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Microwave Characterization and Modeling of the
Surface Impedance of Fractal Structure Copper Films

Emmanuel Troncet, Guy Ablart, and Levi Allam

Abstract—The surface impedances Zs of two thin metallic films
of different fractal structures realized on printed circuits have
been measured in free-space over the frequency range [10 GHz,
20 GHz]. A modeling scheme based on Maxwell’s equations and
Fresnel’s diffraction theory is proposed.

Index Terms—Fractals, impedance measurement, thin films.

I. INTRODUCTION

AMATERIAL of fractal structure is a highly disordered set,
presenting irregularities at all scales of observation. The

concept of fractal geometry, indispensable complement to the
Euclidean geometry, permits a description of a symmetry of
expansion. This notion is closely related to the scale-invariance
properties to which is associated the fractal dimension number
characterizing the fractal material’s morphology [1]–[3]. Such
structures present a special interest regarding their possible
properties of absorbing electromagnetic waves.

The present study is composed of three parts. First, we
give the realization procedure of two samples of known
fractal dimensions. Their parameters and the roles of each of
them will be presented. In the course of the second part, a
detailed description of the measure test bench in free-space is
presented along with an explanation of technical options that
we were required to adopt. Therefore, in order to point out the
properties of absorbing electromagnetic waves, experimental
investigations on surface impedance of our samples have been
done over the frequency range [10 GHz, 20 GHz]. Surface
impedance is composed of a real part (or resistance), which is
responsible of conduction losses, and an imaginary part (or
reactance), which translates the depth of wave penetration
in the material. Finally, in the third part, we propose a
modeling scheme of the physical behavior of two fractal
structures samples. For this it is necessary to investigate
locally the propagation across the material of a rectilinearly
plane-polarized wave (RPPW) and then to generalize the
phenomenon to the entire surface under consideration.

II. REALIZATION OF TWO FRACTAL STRUCTURE SAMPLES

In order to meet the necessities of the measure test bench
in free-space, we have designed each of the two samples
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Fig. 1. Sierpinski carpet.

Fig. 2. Curve of Von Koch.

on a dielectric support according to the technique commonly
employed in printed circuits, choosing sufficiently big formats:

• 10 cm� 10 cm for the fractal structures;
• 30 cm� 30 cm for epoxy supports.

We can, as such, design exactly the type of structure we
wish study to the chosen dimensions but limited by technical
contraints all the same. The two motifs of fractal nature we
have realized are the Sierpinski carpet and a curve of Von
Koch (Figs. 1 and 2).
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TABLE I
PARAMETERS OF THE SYSTEM

Fig. 3. Measure test bench.

In spite of the apparent complexity of these structures,
it’s easy to notice their self similarity [1]. The associated
fractal dimensions areD = 1:89 for the Sierpinski carpet and
D = 1:5 for the curve of Koch. The two samples have been
elaborated to the fourth-order iteration. It’s necessary to note
that the printed circuit method does not allow a high number
of iterations because of a limited resolution. The considered
parameters for the copper and the substrate are recalled in
Table I.

III. M ICROWAVE CHARACTERIZATION

A. Description of the Measure Test Bench

For our measurements, we have used the test bench of
Baccarat of the CERT [4]. Its principal constituents are two
antennas (one for transmission, the other for reception), an
analyzer HP8720, and an acquisition system. The principle of
this measure test bench is shown schematically in Fig. 3.

The sample that will be characterized is placed on the axis
between the two antennas and positioned with an angular
precision of 0.05� and 0.01 mm in distance. The receiving
antenna is fixed while the emission antenna is mounted on
a rotating support, which permits the measurements either in
bistatic or with variable incidences. In addition, one of the
antennas is adjustable in such a way that the measurements
can be made in parallel as well as perpendicular polarization.

For a correct functioning of the system, it is advisable to free
the sample under test from the external environment. For this
the test bench has at its disposal two complementary methods:

a temporal filtration of the response and a system of focussing
the wave.

The temporal filtration permits the elimination of strays
and, thus, improve the quality of the signal. The principle is
based on the Fourier transform of the signal, which provides
the temporal response. Then, this response is filtered in a
manner to keep only the part corresponding to the reflection
of the wave on the material. Thereafter, the inverse Fourier
transform gives back the frequency response. The choice of a
finite frequency band (called the observation window) is very
important in order not to depreciate the response. This choice
is made experimentally by trial and error.

The system of focusing the wave presents the advantage
of rendering negligible the effect of diffraction on the edges
of the sample. In fact, the energy remains concentrated at the
center of the sample and, thus, reaches less on its sides. The
two ellipsoidal confocal antennas have at their first focus a
horn obeying Gaussian illumination law. This device generates
a Gaussian beam between the two reflectors, which display
a plane wave structure at the sample level (centered sys-
tem). The electromagnetic plane waves are transverse waves
perpendicular to the direction of propagation.

The depth of the measure test bench field is 5�, where�
is the wavelength. It characterizes the distance, following the
z axis around the focal plane on which the wavefront can be
considered as plane. This distance is quite suitable for our
two samples made of thin metallic films (5� = 10 cm at
15 GHz). In order to neglect the effects of diffraction on the
edges, it is necessary to be provided with a sample whose



436 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 3, MARCH 1998

dimensions reach at least 6� � 6�. The design formats cited
above satisfy these conditions. A calibration of the measuring
channel permits to initialize the reflection of a thick metallic
plate (perfect reflector) at one and this under experimental
conditions. The frequency range is from 9.6 to 18.4 GHz with
a resolution of 0.011 GHz.

The surface impedance of the object is not directly acces-
sible, but is deduced from the measurement of the reflection
coefficientS11 (amplitude in decibels and phase in degrees)
by the following relationship:

Zs = 120�
1� S11

1 + S11
: (1)

The parameterS11 is obtained using an analyzer that compares
the wave transmitted to the receiving antenna with the incident
wave. The main advantage of this technique is the total absence
of contact with the material.

B. Experimental Results

The Figs. 4(a) and 5(a) show the evolution of the surface
impedance of each of the two samples as a function of the fre-
quency. An enlargement of the frequency scale [Figs. 4(b) and
5(b)] permits a more precise view of the surface impedance
behavior, which recurs all over the range. Each time the real
partRs is distinguished from the imaginary partXs.

In both cases, a relatively complex frequency behavior is
noticed. On each curve, one can observe multiple oscillations
of different frequencies which are superimposed. Each of the
two resistancesRs varies around an average value (approx-
imately 55
 for Sierpinski carpet and 90
 for the Koch’s
curve), which is as much higher as the copper content is lower
in the structure. Indeed, at the limit it must tend toward the
characteristic impedance of the vacuum, i.e., 377
.

IV. M ODELING

A. Principle

In order to foresee the behavior of a fractal copper film
and, more particulary, to calculate its surface impedance, we
propose to model the passage of a RPPW across our two
samples and to calculate the expression for the electric field
~E and magnetic field~H in the material. We will look for the
solutions of plane wave type in the different zones.

The model considered is represented on the Fig. 6.
The association of zones one and two constitutes the fractal-

structure copper film. Part one translates the metallic presence
("1; �0) while the part two translates the presence of a “hole”
("0; �0). Zone three represents the dielectric substrate("2; �0)
used as a support. Zones zero and four are made of air("0; �0).
“~k0” is the wave vector oriented according to thez axis.
The parametersa and b are, respectively, the thickness of
the copper and the combined thickness of the metal and the
dielectric substrate.

The RPPW reaches the fractal structure and then the part of
the wave that has been neither reflected nor absorbed traverses
the substrate. To this, add up the diffraction phenomena linked
to the presence of holes. After having expressed the fields~E

(a)

(b)

Fig. 4. Experimental curves ofRs andXs of the Sierpinski carpet.

and ~H in all the regions from the Maxwell’s equations and
having applied the conditions of continuity at the interfaces,
a system ofn equations withn unknowns is obtained. The
value of n depends directly on the fractal structure under
study. The resolution of such a system is carried out thanks
to a mathematical software. The surface impedance if finally
obtained from the following relation:

Zs =
E�(z=0)

H�(z=0)
(2)

whereE�(z=0) andH�(z=0) are, respectively, the sum of the
tangential components of the fields~E and ~H at the surface of
the fractal film, i.e., atz = 0.

B. Fresnel Diffraction Applied to the Fractal Structures

The Fresnel’s diffraction is applied when the condition of
Fraunhofer is not satisfied [5]; that is

l2 + L2

r�
� 1

where (l; L) are the dimensions of the rectangular aperture
and r the distance of the observation point from the plane of
diffraction.
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(a)

(b)

Fig. 5. Experimental curves ofRs andXs of a Von Koch curve.

Fig. 6. Schematic representation of the propagation of the RPPW.

In our case,l andL vary from some centimeters to some
millimeters for the two samples,r is of the order of 35�m
(copper thickness) and 1.5 cm� � � 3 cm for a frequency
range of 10–20 GHz. As such, the Fraunhofer condition is not
verified.

We consider a homogeneous plane wave that falls following
the normal to the surface of an indefinite plane screen perfectly

Fig. 7. Geometrical considerations.

conductor drilled with a hole (Fig. 7)

~E0 =Z0H
+
0 e

�jk0z~x (3)
~H =H+

0 e
�jk0z~y (4)

where ~E0 and ~H0 are, respectively, the incident electric and
magnetic fields,H+

0 is the modulus of the magnetic wave, and
Z0 the impedance of the vacuum.

The point of observationM (x; y; z) belongs to a certain
planez = constant(P ) quite close to the rectangular aperture
of dimensionsl � L. The resulting electric field at the point
M is given by

~Edi� =
jZ0H

+
0 k0

4�jr� r0j
(1 + cos v)(~v0 cos�� ~�0 sin�)

�

Z
S

e�jk0jr�r0j

jr� r0j
dx0 dy0 (5)

the integral covering the diffracting surface.
Conserving the quadratic term of the limited development

of jr � r0j; we obtain

jr � r0j =
p

(x� x0)2 + (y � y0)2 + z2

= z +
(x� x0)2 + (y � y0)2

2z
+ � � � :

Limiting our analysis to small values of anglev (i.e., taking
position in the neighborhood of thez axis), it can be admitted
that

jr � r0j � z�1 and

(1 + cos v)(~v0 cos�� ~�0 sin�) � 2~x0:

Under these considerations, one obtains

~Edi� (z) =
jZ0H

+
0 k0

2�
;
e�jk0z

z

Z l=2

�(l=2)

Z L=2

�(L=2)

� e�jk0((x�x0)2+(y�y0)2=2z) dx0 dy0 ~x0: (6)
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The calculation of these two integrals of the same type is
performed with the help of a change of variable. We put

k0(x� x0)2

2z
= t2

which gives
Z l=2

�(l=2)

e�jk0((x�x0)2=2z) dx0 = �

r
2z

k0

Z
e�jt2 dt:

We proceed in the same manner for the integral with respect
to y0.

In this way, we have obtained the integrals (called Fres-
nel integrals) for which the conventional notations are the
following:Z u

0

ejt
2

dt =

Z u

0

cos t2 dt� j

Z u

0

sin t2 dt

=

r
�

2
[C(u)� jS(u)]:

The functionsC(u) and S(u), damped sinusoids tending
toward 0.5, are given in the tables.

The expression of the electric field becomes

~Edi�(z) =
jZ0H

+
0

2
e�jk0z

� [C(u)� jS(u)]u2u1 [C(v) � jS(v)]v2v1~x0

with

u1 =

r
k0
2z

�
x+

1

2

�
u2 =

r
k0
2z

�
x� 1

2

�

and

v1 =

r
k0
2z

�
y +

L

2

�
v2 =

r
k0
2z

�
y � L

2

�

or

~Edi� (z) =
jE0(z)

2
� [C(u)� jS(u)]u2u1 [C(v) � jS(v)]v2v1~x0: (7)

Following the same reasoning, we obtain the magnetic field

~Hdi�(z) =
jH0(z)

2
� [C(u)� jS(u)]u2u1 [C(v)� jS(v)]v2v1~y0 (8)

with

H0(z) =
E0(z)

Z0

= H+
0 e
�jk0z:

In order to simplify, the diffraction fields are considered only
up to the observation pointM (0; 0; z). This implies

u1;2(z) = �
p
�

2

lp
�z

and v1;2(z) = �
p
�

2

lp
�z

:

We notel̂ = (l=
p
�z) andL̂ = (L=

p
�z) the wave dimensions

of the aperture.

For a square aperture (the most frequent case for our
samples) the wave dimensionŝl and L̂ are identical, i.e.,
u1 = v1 and u2 = v2. Hence

~Edi�(z) =
jE0(z)

2
[[C(u)� jS(u)]u2u1 ]

2~x0 (9)

and

~Hdi�(z) =
jH0(z)

2
[[C(u)� jS(u)]u2u1 ]

2~y0: (10)

As an indication, one can easily verify that if in one hand
l̂ = L̂ and on the other̂l � 1 (aperture very large compared
to �), the expressions of~E and ~H are considerably simplified

~Edi� (z) =Z0H
+
0 e
�jk0z~x0

= ~E0 knowing thatC(�u) = �C(u)

~Hdi� (z) =H+
0 e
�jk0z~y0 = ~H0 and S(�u) = �S(u):

We find in these conditions the expression of the incident wave
which has not been distorted (3), (4).

C. Resolution of a System of Equations and Results

The route of the RPPW across the entire sample is translated
by a set of equations issued from Maxwell’s equations. The
components of the fields~E and ~H are expressed as function of
z in each zone of the Fig. 6 according to whether to incident
wave has encountered a hole or a copper film. Applying the
conditions of continuity to the interfaces, one obtains a system
of n equations withn unknowns

� in z = 0 copper

8><
>:
(H+)0 +H�0 ) � (H+

1 +H+
1 ) = 0

Z0(H
+
0 +H�0 )� j

k1
�1

(H+
1 +H�1 )

= 0

� in z = a copper

8>>>>>><
>>>>>>:

(H+
1 e
�jk1a +H�1 e

+jk1a)
�(H+

2 e
�jk2a +H�2 e

+jk2a)
= 0

j
k1
�1

(H+
1 e
�jk1a �H�1 e

+jk1a)

�Z2(H
+
2 e
�jk2a �H�2 e

+jk2a)
= 0

hole�

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�
H+
0

2
e�jk0a[[C(u)� jS(u)u2u1 ]

2 +H��
0

�

�(H�+
2 e�jk2a +H��

2 e+jk2a)
= 0

Z0

�
j
H+
0

2
e�jk0a[[C(u)

�jS(u)u2u1 ]
2 �H��

0

�

�Z2(H
�+
2 e�jk2a �H��

2 e+jk2a) = 0

� in z = b copper

8>><
>>:
H+
2 e
�jk2b +H�2 e

+jk2b

�H+
3 e
�jk0b = 0

Z2(H
+
2 e
�jk2b �H�2 e

+jk2b

�Z0H
+
3 e
�jk0b = 0

hole�

8>><
>>:
(H�+

2 e�jk2b +H��
2 e+jk2b)

�H�+
3 e�jk0b = 0

Z2(H
�+
2 e�jk2b �H��

2 e+jk2b)
�Z0H

�+
3 e�jk0b = 0:
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Following is an explanation of the parameters:

• the index gives the concerned zones (Fig. 6: zone 0—air;
zone 1—copper; etc.);

• the exponents “+” and “�” indicate, respectively, that
the wave is incident or reflected;

• the exponent “�” indicates the diffractant aperture to
which these equations are related.

In z = a and z = b; there are as many pairs of equations
outside copper as there are different holes. It leads to a system
of 22 equations with 22 unknowns for the Sierpinski carpet,
and of 30 equations with 30 unknowns for the curve of Koch
(respectively, four and six different apertures). The resolution
is done as function of the amplitude of the incident waveH+

0 .
An elementary cell of the sample associated withH+

0 is
designated, then the set of fields~E are added up and~H listed
at the surface of the fractal film taking into account—on one
hand, the number of “full” cells (copper) and on the other
hand, the size of the “empty” cells (diffractant apertures) and
their surface area. This way one obtainsE�0 as functions of
H�0 and, according to (2), the surface impedanceZs.

The results of this modeling are shown on the Figs. 8 and
9 with on one hand, the curves over the range (10 GHz, 20
GHz), and on the other hand, an enlargement on the interval
[13 GHz, 14 GHz].

In both cases, the order of magnitude ofRs and Xs
is satisfactory. Each time, the principle oscillation is well
reproduced by the simulation. Moreover, it is observed on
the theoretical curves that a high number of oscillations of
diverse frequencies are also discerned on the experimental
results. Nevrtheless, amplitudes of experimental curves look
to be weaker, certainly because of a too large attenuation of
the electromagnetic wave. Taking into account the frequency
domain under consideration, the substrate generates losses
cannot be neglected. So, we have chosen to introduce into the
theoretical calculations a value of the dielectric permittivity
containing a loss angle. We have finally opted for"r2 =
3:1e�j0:6.

An extension of the range [1 GHz, 80 GHz] of the sim-
ulation of the two samples (Fig. 10) provides curves with
one principal oscillation on which are transplanted other
oscillations of diverse frequencies and small amplitudes. The
frequency and the amplitude of each main oscillation are
closely correlated to the characteristics of the dielectric sub-
strate. Indeed, the frequency band�F (�F : frequency band
on which is extended one period of the oscillation under
consideration) tends to decrease with the increase (on one
hand) of the thickness of the substrate and (on the other hand)
of the dielectric losses. In addition, the more or less perfect
character of the dielectric acts also on the principal amplitude.
Taking into account the small size of the experimental ob-
servation window compared to the simulation range [1 GHz,
80 GHz], the smallest variation of"r2 generates a different
slope on the theoretical behavior over the range [10 GHz, 20
GHz]. That is why the difference between the slopes is not
fundamental as linked to the dielectric substrate. One can note
(with identical supports) that the ratio of the average value of
the two theoretical curvesRs (Fig. 10: hRsiKoch � 160 


(a)

(b)

Fig. 8. Experimental and theoretical curves ofRs andXs of the Sierpinski
carpet.

and hRsiSierpinski � 55 
) is equivalent to the inverse
ratio of the copper contents in the two structures equal to
approximately “2.9.” The multiple small oscillations result
from the accumulated effects of each diffractant aperture. The
Table II explains that to each hole of known area, an oscillation
can be observed on the theoretical curves (Figs. 8–10). Indeed,
we find

�Fi

�Fj
=

Sj
Si

where�Fi andSi represent, respectively, the frequency band
of the oscillationi and the area of the diffractant surfacei.

The developed expression ofZs has an overall imaginary
part proportional to the size and the number of each diffractant
aperture. For the Sierpinski carpet, whose each hole of a
different size squares with a new iteration, we can deduce
from the theoretical curvesXs the following relation:

Df =

ln

�
�Ai

�Ai+1

�2

ln

�
�Fi

�Fi+1

�1=2
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TABLE II
DIFFRACTANT APERTURESAREA AND FREQUENCY BANDS �F OBSERVED ON THE THEORETICAL CURVES

(a)

(b)

Fig. 9. Experimental and theoretical curves ofRs andXs of a Von Koch
curve.

whereDf is the fractal dimension,�Ai and �Fi, respec-
tively, the amplitude and the frequency band�F of the
oscillation i, and the(i + 1) level the first oscillation that
is superimposed on the leveli [Fig. 10(a)]. This relation is a
characteristic of the fractal geometry as opposed to Euclidean
structures.

(a)

(b)

Fig. 10. Simulation ofRs and Xs of the two samples for a frequency
included between 1 and 80 GHz.

We can also verify that the smaller apertures generate the
most important secondary oscillations. Moreover, all the os-
cillations damp down with the increase of the frequency—the
wavelength becoming very short beside the holes’ size.

V. CONCLUSION

We have measured, in free-space, the surface impedance of
the copper films of fractal structure having fractal dimensions
D = 1:89 and D = 1:5. The proposed modeling from
Maxwell’s equations (locally applied) and Fresnel’s diffraction
(generalized to the set of the diffractant apertures) gives
an overall interpretation of the phenomena experimentally
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observed within the range [10 GHz, 20 GHz]. It also appears
that, for a structure which the process of iteration is easy,
the real and imaginary part of the surface impedance take
account of the fractal nature. In fact, this innovating result
was expected thanks to the modeling that describes accurately
the process of iteration. So, the number and the size of each
apertures as well as the scale law are included in the final
relation of the surface impedanceZS ; that is, the reason we
supposed the curves were containing the information about
fractal dimension. Thus, we have put in evidence the existence
of a particular scale law in the impedance behavior linked
to fractal aspect. Our problem consists now in confirming
from the equations the relation graphically determined. At
last, for our two samples, the average value of the signal is
directly linked to the quantity of copper in the surface and the
oscillations result from the superposition of all the effects due
to the diffraction.
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