches one as
. ) o\ 1/2 |#| becomes greater than one. Without detail [15], we find that
sinf = :|:2(61 - 62) (8)
and o= QPN e —aprypen [E T4 g
. —p xr x
sin ¢ = (9) (11a)

1/2°
(3 - )"
From (8) and (9), several special cases are apparegt.id
pure real, i.e.,82 = 0, then an equilibrium point occurs at
0 = sin”"(261), ¢ = 3 and also at¥ = sin~'(—23), Ch=—43
¢ = 5. Immediately for this case] remains real only when

1
pe=e/2 [2E 2 m(x)] (11b)
X
|31] < 1. 1f |3] > 1, there is no equilibrium value fof

in the purely real phase plane since in this instaficesould with e*“* understood and wherkz) is given by either [15]
be forced to become complex in order for a solution to the e
above to exist. P I(z) =7 (17/12>2”+1/2 (n + %; g>; [z <1 (12)
Alternatively, if 2 is pure imaginary, i.e.f; = 0, then n=0
sin ¢ = 0 butsin# = +¢23, is the only possible solution if. 0o
Thus, no equilibrium point is possible in the purely real phase  [(x) = —2¢77/? + Z (1/2>2(1—"> F(l —n; f),
plane for this case. N 2
In general, if both3, and g» are nonzero, as long as |z] > 1. (13)
B2 < B, (9) may be satisfied and from (8), we have th
condition that0 < (87 — 5%)1/? < £ must always hold iff

f and

E’rovided the appropriate series expansions are usefi #r
and ¢ are to remain real. in the appropriate regions, (11) are the exact s_olutlons for
M)ntours of the electric lines of force of the electrically small

Previously, we had determined via both analysis and Md le-| h ; ludjmg= 0
modeling that when the loop current is driven in phaseIpo e-loop array everywhere in space (excludjag= 0).

guadrature to the dipole current, an increased directivity effect
is seen [14]. This corresponds to the case whigre- 0 and V. ELECTRIC LINES OF FORCE

from (5) 6 = 4 = %% wheng; — ¢, = 3. By taking the real parts of (11), we can plot the contours
Also previously, we had determined that when the loop and, and ¢, obtained from solving the differential equations
dipole currents were driven in phase, then the array radiatgs the electric lines of force. Figs. 2-9 each consist of four
exactly as if each element stood alone [14]. This is the cagfaphs for varying values aft, i.e.,wt = 0 in the top-left
whereg is pure imaginary. In this instance, no real equilibriurmot' wt = 7/2 in the top-right plotwt = 7 in the bottom-left
point exists for any value of-. plot, andwt = 37/2 in the bottom-right plot. Each of these
This is extremely interesting in the sense ti¥atthe ratio figures shows how the electric lines of force are changing in
of the array element sizes and currents, controls the poifise in a given plane wher@ = 3, + i, is varied. The
of equilibrium in the phase plane associated with the far-fiefjdader is cautioned that the portions of the contours for each
electric lines of force. Thus, changing the geometry and/or tge Figs. 2-9 in the regior < 1 are not as accurate as those
excitation such thap, and 3. change will result in different j the region whereir > 1. Fig. 2 consists of four plots in
equilibrium points or none at all in the real phase plane. the zz plane of theC, contours for the four different values
of wt mentioned above with the coupling parameteset to
zero. Sinceg is zero, there is no contribution to (11a) from
the loop and, thus, the lines of force in this figure are identical
Returning to the electric field components in [15], it ido those for a small electric dipole radiating alone. Fig. 2 can
possible in the case of the dipole-loop array to obtain d® compared to Fig. 9 [23]. Fig. 2 is mainly for the reader’s
analytically soluble system of ODE's for the electric lines ofonvenience so that the electric dipole case can be easily

IV. NEAR-FIELD ANALYSIS
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Fig. 2. Electric lines of forceC; in the zz plane,y = 0, 3 = 0 for  Fig. 4. Electric lines of forcer in the zz plane,y = 0, 3 = 0.5 for
wt =0, n/2, 7, 31/2. wt = 0, /2, 7, 37/2.
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Fig. 3. Electric lines of force”; in the zz plane,y = 0, 3 = 0.2 for

wt = 0, 7/2, 7, 37/2. Fig. 5. Electric lines of force”; in the y= plane,» = 0, 5 = 0.2 for

wt = 0, 7T/2, T, 37T/2.

compared to the succeeding array cases whes nonzero. ) ) N o )
In Fig. 3 theC; contours have been plotted in the plane Cconstructively in the positivg direction and mostly cancel in

with 3 = 0.2, 5 = 0, and 3 is purely real. As? increases, the —y direction. This is the plane in which previously an
the contribution to the lines of force from the loop increase#icreased directivity effect was predicted for the dipole-loop
Thus, certain lines of force look circular, meeting at the topfray provideds is purely real, implying that the currents on
and bottom of each plot along= 0. This is reasonable if we the dipole and loop must be in phase quadrature [14]. In Fig. 6,
recall that for a small loop alone, the electric lines of force ate show a set of four plots in the: plane where?; = 0 and
concentric circles in the plane of the loop. In Fig. 4,tsis 2 = 0.2. These plots are quite similar to the electric dipole
increased further to 0.5 witf, = 0, the number of circular plots in Fig. 2 wheng = 0, thus corroborating the result in
looking contours that meet at the top and bottom of the pldi4] that the dipole-loop array radiates like a dipole alone
for different wt has greatly increased, while the number oithen the respective currents on the loop and dipole are in
electric dipole-like contours is much reduced. In Fig. 5¢he phase and? is pure imaginary.

contours are plotted in thgz plane withz = 0 and3, = 0.2, Figs. 7-9 show th&’s contours determined by taking the
G2 = 0. In this plane, the’; contours are asymmetric whenreal part of (11b). This family of contours never appears for
the real part of? is nonzero, resulting in lines of force that addhe dipole alone. Fig. 7 shows tli& contours in thexz plane



OVERFELT: ELECTRIC LINES OF FORCE OF ELECTRICALLY SMALL DIPOLE-LOOP ANTENNA ARRAY 455

-1

=i -5

Fig. 6. Electric lines of force”s in the zz plane,y = 0, 8 = 0.2: for  Fig. 8. Electric lines of forceCz in the y= plane,z = 0, 3 = 0.2 for
wt = 0, n/2, 7, 7p/2. wt = 0, /2, 7, 37/2.
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Fig. 7. Electric lines of force”s in the =z plane,y = 0, 8 = 0.2 for ) - . .
th: 0, 7/2, =, 37/2. 2 v P Y p Fig. 9. Electric lines of forceCs in the yz plane,z = 0, 8 = 0.2¢ for

wt = 0, 7T/2, T, 37T/2.

with y = 0 and5; = 0.2, 3, = 0. These are just concentric

circles since for any case in whigh= 0, P = 0 also and, dipole and loop behavior. Though the curves are asymmetric

thus, G, is simply equal to the product of a constant anH’ley are not partlculgrly dl'rectlonaI. in th.|s case, which is what
we would expect since? is pure imaginary and, thus, the

Exp[—i(kr — wt)]. Thus, theC, contours in thexz plane ts of the diool q1 i oh
wherey = 0 are always concentric circles regardless of trig/frents ot the dipole and loop are in phase.

values of 3, and 3,. Fig. 8 shows theC’; contours in the

y= plane withz = 0. The C;, contours are asymmetric in this VI. ConcLusioN

plane, adding constructively along they direction and mostly ~ The electric lines of force of an electrically small dipole-
canceling along the-y direction just as do thé’, contours in loop antenna array have been determined analytically for both
this plane. Agairg; = 0.2, 82 = 0 as before, but although thethe near- and far-fields of the array. It has also been found
value of 3; indicates a substantial contribution from the loopthat the behavior of the families of electric contors and
these lines of force are essentially electric dipole-like contoufs are dependent upon a coupling paramegtewhich is the

in this plane. In Fig. 9, we consider the pure imagindrgase ratio of the loop and dipole sizes and currents. The parameter
for the C5 contours. In thez plane with3;, = 0, 33 = 0.2,the [ also controls the appearance (or not) and position of any
(', contours are asymmetric and exhibit a combination of bofioints of equilibrium for the radiated field when analyzed in
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a real phase plane determined Byand @ or # and ¢. The

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 3, MARCH 1998

9]

electric lines of force of the dipole-loop array exhibit increased

directivity in the yz plane whent = 0 provided 3 is purely
real, indicating that the respective dipole and loop currents
must be in phase quadrature. 11
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