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Electric Lines of Force of an Electrically
Small Dipole-Loop Antenna Array

P. L. Overfelt

Abstract—The electric lines of force of an electrically small
dipole-loop antenna array have been determined analytically for
both the near- and far-fields of the array. It has been found that
the behavior of the families of electric contours are dependent
upon a coupling parameter, which is the ratio of the loop
and dipole sizes and currents. This parameter also controls the
appearance (or not) and position of the points of equilibrium
for the radiated field when analyzed in a real phase plane. The
electric lines of force of the dipole-loop array exhibit increased
directivity in the plane of the array when the coupling parameter
is purely real, indicating that the respective dipole and loop
currents must be in phase quadrature for this effect to occur.

Index Terms—Antenna arrays.

I. INTRODUCTION

ELECTRICALLY small antennas are often necessary for
missile systems due to limited space requirements or

reduction in radar cross section. For some systems, even at
UHF and VHF frequencies, the antenna can be isolated as
the single most heavy and bulky component [1]. Performance
penalties in bandwidth and efficiency occur from reduction in
size resulting in serious problems for the system as a whole.
Such performance penalties must be absorbed into the overall
system performance with subsequent poor reception in low
signal regions. Matching techniques can be used to increase
antenna performance but a drop in total efficiency is still
incurred.

Several methods to counteract the above problems have
been considered. For electrically small antennas/antenna arrays
with radiation resistance lower than the ohmic resistance of
their radiating elements and that include feed and matching
networks, one such solution has been to obtain higher efficien-
cies when all components are composed of high-temperature
superconducting (HTS) materials [2]–[4]. However, this re-
placement of normal conductors with HTS components can
only partially compensate for the drop in efficiency upon
size reduction. Thus, it is advantageous to obtain as large an
efficiency as possible from a given antenna by other means
first.

A very different method has been investigated for some
years and proposes using judicious combinations of electric
and magnetic multipole sources [5]–[9] to attempt to exceed
the small antenna limitations derived by Chu [10], Harrington
[11], and Wheeler [12], [13]. The simplest example of this
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class of antennas—an electric-dipole magnetic-loop array—is
the subject of the present work. A complete analysis (including
moment method (MM) modeling) has been published else-
where [14], [15]. An independent verification of the numerical
results in [14] has been performed also [16]. A prototype array
with matching networks has been built and is currently being
tested [17], [18]. Its performance will be discussed in a future
work. For now, we are attempting to understand the differences
in an electromagnetic field sense between an array of this type
and a single-element antenna such as a dipole. One way in
which to do this is to determine the electric lines of force in
both the near- and far-field regions of the array. Contour plots
of these lines of force over time give a physical picture of
how such an antenna radiates.

Since the mathematics is much simpler, the electric lines of
force in the far field are discussed initially in Section II. The
integral curves of the coupled ordinary differential equations
(ODE’s), which occur as a result of having six nonzero
electric and magnetic field components, are determined and
their significance is interpreted geometrically. A phase plane
analysis of these far-field solutions is considered in Section III.
The near-field equations of the lines of force are derived in
Section IV. In Section V, contour plots of the electric lines
of force are shown and discussed. Section VI contains the
conclusions.

II. FAR-FIELD ANALYSIS

The geometry of the harmonically oscillating electric-dipole
magnetic-loop array antenna is shown in Fig. 1. The dipole
with currentId and length` runs along thêz axis as usual,
while the loop surrounds the dipole without touching it and
the plane of the loop is theyz plane. Since we are interested
in antenna arrays that are electrically small, we use the
infinitesimal model for both elements of the array and replace
the loop with an equivalent magnetic dipole along thex̂
axis with equivalent magnetic currentIm and length̀ m. The
electric field components are given in [15].

For this geometry, all three electric field components (and
magnetic field components) are nonzero and immediately it is
obvious that theEr component is due to the dipole alone, the
E� component is due to the loop alone, and onlyE� contains
contributions from both elements.

The electric lines of force are given by [19] and [20] (in
standard spherical coordinates)

d�

dr
=

E�

rEr

;
d�

dr
=

E�

Err sin �
(1)
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Fig. 1. Dipole-loop array geometry.

which are two simultaneous coupled ODE’s. Equation (1)
expresses the fact that an element~d` of a line of force is
parallel to the electric field vector. Thus, the components
of ~d` = dr r̂ + rd� �̂ + r sin � d� �̂ are proportional to the
components of~E = Er r̂+E� �̂+E��̂. This relationship gives
the set of equations in [21, eq. (1)]. SinceEr, E�, andE� are
each functions ofr, �, and�, they generate a similar system of
curves, any one of which can be considered as the trajectory of
a moving point that continuously alters its direction of motion.

For geometrically simpler antennas, such as the small elec-
tric dipole alone or the small magnetic loop alone, usually at
least one of the electric field components is zero and, thus, (1)
reduces to only one equation. In the case of the dipole-loop
array, one is faced with two simultaneous coupled ODE’s. The
electromagnetic field components are based ona priori known
constant currents in an infinitesimal model and are exact (to
within these limits) with respect to both the near and far fields.

In a far field analysis, if the1=r3 term inE� is neglected,
a tremendous simplification is introduced into (1). Assuming
that x = ikr for convenience in (1), the first equation in (1)
can be written as

cos �
d�

dx
= � sin � + � sin� (2a)

while the second equation in (1) becomes

d�

dx
=

� cos�

sin �
(2b)

where� = 1

2
, and � = Im`m

2�Id`d
. � and � are ratios of the

constants appearing in the field components [15]. Thus,� is
the ratio of the loop and dipole equivalent lengths and currents.
It is a constant for a given geometry and excitation witha
priori specified constant current distributions.

Further simplification of (2) occurs via appropriate variable
substitutions. Setting

u = sin �(x) and � = sin�(x) (3)

(after a good deal of algebra) we obtain the far-field solutions
for the electric lines of force, i.e.,

C1 = (u2 + 4�u� + 4�2)e�x = f(r; �; �) (4a)

and

C2 = �4�(2� + u�)e�x=2 = g(r; �; �): (4b)

These functionsf and g represent the integral curves of (1)
in the far field [21], [22]. A particular pair of values(C1; C2)
defines one curve in(r; �; �) space, which is the intersection
of the surfacesf = constant andg = constant. Each surface
is thus swept out by a one-parameter family of integral curves
[15], [22]. C1 andC2 are general constants of integration and
� can be rewritten in terms of the actual loop parameters as

� =
i�

2

(ka)2

k`

���� I`Id
����ei(�2��1) (5)

wherea is the loop radius,I` is the loop current, andId is the
dipole current. We have written the currents on the loop and
dipole in the polar formI` = jI`je

i�1 , Id = jIdje
i�2 . Note that

in general,� is complex. However, we are mainly interested
in two cases: 1) when�1 = �2, the currents are in phase,�
is pure imaginary, and thus�2 < 0 and 2) when�1��2 = �

2
and the currents are in phase quadrature, then� is pure real,
and�2 > 0. In each of these cases,� can be either negative
or positive depending on whether the dipole phase leads (or
lags) the loop phase, respectively.

At this point, we consider the electric lines of force of the
small electric dipole alone. An excellent analysis was given
years ago by Lorraine and Corson [23]. In this case,E� is
zero and, thus, only one ordinary differential equation must be
solved. In the far field forkr � 1 [23] and using our notation
we have

C1 = sin2 �e�(ikr�i!t) (6)

Comparing (6) with (4a) when no loop is present, both� and
C2 in (4) must equal zero and the equation forC2 vanishes
as it should. It is important to note that for the electric dipole
alone as given in (6), the constant contains the dipole length
and current, but since it does not have to be related back to an
absolute standard or another element,C1 is simply a scaling
parameter which varies from one line of force to the next. The
situation for the dipole-loop array is very different. In this
case,C1 andC2 are both parameters that vary from one line
of force to the next, but they do not contain the currents and
sizes of the array elements and they do not simply scale. The
parameter� contains this information explicitly rather than
having it embedded inC1 or C2.

III. FAR-FIELD LINES OF FORCE IN THE PHASE PLANE

A nonlinear variable transformation can be used to put (2)
into extremely simple form. UsingP = u� = sin � sin� and
Q = u2 = sin2 � in (2), the coupled ODE’s in the far field
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reduce to an inhomogeneous constant coefficient first-order
system. Usingx = ikr while P , Q, and � are complex in
general, it is obvious that

P (x) = �
C2

4�
ex=2 � 2� (7a)

and

Q(x) = C1e
x +C2e

x=2 + 4�2: (7b)

Viewing the PQ plane (or, alternately, the�� plane) as
the phase plane of the system [15], [24] and writing� =
�1 + i�2, an equilibrium point of the system occurs wherever
d(Re[P ])

dr
= d(Re[Q])

dr
= 0, i.e., whereRe[P ] = �2�1 and

Re[Q] = 4(�21��
2
2). Thus, in the real�� plane, an equilibrium

point occurs at

sin � = �2
�
�21 � �22

�1=2
(8)

and

sin� =
��1

�
�
�21 � �22

�1=2 : (9)

From (8) and (9), several special cases are apparent. If� is
pure real, i.e.,�2 = 0, then an equilibrium point occurs at
� = sin�1(2�1), � = 3�

2 and also at� = sin�1(�2�1),
� = �

2 . Immediately for this case,� remains real only when
j�1j �

1
2
. If j�1j > 1

2
, there is no equilibrium value for�

in the purely real phase plane since in this instance,� would
be forced to become complex in order for a solution to the
above to exist.

Alternatively, if � is pure imaginary, i.e.,�1 = 0, then
sin� = 0 but sin � = �i2�2 is the only possible solution in�.
Thus, no equilibrium point is possible in the purely real phase
plane for this case.

In general, if both�1 and �2 are nonzero, as long as
�2 < �1, (9) may be satisfied and from (8), we have the
condition that0 � (�21 � �22)

1=2 � 1
2

must always hold if�
and � are to remain real.

Previously, we had determined via both analysis and MM
modeling that when the loop current is driven in phase
quadrature to the dipole current, an increased directivity effect
is seen [14]. This corresponds to the case where�2 = 0 and
from (5) � = �1 = �

2
(ka)2jI`j
(k`)jIdj

when�1 � �2 = �
2 .

Also previously, we had determined that when the loop and
dipole currents were driven in phase, then the array radiates
exactly as if each element stood alone [14]. This is the case
where� is pure imaginary. In this instance, no real equilibrium
point exists for any value of�2.

This is extremely interesting in the sense that�, the ratio
of the array element sizes and currents, controls the points
of equilibrium in the phase plane associated with the far-field
electric lines of force. Thus, changing the geometry and/or the
excitation such that�1 and�2 change will result in different
equilibrium points or none at all in the real phase plane.

IV. NEAR-FIELD ANALYSIS

Returning to the electric field components in [15], it is
possible in the case of the dipole-loop array to obtain an
analytically soluble system of ODE’s for the electric lines of

force in the near field of the antenna. This is by no means the
usual case. It is usually impossible to obtain analytic near-field
solutions for any geometries other than very simple single-
element antennas. Keeping the1=r3 term in theE� component
in (1) and using the variable transformation in Section III, (1)
becomes

dP

dx
=

1

2
w(x)P + � (10a)

and
dQ

dx
= w(x)Q+ 2� P (10b)

where w(x) is a ratio of two polynomials, i.e.,w(x) =
x2+x+1
x2+x = 1 + 1

(x2+x) . Obviously w(x) approaches one as
jxj becomes greater than one. Without detail [15], we find that

C1 = Q

�
x+ 1

x

�
e�x � 2�I(x)Pe�x=2

r
x+ 1

x
+ �2I2(x)

(11a)

and

C2 = �4�

"
Pe�x=2

r
x+ 1

x
� �I(x)

#
(11b)

with ei!t understood and whereI(x) is given by either [15]

I(x) =
1X
n=0

�
1=2
n

�
2n+1=2 


�
n+

1

2
;
x

2

�
; jxj < 1 (12)

or

I(x) = �2e�x=2 +
1X
n=1

�
1=2
n

�
2(1�n) �

�
1� n;

x

2

�
;

jxj > 1: (13)

Provided the appropriate series expansions are used forI(x)
in the appropriate regions, (11) are the exact solutions for
contours of the electric lines of force of the electrically small
dipole-loop array everywhere in space (excludingjxj = 0).

V. ELECTRIC LINES OF FORCE

By taking the real parts of (11), we can plot the contours
C1 and C2 obtained from solving the differential equations
for the electric lines of force. Figs. 2–9 each consist of four
graphs for varying values of!t, i.e., !t = 0 in the top-left
plot, !t = �=2 in the top-right plot,!t = � in the bottom-left
plot, and!t = 3�=2 in the bottom-right plot. Each of these
figures shows how the electric lines of force are changing in
time in a given plane where� = �1 + i�2 is varied. The
reader is cautioned that the portions of the contours for each
of Figs. 2–9 in the regionkr < 1 are not as accurate as those
in the region wherekr > 1. Fig. 2 consists of four plots in
the xz plane of theC1 contours for the four different values
of !t mentioned above with the coupling parameter� set to
zero. Since� is zero, there is no contribution to (11a) from
the loop and, thus, the lines of force in this figure are identical
to those for a small electric dipole radiating alone. Fig. 2 can
be compared to Fig. 9 [23]. Fig. 2 is mainly for the reader’s
convenience so that the electric dipole case can be easily
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Fig. 2. Electric lines of forceC1 in the xz plane, y = 0, � = 0 for
!t = 0, �=2, �, 3�=2.

Fig. 3. Electric lines of forceC1 in the xz plane,y = 0, � = 0:2 for
!t = 0, �=2, �, 3�=2.

compared to the succeeding array cases when� is nonzero.
In Fig. 3 theC1 contours have been plotted in thexz plane
with �1 = 0:2, �2 = 0, and� is purely real. As�1 increases,
the contribution to the lines of force from the loop increases.
Thus, certain lines of force look circular, meeting at the top
and bottom of each plot alongx = 0. This is reasonable if we
recall that for a small loop alone, the electric lines of force are
concentric circles in the plane of the loop. In Fig. 4, as�1 is
increased further to 0.5 with�2 = 0, the number of circular
looking contours that meet at the top and bottom of the plots
for different !t has greatly increased, while the number of
electric dipole-like contours is much reduced. In Fig. 5 theC1

contours are plotted in theyz plane withx = 0 and�1 = 0:2,
�2 = 0. In this plane, theC1 contours are asymmetric when
the real part of� is nonzero, resulting in lines of force that add

Fig. 4. Electric lines of forceC1 in the xz plane,y = 0, � = 0:5 for
!t = 0, �=2, �, 3�=2.

Fig. 5. Electric lines of forceC1 in the yz plane,x = 0, � = 0:2 for
!t = 0, �=2, �, 3�=2.

constructively in the positivey direction and mostly cancel in
the �y direction. This is the plane in which previously an
increased directivity effect was predicted for the dipole-loop
array provided� is purely real, implying that the currents on
the dipole and loop must be in phase quadrature [14]. In Fig. 6,
we show a set of four plots in thexz plane where�1 = 0 and
�2 = 0:2. These plots are quite similar to the electric dipole
plots in Fig. 2 when� = 0, thus corroborating the result in
[14] that the dipole-loop array radiates like a dipole alone
when the respective currents on the loop and dipole are in
phase and� is pure imaginary.

Figs. 7–9 show theC2 contours determined by taking the
real part of (11b). This family of contours never appears for
the dipole alone. Fig. 7 shows theC2 contours in thexz plane
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Fig. 6. Electric lines of forceC1 in the xz plane,y = 0, � = 0:2i for
!t = 0, �=2, �, �p=2.

Fig. 7. Electric lines of forceC2 in the xz plane,y = 0, � = 0:2 for
!t = 0, �=2, �, 3�=2.

with y = 0 and�1 = 0:2, �2 = 0. These are just concentric
circles since for any case in whichy = 0, P = 0 also and,
thus, C2 is simply equal to the product of a constant and
Exp[�i(kr � !t)]. Thus, theC2 contours in thexz plane
wherey = 0 are always concentric circles regardless of the
values of�1 and �2. Fig. 8 shows theC2 contours in the
yz plane withx = 0. TheC2 contours are asymmetric in this
plane, adding constructively along the+y direction and mostly
canceling along the�y direction just as do theC1 contours in
this plane. Again�1 = 0:2, �2 = 0 as before, but although the
value of�1 indicates a substantial contribution from the loop,
these lines of force are essentially electric dipole-like contours
in this plane. In Fig. 9, we consider the pure imaginary� case
for theC2 contours. In theyz plane with�1 = 0, �2 = 0:2, the
C2 contours are asymmetric and exhibit a combination of both

Fig. 8. Electric lines of forceC2 in the yz plane,x = 0, � = 0:2 for
!t = 0, �=2, �, 3�=2.

Fig. 9. Electric lines of forceC2 in the yz plane,x = 0, � = 0:2i for
!t = 0, �=2, �, 3�=2.

dipole and loop behavior. Though the curves are asymmetric
they are not particularly directional in this case, which is what
we would expect since� is pure imaginary and, thus, the
currents of the dipole and loop are in phase.

VI. CONCLUSION

The electric lines of force of an electrically small dipole-
loop antenna array have been determined analytically for both
the near- and far-fields of the array. It has also been found
that the behavior of the families of electric contoursC1 and
C2 are dependent upon a coupling parameter�, which is the
ratio of the loop and dipole sizes and currents. The parameter
� also controls the appearance (or not) and position of any
points of equilibrium for the radiated field when analyzed in
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a real phase plane determined byP andQ or � and�. The
electric lines of force of the dipole-loop array exhibit increased
directivity in theyz plane whenx = 0 provided� is purely
real, indicating that the respective dipole and loop currents
must be in phase quadrature.
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