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Abstract—This paper studies, in detail, a variety of formula- ties include the treatment of dielectric interfaces and sharp
tions for the hybrid finite-element and boundary-integral (FE-Bl)  conducting edges and corners and the appearance of spurious
method for three-dimensional (3-D) electromagnetic scattering ¢q|ytions. Second, it failed at the interior resonant frequencies,

by inhomogeneous objects. It is shown that the efficiency and hich defined th tf . f it
accuracy of the FE-BI method depends highly on the formulation which are defined as tnhe resonant irequencies or a cavity

and discretization of the boundary-integral equation (BIE) used. formed by covering the surface where BIE applies with a per-
A simple analysis of the matrix condition number identifies the fect conductor and filling its interior with the exterior medium.

efficiency of the different FE-BI formulations and an analysis The first difficulty was removed by the use of edge-based FEM
of weighting functions shows that the traditional FE-BI formu- 18], [9], [12]-[14] and the second difficulty was alleviated by

lations cannot produce accurate solutions. A new formulation . . . . .
is then proposed and numerical results show that the resulting _the use of the combined field integral equation (CFIE), which

solution has a good efficiency and accuracy and is completely im- IS @ linear combination of EFIE and MFIE [10]-[12], [14].
mune to the problem of interior resonance. Finally, the multilevel Although the FE-BI method with the implementation of

fast multipole algorithm (MLFMA) is employed to significantly  edge-based elements and CFIE is remarkably more powerful
reduce the memory requirement and computational complexity inon other numerical techniques in dealing with inhomoge-
of the proposed FE-BI method. - o L
_ _ ~neous objects, it still has a bottleneck, which is the dense
Index Terms—Boundary-integral equations, electromagnetic matrix generated by BIE. As pointed out in [16], this bot-
scattering, finite-element methods, nonhomogeneous media. tleneck severely limits the capability of the FE-BI method
in dealing with large objects. Although this problem can be
|. INTRODUCTION circumvented in some special problems [9], [16] or partially

T HE hybrid finite-element and boundary-integral (FE_Blzllewated using special surfaces to separate the interior and

) . . - exterior regions [11], [14], no efficient method has been
method is a powerful numerical technique for computlr;geveIO ed for general 3-D problems so far
scattering by inhomogeneous objects. The method first divides P 9 P ’

. o : . Our renewed interest in the FE-BI method originated from
the problem into an interior and exterior problem. The fiel :
) o S : - e recent development of the fast multipole method (FMM)
in the interior region is formulated using the flnlte-eleme%

method (FEM) and the field in the exterior region is repr 1;% E(i)nl?r :)Ze'eQiL\J/IeE”iesvte(l ;astl m|\>|1||f:lzo|\(;|l,§ tf;l)lgé)lgtf;(r)ncg\r/lnLllzé\iIQ)
sented by a boundary-integral equation (BIE). The interi : ) bply pietely

I ;
and exterior fields are then coupled by the field continuiy Ve the bottlen.eck in the FE-BI methoq for 'general
conditions -D problems. During the course of pursuing this goal,
The hybrid FE-BI method has been first applied to wwolve have encountered several problems associlated with the
. : : efficiency and accuracy of the FE-BI method implemented
dimensional (2-D) scattering problems [1]-[6] and later ex- . .
) . : .:using the edge-based elements and CFIE. This paper reports
tended to more challenging three-dimensional (3-D) scatterin ; :
odr study of these problems and the implementation of

problems [7]-[14]. To be more specific, Paulsral. [7] de- MLEMA in the EE-BI method.

veloped the first FE-BI formulation for a general 3-D scattering In this paper, we first formulate the general FE-BI method

prob_lem,_ which employeql node-based FEM to_dlscrenze t?oer 3-D scattering problems. We then show that there are
interior fields and used either the electric-field integral equa- ; . o
Several different approaches to the discretization of CFIE,

tion (EFIE) or the magnetic-field integral equation (MFIE) aSielding solutions with different efficiency and accuracy. How-

BIE to represent the exterior field. The formulation, howeveY, o :
o . N . ..ever, none of the traditional approaches produces satisfactory
exhibited two major drawbacks. First, it inherited all the diffi- . : o
. . results. The cause is determined and a new formulation is
culties caused by the use of node-based elements to discretize
. N . .. proposed. Furthermore, we show that contrary to the common
the electric and magnetic fields directly [15]. These difficul= . : .
belief, not all CFIE formulations are immune to the problem of
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by relative permittivity and permeabilitye, , 1t ), which can whereY is related toX by X = n x Y and
be complex if the body is lossy. To solve this problem using o—ikoR

the FE-BI method, we first introduce an artificial surfage G(r,7') = Py 9
(which can be the surface of the body) to enclose the body and i ]

divide the problem into an interior and an exterior one. TH8 Which ;& = |r —7’|. The bar integral symbol is used to
field insideS can be formulated into an equivalent variationdi€note & principal value integral and the paramétes given

problem with the functional given by [15] by T'=1- Q/47r whereQ is the solid angle subtended by
the observation point [19]. For a smooth surfaes 27 and

intrinsic impedance. Using FEM with edge elements, we
obtain the matrix equation

F(E):l/[L(VXE)-(VXE)—kgeTEJE' av T =1/2 o _ _
2 Jv Lpw _ Equations (5) and (6) can be discretized by first expanding

—i—jko/(ExF)~ﬁdS () 7andMas y

5 — A
where V' denotes the volume enclosed Iy n denotes I = Z;giHi (10)
the outward unit vector normal t&, &y is the free-space 7,;@
wavenumber, andd = Zy,H with Z, being the free-space M= Z-"E (11)
i=1

where Ns denotes the total number of edges Bnand g,
- - Er denotes the Rao—Wilton—Glisson (RWG) vector basis functions
I\[{ A[}; 0 1o _ 0 . . . .
Ke; Keg B 5 (2) [20], which are completely compatible with the vector basis
unctions for the edge elements. Substituting an
' o f [ for the ed I Substituti 10 d (11
into (5) and usingy; as the weighting function, we obtain the

inside V, {Es}, and {4} are the vectors containing theﬁ‘E formulatlon (short fort - E wheret denotes a unit vector
tangential toS)

discrete electric and magnetic fields 6in respectively. Fur- o
thermore, [K;/], [Krs], [Ksr], [Kss], and [B] are sparse [PTE{Es} 4+ [QTF1{H s} = {™F} (12)
matrices and, in particulafK7;] and [Ks5] are symmetric

and [K;s] = [Ks/]", where the superscrigt’ denotes the where
transpose. BT == / g, K(g;) dS (13)
Equation (2) cannot be solved unless a relation between 5
{Es} and{H s} is established. Such a relation is provided by TE = / g; - L{g;) dS (14)
BIE for the exterior field, whose discretization yields ! s ’
— TFE _ )

(PI{ES) + [QUTTs} = 1) @ = [ as 5)
where{b} is a vector related to the incident field. Combiningimilarly, from (6) we obtain the TH formulation (short for
(2) and (3), we obtain the complete system t-H)

Kir Krs 01 Er 0 [P L} + QT HH s} = {07} (16)
Ksr Kgs B¢ LEs p=<0 (4)
0 P Q i b where
TH _ _ TE
which can be solved for the field insidé and onsS. B = /597: -Lig;) dS = @ (17)
Whereas the generation of (2) using FEM is standard, the TH TE
generation of (3) using the method of moments (MoM) can o= / 9, K(g;) dS=-F; (18)
take many different forms. The basic equations for generating i .
(3) are the electric-field integral equation (EFIE) given by b = / g, - H dS. (19)
. 5

L(J)- K(M)=F () Alternatively, we may choose: x ¢, as the weighting

and the magnetic-field integral equation (MFIE) given by tunc%))n and obtain from (5) the NE formulation (short for
n X

K(J)+L(M) = H ©) [PNE){Es ) + [QVF{Hs } = (07} (20)
whereJ and M are related to the fields ofiby J = n x H  \yhere
andM = Exn, respectively, andE’, H') denote the incident -
fields. The operatord and K are defined as Pm = —/ nxg, K(g;)ds (21)

5
1
L(X):jko/ [X(r’)+k—2VV’~X(r’) G(r,7')dS (7) N :/ﬁ x g, - L(g;) dS (22)
S 0 5

KX)=TY(r)+ ]{ X(r') x VG(r, ) dY’ (8) bNF = A nxg, - EdS (23)
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and from (6), the NH formulation (short for x H)

Coated Sphere (1874 unknowns)

10
[PYT{Es} + QY7 {Hs} = {oM7} (24)
r1=0.3367 lambda — NENH
Where r2=0.4367 lambda .- - TETH
8ps=(4.0,1.0}
NH NF 510_1 mu=(1000) _- ::EE::
Fij :/S”X-‘h’ Llg;) 45 = Q" (25) 3 non resonant cass
&
V1= [axg Kg)as=-p"  @o)
A — 510
bV = / nxg,-H dS. (27)
5
Equations (20) and (24) can also be obtained by taking the
cross product ofr with (5) and (6) and then using, as " -\

the weighting function. (That is the reason we used the °© 100 200 300 400 S0 reioee '° 800 900 1000
abbreviations NE and NH for the two equations.) Fig. 1. The normalized residual norm versus the number of iterations in the

Theoretically, any of (12), (16), (20), and (24) can be us%g sélution of scattering by a coated sphere.
as (3). However, each of them suffers from the problem of
interior resonance and fails to produce accurate solution at _ )
and near certain frequencies corresponding to the resonafm th_ese, we obtain the matrix structure for the TETH
frequencies of the cavity formed by coverigwith a perfect formulation as
electric or magnetic conductor and filling it with the exterior |
medium. To eliminate this problem, one has to combine an [P|Q] ~ 1 | 1 . (29)
equation from EFIE to another equation from MFIE to obtain )
a combined equation (that is, CFIE) [21]. For example, one o
can combine (12) with (16) to obtain the TETH formulation ogor the TENH formulation, we have
(12) with (24) to obtain the TENH formulation. One can also _ -
combine (20) with (16) to obtain the NETH formulation or | .
(20) with (24) to obtain the NENH formulation which is the [P|Q] ~ 0 | 3 . (30)
one employed in [12]. Among the four CFIE combinations, .
TENH and NETH are used most widely. However, it is not B a
clear which combination would produce the most efficient arfdor the NETH formulation, we have
accurate solution. - . -

Let us heuristically consider the issue of efficiency first. It is - |
known that the FEM matrices in (4) are diagonally dominant. [PlQ] ~ 3 | 0 ‘ (31)
Hence, (4) would be better conditioned[#] is diagonally i R ]
gﬁ(rang?\IrII{t] gr;earr;atl))slzi(;gtgﬁawyatélérgirsgﬁﬁg%g?(;vx(sj @H% Finally, for the NENH formulation, we have
are diagonally dominant, ad®™¥], [QTH], [QNF], and[ PNH] r . T
are Iea_st diagonally dominant. These facts can be denoted [P|Q] ~ ' 9 | ' 9 . (32)
symbolically as

L R L

. Considering the properties of the FEM matrices in (4),
[PNF] = —[Q"T] ~ 2 heuristically, it is apparent that the TENH formulation would
' produce the best conditioned matrix for (4), the NETH for-
mulation would yield the worst conditioned matrix and both
TE TH ' TETH and NENH formulations have condition numbers be-
(@] =[]~ 1 tween those of TENH and NETH.

E To verify the above predictions, we consider the problem of
plane-wave scattering by a coated sphere. The coated sphere
has a radius; and its conducting core has a radius The
dielectric coating has a relative permittivity = 4 and a free-
space permeability and its thickness is chosen large enough
. so that there is an appreciable tangential electric field on the
[QVF] = [PNF] ~ ' 0 . (28) surface. Equatio_n (4) i§ solved using _the conjugate gradient

(CG) method. Fig. 1 displays the residual norm versus the
number of iterations from which we see clearly that TENH

P =—[Q™~ | 0
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VV-Pol (1874 unknowns) Vv-Pol
v T T T T T

16

r1=0.3367 lambda
r2=0.4367 lambda
eps=(4.0,0.0)

mu=(1.0,0.0)

r1=0.3367 lambda
r2=0.4367 lambda
eps=(4.0,0.0)

mu=(1.0,0.0)

5 P
@ z 0
g &
fa =2
& -st 3
— Mie & ~5r
~ — NENH (342 iter)
-1of --- TETH (365 iter) b 1ok — Mie
nonresonantcase -t [ |..... TENH (271 iter) — — TENENH (1874 unkns)
15} NETH (1000 Iter) TENENH (4214 unkns)
=151
20 L L " L L 1 L "
20 40 60 80 100 120 140 160 180 -20 . L . . . . . .
theta (degrees) 0 20 40 60 80 100 120 140 160 180

theta (degrees)

Fig. 2. The bistatic RCS of a coated sphere. Neither of the four formulations o . .
produces accurate results. Fig. 3. The bistatic RCS of a coated sphere. Good results are obtained using

the TENENH formulation.

converges most quickly, NETH has the worst convergence, Goated Sphera
and the convergence of TETH and NENH lies between thosd® ' ' " T '
of TENH and NETH. This observation agrees perfectly with
our earlier prediction. : r=0.3367 lambda

Next, we consider the issue of accuracy. Examining r2=0.4367 lambda *=+- TENENH (1874 unkns)
(12)—(27) carefully, we find that in the TE formulation, whereg o+ %229 [ TENENH (4214 unkns)
i
]

g; is used as the weighting function, the first term in (8) ha$ 1009
no contribution to (13) when= 5 or, in other words, the first g
term in (8) is not well tested. The same observation can ,
made for the TH formulation. However, in the NE formulation:s RS,
wheren x g, is used as the weighting function, the first terng 1°} ~ ]
in (7) cannot be tested well and, thus, has no contribution s
to (22) when: = j. The same observation can be made for e
the NH formulation. Clearly, neitheg, nor 7 x g; forms a
complete set of weighting function for (5) or (6). Therefore, , - . . . , . . R
when g, or 7 x g, is used alone, the solution can become ¢ 50 100 150 200 2% 300 350 400 450 500
inaccurate unless a very finer discretization is used. Sinﬁg 4. The normalized residual norm versus the number of iterations for
all the formulations described earlier (TETH, TENH, NETH;ne TENENH formulation.

and NENH) are the result of using either or 7 x g, as the

weighting function, their solutions can be inaccurate as well. ) ] ) o
The above analysis on accuracy is also verified by the nu-To alleviate the inaccuracy discussed above, it is clear that

merical analysis of the problem described earlier. Fig. 2 shoidnore complete set of weighting functions has to be used. A
the bistatic radar cross section (RCS) of the coated sphere. R@ural choice is a combination gf andn x g;. When this is
obvious that all the four formulations have a significant erréiPPlied to (5), we obtain a matrix equation, which is equivalent
in their solutions. Our further numerical experiments shof@ the sum of (12) and (20) and is referred to as the TENE
that such errors can be reduced by using finer discretizatié@fmulation. When this is applied to (6), we obtain a matrix
however, the reduction is insignificant and a finer discretizatig§luation, which is equivalent to the sum of (16) and (24) and
leads to a much larger number of unknowns. It is interestiﬁ@referred to as the THNH formulation. However, since TENE
to note that both TETH and NENH have a similar error angomes from EFIE and THNH comes from MFIE, both would
both TENH and NETH also have a similar error. However, thguffer from the problem of interior resonance. One remedy
error in TETH and NENH is smaller than that in TENH ands to combine TENE and THNH. A more efficient alternative
NETH. We note that this problem of inaccuracy occurs onlkg to combine TENE with either the NH or TH formulation.
when there exist simultaneously nontrivial tangential electrs simple analysis of matrix condition shows that among NH
and magnetic fields on the surfaSe therefore, it disappearsand TH, NH is a better choice for the combination with TENE.
when one deals with a bare conducting body or a conductihig. 3 shows the result of TENENH from which we see that
body with a very thin coating where the tangential electric fie[lEENENH has a significantly better accuracy than those in
is very small. We also note that this problem was not observEd). 2. The remaining error in TENENH can be reduced by
in [10], [11], and [14] because none of them employed thgsing a finer discretization. The corresponding convergence
RWG functions as both the expansion and weighting functiorgirves are given in Fig. 4.

non resonant case

mi zagle
.
i

i N L
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Coated Sphera {1874 unknowns)
10 T T T T T T T

11=0.3423 lambda NENH
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Fig. 5. The normalized residual norm versus the number of iterations in
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r1=0.3423 lambda
r2=0.4440 lambda
eps=(4.0,0.0)
mu=(1.0,0.0)
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the CG solution of scattering by a coated sphere at a frequency of interlag. 7. The bistatic RCS of a coated sphere at a frequency of interior

resonance. resonance. Neither of the four formulations produces accurate results. In
particular, both NENH and TETH yield erroneous results.
Coated Sphere (1874 unknowns)
1000 - T T T T T T
9001 :
I
8ook — NENH " B
-—--TETH I.’ !
- TENH i
£ 700} i )
£ TENENH !
3 =
5 soof 1 H
5 i
2 0 -10F r1=0.3423 lambda h
5 soo0f &
z 1 x r2=0.4440 lambda
-15} 4.0.0.0 — Mie |
00k | eps=(4.0,0.0) - - TENENH (1874 unkns)
_o0l mu=(1.0,0.0) TENENH (4214 unkns) 1
3001 b -251 resonant case E
200 L L L L L L ) ~30} B
0436 0438 044 0442 0444 0446 0448 045 0452 L . . . . . ; -
r2 (lambda) o 20 40 60 80 100 120 140 160 180

Fig. 6. The number of iterations versus frequency (equivalently, the size fg 8. The bistatic RCS of a coated sphere at a frequency of interior

theta (degrees)

the scatterer in terms of wavelength). Both NENH and TETH exhibit singul }
behavior near the frequency of interior resonance whereas both TENH af
TENENH display a stable behavior.

gonance. Again, good results are obtained using the TENENH formulation.

derived from the CFIE formulatiohHowever, the bandwidth

The results presented above are obtained at a frequency ffathe ill-conditioned peaks is extremely narrow (less than
does not coincide with a frequency of interior resonance. f§0), compared to those resulting from either the EFIE or the
ensure the validity of our analysis, we consider the same coatdb!E (about 10%) and this is probably the reason that this
sphere at a frequency of interior resonance. Fig. 5 displagblem was not detected before. The results for the RCS are
the residual norm versus the number of iterations from whi@iven in Fig. 7. As expected, both TETH and NENH yield
we observe a similar convergence behavior that agrees vAgfiesult drastically different from the exact soluﬂo_n, whereas
our prediction. However, compared to Fig. 1, the number Bf)th TENH ar_ld NETH produce a stal_)Ie res‘%“ with an error
iterations for TETH and NENH in this case has increasesdm”ar to that in Fig. 2. The result obtained using TENENH is

significantly whereas that for TENH and NETH remains th resented in F'g' 8 ffom which a good agreement is observed.
4 . . he number of iterations at the frequencies near the frequency
same. To investigate this problem further, we recorded th

number of iterations at the frequencies near the frequencyo?flntenor resonance 1s also given in Fig. 6, showing a very
stable behavior.

interior resonance and the result is given in Fig. 6. To our,, . I -

. It is well known that CFIE removes the interior resonance by combining
surprise, both TETH and NENH have a sharp peak at tRgIE and MFIE in such a manner that the resultant integral operators
frequency of interior resonance. This implies that both TETE$prrespond to that for a cavity with a resistive wall. The proper combinations

. . " . . are TENH and NETH. Both TETH and NENH are the improper combinations
and NENH yleld an ill-conditioned matrix and still SUf-ferin the sense that the combined integral operators do not correspond to those for

from the problem of interior resonance, although they ateresistive cavity and, therefore, they still experience the interior resonance.
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VV-Pol VV-Pol

—m= MoM
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0 (degrees) (a)
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HH-Pol
HH-Pol 0 T T T T
-16
— MoM
-16.5F z 1 -~ 162 unknowns (FE-BI)
—-— 414 unknowns (FE-BI)
-5 828 unknowns (FE-Bl)
g
g % §
%
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-10 & |y
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_15 . L L . . A R .
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_20 . . . A A . .
20 40 60 80 100 120 140 160 180 6 (degrees)
0 (degrees) ()
() Fig. 10. The bistatic RCS of a dielectric cube in the plane for a plane

Fig. 9. The bistatic RCS of a finite dielectric cylinder in the: plane for a Wave incident along the-axis. (a) VV-polarization. (b) HH-polarization.
plane wave incident along theaxis. (a) VV-polarization. (b) HH-polarization.

neck severely limits the capability of the FE-BI method in

Next, we present several other examples to demonstrate @§&ling with large objects since the dense matrigejsand
accuracy and capability of the proposed formulation for othé®] have a memory requirement @(Ng) and a compu-
geometries. Fig. 9 shows the bistatic RCS of a finite dielectd@tional complexity of O(N3) to compute a matrix-vector
cylinder and Fig. 10 displays the result for a dielectric cubgroduct.

All the results are compared with those obtained from MoM One solution to the problem discussed above is to compute
and excellent agreement is observed in each case. We riBgmatrix-vector products using fast multipole method (FMM)
that the MoM solutions shown in Figs. 9 and 10 are obtaindd7]. The basic idea of FMM is first to divide the surface
from the Poggio—Miller—Chang—Harrington—Wu (pMCHW)subscatterers into groups. The addition theorem is then used
formulation [22], which is a combined-source integral equatio® translate the scattered field of different scattering centers
(CSIE). The PMCHW formulation is known to produce afyvithin a group into a single center and this process is called

accurate solution [23], [24]; however, it can be applied t8dgregation. Doing this, the number of scattering centers
only homogeneous objects. is reduced significantly. Similarly, for each group the field

scattered by all the other group centers can be first received

by the group center and then redistributed to the subscatterers

IIl. - APPLICATION OF MLFMA belonging to the group. This process is called disaggregation. It

As pointed out in [16], the FE-BI method has a bottlenedkas been shown that FMM can reduce the memory requirement
which is the dense matrix generated by BIE. This bottl@nd computational complexity t0(N{-5).
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Coated Sphere Bistatic RCS VV-Pol, 4-tevel MLFMA, 132.9MB, 20728(s) TABLE |
35 v T T T T T T T MEMORY REQUIREMENT AND CPU TiME FOR THE FEM-MLFMA
Py SOLUTION OF SCATTERING FROM A COATED SPHERE
301 d=3.0 lambda
25k 1=0.05 lambda Sphere | Number of | Level of Memory CPU time Total
eps=(4.0,~1.0) diameter | unknowns | MLFMA | requirement | per iteration | CPU time
20 46802 unknowns . 0.75)0 3,330 2 14.7 MB 0.424 s 683 s
| 15X 11,704 3 37.6 MB 3.343 s 3,750 s
g 3o 46,802 4 132.9 MB 18.46 s 20,728 s
2 . 6o 187,202 5 522.5 MB 87.84 s 130,501 s
L ]
i Two-Layer Coated Sphere Bistatic RCS VV~Pol, 3-level MLFMA, 24965(s)
30 . : y T . . T T
5k —— Coated (Mie) 1
- © Coated (FEM-MLFMA) 25k d=1.5 lambda ——— Coated (Mie) ]
T S Uncoated (Mie) 1 1=12=0.05 lambda O Coated (FEM-MLFMA)
N Cogan.om | Uncoated (Mie) o
- 50 ZIO 4.0 e;o 8l0 1 60 1 éo 1 4‘%0 1 éo 180 @ epetomuz=a0-2 D
theta (degrees) eps2=mu1=(2.0,-1.0) 2 B
15y 72004 unknowns 1
(@) _
H .
Coated Sphere Bistatic RCS VV-Pol, 5-level MLFMA, 522.5MB, 130501(s) %
b O J
401 2 o
d=6.0 lambda ]
1t=0.05 lambda
30 eps=(4.0,-1.0) R
187202 unknowns b
T 201 1 1
g
e 15 . . : . . . . :
2 . i 0 20 40 60 80 100 120 140 160 180
theta (degrees)
— Coated (Mie) Fig. 12. The bistatic RCS of a sphere coated with two dielectric layers.
or o Coated (FEM-MLFMA) o T The conducting sphere has a diamefer= 1.5\, the inner layer has a
vvvvv Uncoated (Mie) thicknesst; = 0.05X¢, a relative permittivitye,; = 3.0 — 52.0, and a
relative permeability.,; = 2.0 — 51.0, and the outer layer has a thickness
-10} R to = 0.05X0, a relative permittivitye,o = 2.0 — 71.0, and a relative
) ) ) ) ) ) ) , permeability 1,2 = 3.0 — 52.0.
0 20 40 60 80 100 120 140 160 180
theta (degrees)
(b) by
Fig. 11. The bistatic RCS of a coated sphere. The conducting sphere has a k 2
diameterd and the coating has a thickngss: 0.05¢, a relative permittivity P.. = _0 VP T I A V. ,d2jC 33
er = 4.0 — 1.0, and a relative permeability, = 1. () d = 3Xo. (b) K im L (K P ) - Vi (33)
d = 6.
o
@i = ( > Y{VQ Tt (k- Pt ) - Ve k- (34)
The memory requirement and computational complexity can
be further reduced t6(Ns log Ns) using MLFMA [18]. To Where
implement MLFMA, the entire object is first enclosed in a —ik,. ; s
P T > ovje P=1e Jkor’m[mkxgi—i—anxnxgi
large cube, which is divided into eight smaller cubes. Each g
subcube is then recursively subdivided into smaller cubes until + as(T — ]}/;) (7 xg;)] dS (35)
the edge length of the finest cube is about half a wavelength. 0 A .
. . . . V¢ = e~ iko zm[(I_ k/c) . (omg» + asn X g.)
For two points in the same or nearby finest cubes, their im ; i i
interaction is calculated in a direct manner. However, when the s
. S o ) —azk x 1 x g;] dS (36)
two points reside in different nonnearby cubes, their interaction c
is calculated by FMM, as described above. The level of cubes V;,,, = / e o T jm! g; dS (37)
on which FMM is applied depends on the distance between <
the two points. The detailed description of MLFMA is giverand
in [18] and is not repeated here, although the equations to be T.
. 7 ~ . 2
treated are different. Tovm (k- Py ) = Z(—J)I(QI + DA (ko T )
The basic formulas derived with the addition theorem to 1=0
calculate the matrix elements for nonnearby groups, are given - P (P - k). (38)




310 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 3, MARCH 1998

Coated Brick Bistatic RCS, 5-level MLFMA, 519.7MB, 91253(s)

Monostatic RCS VV-Pol, 3-level MLFMA, 3aMB
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- Lx ¥, Y mu=(2.0,-1.0) / 10 d y t=0.1lambda
N Ly 170120 unknowns - ops=(2.0,~1.0)
ah mu=(1.5,-0.5)

20t
+ +30461 unknowns
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Fig. 13. The bistatic RCS of a coated brick for a plane wave incident alomgg. 14. The monostatic RCS of a coated finite cylinder intheplane. The
the = axis from the top with the incident electric field in thez plane. conducting cylinder has a diametér= 1.0)o and a lengthl = 2.0)¢ and
The conducting brick has a size\o x 2X0 X 2o and the coating has a the coating has a thickness= 0.1\, a relative permittivitye,, = 2.0 — 1.0,
thicknesst = 0.05)0, a relative permittivity-» = 3.0 — 52.0, and a relative and a relative permeability, = 1.5 — j0.5.

permeability i, = 2.0 — j1.0.

In the above, the integrals in (33) and (34) are over the unit

IV. CONCLUSION

spherical surfacey, resides in a groug-,, centered at,,,
g, resides in a groug,,, centered ar,,, ry, = r; — T,

ma
Tim' = T; —Pm/, and 7, = Ty — Po. The oy, a9, an

In this paper, we studied in detail a variety of formulations
for the hybrid FE-BI method for calculating 3-D electromag-
netic scattering by inhomogeneous objects. We showed that

a3 in (35) and (36) are the comb(in;ation parameters in thee efficiency and accuracy of the FE-BI method depend
TENENH formulation. Also in (38)k;~" denotes the spherical highly on the formulation and discretization of BIE used.
Hankel function of the second kind; denotes the Legendreye considered four formulations (TETH, TENH, NETH, and
polynomial of degree, and. denotes the number of multipoleNENH) obtained from the discretization of the CFIE and

expansion terms whose choice is discussed in [18]. we found the following from analysis (and it was verified
As described earlier, MLFMA converts the direct 'nteracﬁumerically).

tion component;; or @);; between two “far-away” points

¢ and j into three indirect components: 1) the radiation
component from the poinj to the group centern’, which

is represented by, ; 2) the translation component from

» TENH produces the best conditioned FE-BI matrix equa-
tion and NETH produces the worst conditioned matrix
equation. Therefore, when an iterative solver such as the

the group centern’ to another group center, represented
by T.....; and 3) the receiving component from the group
centerm to the point:, which is represented by ,,,,. Among
these three components, only the receiving component is
different for different formulations—the other two compo-
nents, the translation, and the radiation components are the
same.

The MLFMA described above is implemented for the so-
lution of the proposed FE-BI formulation. The combination
parameters used are = o, = 0.45 andas = 0.1. Fig. 11
shows the bistatic RCS of a conducting sphere having a
diameterd and coated with a lossy dielectric layer having a
thicknesst. The results are compared to those obtained using
the Mie series and good agreement is observed. The memory

CG algorithm is employed to solve the matrix equation,
TENH is the most efficient formulation.

* None of the four formulations produces accurate FE-BI

solutions because neither the RWG vector basis functions
(g;) nor its cross product with the unit norm@! x g;)

form a complete set of weighting functions for EFIE or
MFIE on a general surface where nontrivial equivalent
electric and magnetic currents exist simultaneously.

» Both TETH and NENH suffer from the problem of

interior resonance although the bandwidth of the bad
solution is extremely narrow compared to those resulting
from EFIE and MFIE. However, TENH and NETH are
immune to the problem of interior resonance although
their results are inaccurate.

requirement and the total CPU time on one processor of anBased on the analysis, we proposed a formulation
SGI Power Challenge (R8000) are given in Table I. Theg@ENENH) that has a good efficiency and a good accuracy and
results are obtained without using a preconditioner. Fig. 12 completely immune to the corruption of interior resonance.
shows the result for a sphere coated with two dielectric laye®he TENE part of this formulation is equivalent to testing the

Finally, Figs. 13 and 14 give two additional examples: ongertinent EFIE byg, + » x ¢g,. We then applied MLFMA to

for a coated conducting brick and the other for a coated finitee proposed FE-BI method to enhance its capability to deal
cylinder. with larger objects.
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