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Abstract—This paper studies, in detail, a variety of formula-
tions for the hybrid finite-element and boundary-integral (FE-BI)
method for three-dimensional (3-D) electromagnetic scattering
by inhomogeneous objects. It is shown that the efficiency and
accuracy of the FE-BI method depends highly on the formulation
and discretization of the boundary-integral equation (BIE) used.
A simple analysis of the matrix condition number identifies the
efficiency of the different FE-BI formulations and an analysis
of weighting functions shows that the traditional FE-BI formu-
lations cannot produce accurate solutions. A new formulation
is then proposed and numerical results show that the resulting
solution has a good efficiency and accuracy and is completely im-
mune to the problem of interior resonance. Finally, the multilevel
fast multipole algorithm (MLFMA) is employed to significantly
reduce the memory requirement and computational complexity
of the proposed FE-BI method.

Index Terms—Boundary-integral equations, electromagnetic
scattering, finite-element methods, nonhomogeneous media.

I. INTRODUCTION

T HE hybrid finite-element and boundary-integral (FE-BI)
method is a powerful numerical technique for computing

scattering by inhomogeneous objects. The method first divides
the problem into an interior and exterior problem. The field
in the interior region is formulated using the finite-element
method (FEM) and the field in the exterior region is repre-
sented by a boundary-integral equation (BIE). The interior
and exterior fields are then coupled by the field continuity
conditions.

The hybrid FE-BI method has been first applied to two-
dimensional (2-D) scattering problems [1]–[6] and later ex-
tended to more challenging three-dimensional (3-D) scattering
problems [7]–[14]. To be more specific, Paulsenet al. [7] de-
veloped the first FE-BI formulation for a general 3-D scattering
problem, which employed node-based FEM to discretize the
interior fields and used either the electric-field integral equa-
tion (EFIE) or the magnetic-field integral equation (MFIE) as
BIE to represent the exterior field. The formulation, however,
exhibited two major drawbacks. First, it inherited all the diffi-
culties caused by the use of node-based elements to discretize
the electric and magnetic fields directly [15]. These difficul-
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ties include the treatment of dielectric interfaces and sharp
conducting edges and corners and the appearance of spurious
solutions. Second, it failed at the interior resonant frequencies,
which are defined as the resonant frequencies of a cavity
formed by covering the surface where BIE applies with a per-
fect conductor and filling its interior with the exterior medium.
The first difficulty was removed by the use of edge-based FEM
[8], [9], [12]–[14] and the second difficulty was alleviated by
the use of the combined field integral equation (CFIE), which
is a linear combination of EFIE and MFIE [10]–[12], [14].

Although the FE-BI method with the implementation of
edge-based elements and CFIE is remarkably more powerful
than other numerical techniques in dealing with inhomoge-
neous objects, it still has a bottleneck, which is the dense
matrix generated by BIE. As pointed out in [16], this bot-
tleneck severely limits the capability of the FE-BI method
in dealing with large objects. Although this problem can be
circumvented in some special problems [9], [16] or partially
alleviated using special surfaces to separate the interior and
exterior regions [11], [14], no efficient method has been
developed for general 3-D problems so far.

Our renewed interest in the FE-BI method originated from
the recent development of the fast multipole method (FMM)
[17] and the multilevel fast multipole algorithm (MLFMA)
[18]. Our objective is to apply MLFMA to BIE to completely
remove the bottleneck in the FE-BI method for general
3-D problems. During the course of pursuing this goal,
we have encountered several problems associated with the
efficiency and accuracy of the FE-BI method implemented
using the edge-based elements and CFIE. This paper reports
our study of these problems and the implementation of
MLFMA in the FE-BI method.

In this paper, we first formulate the general FE-BI method
for 3-D scattering problems. We then show that there are
several different approaches to the discretization of CFIE,
yielding solutions with different efficiency and accuracy. How-
ever, none of the traditional approaches produces satisfactory
results. The cause is determined and a new formulation is
proposed. Furthermore, we show that contrary to the common
belief, not all CFIE formulations are immune to the problem of
interior resonance; however, the new one is. Finally, we em-
ploy MLFMA to significantly reduce the memory requirement
and computational complexity of the proposed FE-BI method.

II. FORMULATION AND ANALYSIS

Consider the problem of electromagnetic wave scattering by
an arbitrarily-shaped and inhomogeneous body characterized
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by relative permittivity and permeability(�r; �r), which can
be complex if the body is lossy. To solve this problem using
the FE-BI method, we first introduce an artificial surfaceS
(which can be the surface of the body) to enclose the body and
divide the problem into an interior and an exterior one. The
field insideS can be formulated into an equivalent variational
problem with the functional given by [15]
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where V denotes the volume enclosed byS; n̂ denotes
the outward unit vector normal toS, k0 is the free-space
wavenumber, andHHH = Z0HHH with Z0 being the free-space
intrinsic impedance. Using FEM with edge elements, we
obtain the matrix equation
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wherefEIg is a vector containing the discrete electric fields
inside V , fESg, and fHSg are the vectors containing the
discrete electric and magnetic fields onS, respectively. Fur-
thermore, [KII ], [KIS ], [KSI ], [KSS ], and [B] are sparse
matrices and, in particular,[KII ] and [KSS ] are symmetric
and [KIS] = [KSI]T , where the superscriptT denotes the
transpose.

Equation (2) cannot be solved unless a relation between
fESg andfHSg is established. Such a relation is provided by
BIE for the exterior field, whose discretization yields

[P ]fESg+ [Q]fHSg = fbg (3)

wherefbg is a vector related to the incident field. Combining
(2) and (3), we obtain the complete system2
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which can be solved for the field insideV and onS.
Whereas the generation of (2) using FEM is standard, the

generation of (3) using the method of moments (MoM) can
take many different forms. The basic equations for generating
(3) are the electric-field integral equation (EFIE) given by

LLL(JJJ)�KKK(MMM ) = EEEi (5)

and the magnetic-field integral equation (MFIE) given by

KKK(JJJ) +LLL(MMM) = HHH
i

(6)

whereJJJ andMMM are related to the fields onS by JJJ = n̂�HHH
andMMM = EEE�n̂, respectively, and(EEEi;HHHi) denote the incident
fields. The operatorsLLL andKKK are defined as
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whereYYY is related toXXX by XXX = n̂ � YYY and
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in which R = jrrr � rrr0j. The bar integral symbol is used to
denote a principal value integral and the parameterT is given
by T = 1 � 
=4� where
 is the solid angle subtended by
the observation point [19]. For a smooth surface,
 = 2� and
T = 1=2.

Equations (5) and (6) can be discretized by first expanding
JJJ andMMM as

JJJ =
NSX
i=1

gggiHi (10)

MMM =
NSX
i=1

gggiEi (11)

whereNS denotes the total number of edges onS and gggi
denotes the Rao–Wilton–Glisson (RWG) vector basis functions
[20], which are completely compatible with the vector basis
functions for the edge elements. Substituting (10) and (11)
into (5) and usinggggi as the weighting function, we obtain the
TE formulation (short for̂t �EEE where t̂ denotes a unit vector
tangential toS)

[PTE]fESg+ [QTE]fHSg = fbTEg (12)

where
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Z
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Similarly, from (6) we obtain the TH formulation (short for
t̂ � HHH)

[PTH]fESg+ [QTH]fHSg = fbTHg (16)

where
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Z
S

gggi �LLL(gggj) dS = QTEij (17)

QTHij =

Z
S

gggi �KKK(gggj) dS = �PTEij (18)

bTHi =

Z
S

gggi �HHH
i
dS: (19)

Alternatively, we may choosên � gggi as the weighting
function and obtain from (5) the NE formulation (short for
n̂ � EEE)

[PNE]fESg+ [QNE]fHSg = fbNEg (20)

where
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Z
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Z
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and from (6), the NH formulation (short for̂n �HHH)

[PNH ]fESg+ [QNH ]fHSg = fbNHg (24)

where

PNH
ij =

Z
S

n̂� gggi �LLL(gggj) dS = QNEij (25)

QNH
ij =

Z
S

n̂� gggi �KKK(gggj) dS = �PNEij (26)

bNH
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Z
S
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i
dS: (27)

Equations (20) and (24) can also be obtained by taking the
cross product of̂n with (5) and (6) and then usinggggi as
the weighting function. (That is the reason we used the
abbreviations NE and NH for the two equations.)

Theoretically, any of (12), (16), (20), and (24) can be used
as (3). However, each of them suffers from the problem of
interior resonance and fails to produce accurate solution at
and near certain frequencies corresponding to the resonant
frequencies of the cavity formed by coveringS with a perfect
electric or magnetic conductor and filling it with the exterior
medium. To eliminate this problem, one has to combine an
equation from EFIE to another equation from MFIE to obtain
a combined equation (that is, CFIE) [21]. For example, one
can combine (12) with (16) to obtain the TETH formulation or
(12) with (24) to obtain the TENH formulation. One can also
combine (20) with (16) to obtain the NETH formulation or
(20) with (24) to obtain the NENH formulation which is the
one employed in [12]. Among the four CFIE combinations,
TENH and NETH are used most widely. However, it is not
clear which combination would produce the most efficient and
accurate solution.

Let us heuristically consider the issue of efficiency first. It is
known that the FEM matrices in (4) are diagonally dominant.
Hence, (4) would be better conditioned if[Q] is diagonally
dominant. An analysis of the matrix property shows that[PNE]
and [QNH] are most diagonally dominant,[QTE] and [PTH]
are diagonally dominant, and[PTE], [QTH], [QNE], and[PNH]
are least diagonally dominant. These facts can be denoted
symbolically as
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Fig. 1. The normalized residual norm versus the number of iterations in the
CG solution of scattering by a coated sphere.

From these, we obtain the matrix structure for the TETH
formulation as
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For the TENH formulation, we have
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For the NETH formulation, we have
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Finally, for the NENH formulation, we have
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Considering the properties of the FEM matrices in (4),
heuristically, it is apparent that the TENH formulation would
produce the best conditioned matrix for (4), the NETH for-
mulation would yield the worst conditioned matrix and both
TETH and NENH formulations have condition numbers be-
tween those of TENH and NETH.

To verify the above predictions, we consider the problem of
plane-wave scattering by a coated sphere. The coated sphere
has a radiusr2 and its conducting core has a radiusr1. The
dielectric coating has a relative permittivity�r = 4 and a free-
space permeability and its thickness is chosen large enough
so that there is an appreciable tangential electric field on the
surface. Equation (4) is solved using the conjugate gradient
(CG) method. Fig. 1 displays the residual norm versus the
number of iterations from which we see clearly that TENH
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Fig. 2. The bistatic RCS of a coated sphere. Neither of the four formulations
produces accurate results.

converges most quickly, NETH has the worst convergence,
and the convergence of TETH and NENH lies between those
of TENH and NETH. This observation agrees perfectly with
our earlier prediction.

Next, we consider the issue of accuracy. Examining
(12)–(27) carefully, we find that in the TE formulation, where
gggi is used as the weighting function, the first term in (8) has
no contribution to (13) wheni = j or, in other words, the first
term in (8) is not well tested. The same observation can be
made for the TH formulation. However, in the NE formulation,
wheren̂� gggi is used as the weighting function, the first term
in (7) cannot be tested well and, thus, has no contribution
to (22) wheni = j. The same observation can be made for
the NH formulation. Clearly, neithergggi nor n̂ � gggi forms a
complete set of weighting function for (5) or (6). Therefore,
when gggi or n̂ � gggi is used alone, the solution can become
inaccurate unless a very finer discretization is used. Since
all the formulations described earlier (TETH, TENH, NETH,
and NENH) are the result of using eithergggi or n̂� gggi as the
weighting function, their solutions can be inaccurate as well.

The above analysis on accuracy is also verified by the nu-
merical analysis of the problem described earlier. Fig. 2 shows
the bistatic radar cross section (RCS) of the coated sphere. It is
obvious that all the four formulations have a significant error
in their solutions. Our further numerical experiments show
that such errors can be reduced by using finer discretization;
however, the reduction is insignificant and a finer discretization
leads to a much larger number of unknowns. It is interesting
to note that both TETH and NENH have a similar error and
both TENH and NETH also have a similar error. However, the
error in TETH and NENH is smaller than that in TENH and
NETH. We note that this problem of inaccuracy occurs only
when there exist simultaneously nontrivial tangential electric
and magnetic fields on the surfaceS; therefore, it disappears
when one deals with a bare conducting body or a conducting
body with a very thin coating where the tangential electric field
is very small. We also note that this problem was not observed
in [10], [11], and [14] because none of them employed the
RWG functions as both the expansion and weighting functions.

Fig. 3. The bistatic RCS of a coated sphere. Good results are obtained using
the TENENH formulation.

Fig. 4. The normalized residual norm versus the number of iterations for
the TENENH formulation.

To alleviate the inaccuracy discussed above, it is clear that
a more complete set of weighting functions has to be used. A
natural choice is a combination ofgggi andn̂�gggi. When this is
applied to (5), we obtain a matrix equation, which is equivalent
to the sum of (12) and (20) and is referred to as the TENE
formulation. When this is applied to (6), we obtain a matrix
equation, which is equivalent to the sum of (16) and (24) and
is referred to as the THNH formulation. However, since TENE
comes from EFIE and THNH comes from MFIE, both would
suffer from the problem of interior resonance. One remedy
is to combine TENE and THNH. A more efficient alternative
is to combine TENE with either the NH or TH formulation.
A simple analysis of matrix condition shows that among NH
and TH, NH is a better choice for the combination with TENE.
Fig. 3 shows the result of TENENH from which we see that
TENENH has a significantly better accuracy than those in
Fig. 2. The remaining error in TENENH can be reduced by
using a finer discretization. The corresponding convergence
curves are given in Fig. 4.
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Fig. 5. The normalized residual norm versus the number of iterations in
the CG solution of scattering by a coated sphere at a frequency of interior
resonance.

Fig. 6. The number of iterations versus frequency (equivalently, the size of
the scatterer in terms of wavelength). Both NENH and TETH exhibit singular
behavior near the frequency of interior resonance whereas both TENH and
TENENH display a stable behavior.

The results presented above are obtained at a frequency that
does not coincide with a frequency of interior resonance. To
ensure the validity of our analysis, we consider the same coated
sphere at a frequency of interior resonance. Fig. 5 displays
the residual norm versus the number of iterations from which
we observe a similar convergence behavior that agrees with
our prediction. However, compared to Fig. 1, the number of
iterations for TETH and NENH in this case has increased
significantly whereas that for TENH and NETH remains the
same. To investigate this problem further, we recorded the
number of iterations at the frequencies near the frequency of
interior resonance and the result is given in Fig. 6. To our
surprise, both TETH and NENH have a sharp peak at the
frequency of interior resonance. This implies that both TETH
and NENH yield an ill-conditioned matrix and still suffer
from the problem of interior resonance, although they are

Fig. 7. The bistatic RCS of a coated sphere at a frequency of interior
resonance. Neither of the four formulations produces accurate results. In
particular, both NENH and TETH yield erroneous results.

Fig. 8. The bistatic RCS of a coated sphere at a frequency of interior
resonance. Again, good results are obtained using the TENENH formulation.

derived from the CFIE formulation.1 However, the bandwidth
of the ill-conditioned peaks is extremely narrow (less than
1%), compared to those resulting from either the EFIE or the
MFIE (about 10%) and this is probably the reason that this
problem was not detected before. The results for the RCS are
given in Fig. 7. As expected, both TETH and NENH yield
a result drastically different from the exact solution, whereas
both TENH and NETH produce a stable result with an error
similar to that in Fig. 2. The result obtained using TENENH is
presented in Fig. 8 from which a good agreement is observed.
The number of iterations at the frequencies near the frequency
of interior resonance is also given in Fig. 6, showing a very
stable behavior.

1It is well known that CFIE removes the interior resonance by combining
EFIE and MFIE in such a manner that the resultant integral operators
correspond to that for a cavity with a resistive wall. The proper combinations
are TENH and NETH. Both TETH and NENH are the improper combinations
in the sense that the combined integral operators do not correspond to those for
a resistive cavity and, therefore, they still experience the interior resonance.
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(a)

(b)

Fig. 9. The bistatic RCS of a finite dielectric cylinder in thex-z plane for a
plane wave incident along thez axis. (a) VV-polarization. (b) HH-polarization.

Next, we present several other examples to demonstrate the
accuracy and capability of the proposed formulation for other
geometries. Fig. 9 shows the bistatic RCS of a finite dielectric
cylinder and Fig. 10 displays the result for a dielectric cube.
All the results are compared with those obtained from MoM
and excellent agreement is observed in each case. We note
that the MoM solutions shown in Figs. 9 and 10 are obtained
from the Poggio–Miller–Chang–Harrington–Wu (PMCHW)
formulation [22], which is a combined-source integral equation
(CSIE). The PMCHW formulation is known to produce an
accurate solution [23], [24]; however, it can be applied to
only homogeneous objects.

III. A PPLICATION OF MLFMA

As pointed out in [16], the FE-BI method has a bottleneck
which is the dense matrix generated by BIE. This bottle-

(a)

(b)

Fig. 10. The bistatic RCS of a dielectric cube in thex-z plane for a plane
wave incident along thez-axis. (a) VV-polarization. (b) HH-polarization.

neck severely limits the capability of the FE-BI method in
dealing with large objects since the dense matrices[P ] and
[Q] have a memory requirement ofO(N2

S) and a compu-
tational complexity ofO(N2

S) to compute a matrix-vector
product.

One solution to the problem discussed above is to compute
the matrix-vector products using fast multipole method (FMM)
[17]. The basic idea of FMM is first to divide the surface
subscatterers into groups. The addition theorem is then used
to translate the scattered field of different scattering centers
within a group into a single center and this process is called
aggregation. Doing this, the number of scattering centers
is reduced significantly. Similarly, for each group the field
scattered by all the other group centers can be first received
by the group center and then redistributed to the subscatterers
belonging to the group. This process is called disaggregation. It
has been shown that FMM can reduce the memory requirement
and computational complexity toO(N1:5

S ).



SHENG et al.: FORMULATION OF HYBRID FINITE-ELEMENT AND BOUNDARY-INTEGRAL METHODS 309

(a)

(b)

Fig. 11. The bistatic RCS of a coated sphere. The conducting sphere has a
diameterd and the coating has a thicknesst = 0:05�0 ; a relative permittivity
�r = 4:0 � j1:0; and a relative permeability�r = 1. (a) d = 3�0. (b)
d = 6�0.

The memory requirement and computational complexity can
be further reduced toO(NS logNS) using MLFMA [18]. To
implement MLFMA, the entire object is first enclosed in a
large cube, which is divided into eight smaller cubes. Each
subcube is then recursively subdivided into smaller cubes until
the edge length of the finest cube is about half a wavelength.
For two points in the same or nearby finest cubes, their
interaction is calculated in a direct manner. However, when the
two points reside in different nonnearby cubes, their interaction
is calculated by FMM, as described above. The level of cubes
on which FMM is applied depends on the distance between
the two points. The detailed description of MLFMA is given
in [18] and is not repeated here, although the equations to be
treated are different.

The basic formulas derived with the addition theorem to
calculate the matrix elements for nonnearby groups, are given

TABLE I
MEMORY REQUIREMENT AND CPU TIME FOR THE FEM-MLFMA

SOLUTION OF SCATTERING FROM A COATED SPHERE

Fig. 12. The bistatic RCS of a sphere coated with two dielectric layers.
The conducting sphere has a diameterd = 1:5�0, the inner layer has a
thicknesst1 = 0:05�0, a relative permittivity�r1 = 3:0 � j2:0, and a
relative permeability�r1 = 2:0� j1:0, and the outer layer has a thickness
t2 = 0:05�0, a relative permittivity�r2 = 2:0 � j1:0, and a relative
permeability�r2 = 3:0 � j2:0.

by

Pij =

�
k0

4�

�2 I
VVV P
imTmm0 (k̂ � r̂mm0 ) � VVV jm0d2k̂ (33)

Qij =

�
k0

4�

�2 I
VVV
Q
imTmm0 (k̂ � r̂mm0 ) � VVV jm0d2k̂ (34)

where

VVV P
im =

Z
S

e�jkkk0�rrrim [�1k̂ � gggi + �2k̂ � n̂� gggi

+ �3(III � k̂k̂) � (n̂� gggi)] dS (35)

VVV
Q
im =

Z
S

e�jkkk0�rrrim [(III � k̂k̂) � (�1gggi + �2n̂� gggi)

� �3k̂ � n̂� gggi] dS (36)

VVV jm0 =

Z
S

ejkkk0�rrrjm0gggj dS (37)

and

Tmm0 (k̂ � r̂mm0 ) =
LX
l=0

(�j)l(2l + 1)h
(2)
l (k0rmm0)

� Pl(r̂mm0 � k̂): (38)
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Fig. 13. The bistatic RCS of a coated brick for a plane wave incident along
the z axis from the top with the incident electric field in thex-z plane.
The conducting brick has a size6�0 � 2�0 � 2�0 and the coating has a
thicknesst = 0:05�0, a relative permittivity�r = 3:0� j2:0, and a relative
permeability�r = 2:0 � j1:0.

In the above, the integrals in (33) and (34) are over the unit
spherical surface,gggi resides in a groupGm centered atrrrm,
gggj resides in a groupGm0 centered atrrrm0 , rrrim = rrri � rrrm,
rrrjm0 = rrrj � rrrm0 , andrrrmm0 = rrrm � rrrm0 . The �1, �2, and
�3 in (35) and (36) are the combination parameters in the
TENENH formulation. Also in (38),h(2)l denotes the spherical
Hankel function of the second kind,Pl denotes the Legendre
polynomial of degreel, andL denotes the number of multipole
expansion terms whose choice is discussed in [18].

As described earlier, MLFMA converts the direct interac-
tion componentPij or Qij between two “far-away” points
i and j into three indirect components: 1) the radiation
component from the pointj to the group centerm0, which
is represented byVVV jm0 ; 2) the translation component from
the group centerm0 to another group centerm, represented
by Tmm0 ; and 3) the receiving component from the group
centerm to the pointi; which is represented byVVV im. Among
these three components, only the receiving component is
different for different formulations—the other two compo-
nents, the translation, and the radiation components are the
same.

The MLFMA described above is implemented for the so-
lution of the proposed FE-BI formulation. The combination
parameters used are�1 = �2 = 0:45 and�3 = 0:1. Fig. 11
shows the bistatic RCS of a conducting sphere having a
diameterd and coated with a lossy dielectric layer having a
thicknesst. The results are compared to those obtained using
the Mie series and good agreement is observed. The memory
requirement and the total CPU time on one processor of an
SGI Power Challenge (R8000) are given in Table I. These
results are obtained without using a preconditioner. Fig. 12
shows the result for a sphere coated with two dielectric layers.
Finally, Figs. 13 and 14 give two additional examples: one
for a coated conducting brick and the other for a coated finite
cylinder.

Fig. 14. The monostatic RCS of a coated finite cylinder in they-z plane. The
conducting cylinder has a diameterd = 1:0�0 and a lengthl = 2:0�0 and
the coating has a thicknesst = 0:1�0, a relative permittivity�r = 2:0�j1:0,
and a relative permeability�r = 1:5� j0:5.

IV. CONCLUSION

In this paper, we studied in detail a variety of formulations
for the hybrid FE-BI method for calculating 3-D electromag-
netic scattering by inhomogeneous objects. We showed that
the efficiency and accuracy of the FE-BI method depend
highly on the formulation and discretization of BIE used.
We considered four formulations (TETH, TENH, NETH, and
NENH) obtained from the discretization of the CFIE and
we found the following from analysis (and it was verified
numerically).

• TENH produces the best conditioned FE-BI matrix equa-
tion and NETH produces the worst conditioned matrix
equation. Therefore, when an iterative solver such as the
CG algorithm is employed to solve the matrix equation,
TENH is the most efficient formulation.

• None of the four formulations produces accurate FE-BI
solutions because neither the RWG vector basis functions
(gggi) nor its cross product with the unit normal(n̂ � gggi)
form a complete set of weighting functions for EFIE or
MFIE on a general surface where nontrivial equivalent
electric and magnetic currents exist simultaneously.

• Both TETH and NENH suffer from the problem of
interior resonance although the bandwidth of the bad
solution is extremely narrow compared to those resulting
from EFIE and MFIE. However, TENH and NETH are
immune to the problem of interior resonance although
their results are inaccurate.

Based on the analysis, we proposed a formulation
(TENENH) that has a good efficiency and a good accuracy and
is completely immune to the corruption of interior resonance.
The TENE part of this formulation is equivalent to testing the
pertinent EFIE bygggi + n̂ � gggi. We then applied MLFMA to
the proposed FE-BI method to enhance its capability to deal
with larger objects.
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