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The Expansion Wave Concept—Part II: A New Way
to Model Mutual Coupling in Microstrip Arrays

Guy A. E. Vandenbosch,Member, IEEE, and Filip J. Demuynck,Student Member, IEEE

Abstract—A new expansion scheme is introduced to solve the
integral equations describing the mutual coupling in microstrip
arrays. The scheme is based on the fact that at larger distances
the Green’s functions in the stratified dielectric medium of
the antenna structure can be approximated using analytical
expressions. This allows one to describe the waves propagating
between the elements thus causing the mutual coupling with a
small number of parameters. Since only these parameters have
to be determined, the resulting number of unknowns is much
smaller than with conventional rigorous techniques. The accuracy
of the scheme is illustrated by a comparison of measured and
calculated data for both a two-element and a linear eight-element
microstrip array antenna.

Index Terms—Green’s functions, inhomogeneous media, mi-
crostrip arrays.

I. INTRODUCTION

A rigorous, widely used method to analyze microstrip an-
tennas is to solve the integral equations describing the

structure using the method of moments. It is well known
that this procedure can yield highly accurate results. At first,
authors either used a subsectional [1] or an entire domain
scheme [2]. Subsectional schemes are the most flexible, but
require the largest calculation times. Entire domain schemes
with only a few expansion functions do provide a lower
calculation time, but the flexibility is completely lost. Only
simple shapes can be analyzed. The mixed variant of the com-
bined expansion scheme introduced in [3] combines the two
existing techniques, keeping the advantages and eliminating
the disadvantages of both. The idea consists of constructing
secondary entire domain expansion functions as fixed com-
binations of primary subsectional expansion functions. The
procedure introduced in this paper is, in fact, a powerful gen-
eralization of the mixed expansion technique introducing the
concept of expansion waves. Instead of constructing secondary
entire domain expansion functions at the level of element
components (patches, probes,. . .), they are constructed at
the level of complete elements. Since the number of element
expansion functions may be chosen much lower than the
number of primary expansion functions on the components
of the element, the number of unknowns to be determined can
be much lower than if the primary expansion functions were
used throughout. This results in a much lower calculation time.
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II. OUTGOING WAVES

Consider an element of an array in a stratified dielectric
medium. The coordinatesx and y are parallel to the layer
structure and the coordinatez is normal to the layer structure.
The observation point is located at(x; y; z). The lateral
position of a source point is(x0; y0). The lateral position
(0, 0) is the reference point of the element considered. An
electromagnetic field componentF generated by an element
consisting of physical components (such as patches, probes,
apertures,. . .) in general can be written as

F (x; y; z) =
X
j

Z
x0

Z
y0

Sj(x
0; y0)

�GF
j (x� x0; y � y0; z) dx0 dy0 (1)

where eachSj is a source derived from the currents flowing
on the components andGF

j its spatial Green’s function for
componentF of the electromagnetic field.F can be a lateral
or z component of the electric or magnetic field. For isotropic
dielectrics, it was proven in [4] that expressions can be
found for the electromagnetic field involving Green’s functions
only depending on the lateral distance between source and
observation point. In [5], it was proven that the behavior of
a spatial Green’s function at larger distances is determined
by the dominant singularities of its spectral equivalent. It was
shown that taking into account the dominant singularities only,
an excellent approximation of the spatial function is obtained,
even at relatively small distances from the source. Two types of
dominant singularities occur—surface wave poles and branch
point singularities—both for the two independent systems of
the layer structure of the antenna under consideration—the TE
and TM system. The pole positions can differ in both systems.
The branch point position is the same in both systems. The
positions of the singularities depend on the layer structure
only. For the branch point, two square-root singularities are
taken into account, both in the TE and TM system. Based on
this, it was proven in [5] that the behavior of a spatial Green’s
function at larger distances can be approximated excellently by
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wherePTM, PTE, andK are the dominant TM poles, the
dominant TE poles, and the branch point, respectively, and
R =

p
(x� x0)2 + (y � y0)2. For each singularity taken

into account, the corresponding term in (2) is the product
of a function of z depending on which field component is
considered, a constant depending on which source type is
considered, and a function ofR. For a given Green’s function
(given field componentF and source typej), all three can be
determined from the knowledge of the layer structure only. If
the observation point is not too close to the source compared to
its dimension, using cylindrical coordinates the contribution of
a singularity may be approximated usingR ' r for amplitude
andR ' r � r0 cos(�0 � �) for phase terms. Insertion of (2)
in (1) then yields
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The interesting properties of this last expression are: 1)
that for each singularity present, the contributions due to
the different sources all have the samer-dependence andz-
dependence; 2) that the integrations no longer are dependent
on the exact position of the observation point, only on the
direction� in which it is located; and 3) that considering the
contributions due to the singularities separately, once a single

field component of the electromagnetic field is determined
using (3), all the other components can be derived from it
without having to re-apply (3) to each of them. The physical
interpretation is that for each singularity that needs to be con-
sidered to obtain a good approximation for the spatial Green’s
function, the element emits a wave. Both ther dependence
andz dependence of this wave only depend on the singularity.
They can be determined in advance from the knowledge of the
layer structure only. Only the amplitude in each lateral angular
direction� depends on the element itself, more specifically on
the type of components in the element and on the current
flowing on them. It has to be calculated via easy integrations
over all the components and a summation of the resulting
integrals. For mutual coupling calculations, an element can
thus be characterized by a number of outgoing waves from
which the outgoing expansion waves will be derived equal to
the number of dominant singularities of the layer structure.
The r dependence andz dependence of these waves can be
determined uniquely once the layer structure is completely
defined. They do not depend on the element configuration.
Only the� dependence has to be calculated numerically from
the currents flowing on the element components.

III. I NCOMING WAVES

Each element of the array considered is excited not only
by its own feed, but also by the outgoing waves emitted
by the other elements. This, in fact, is mutual coupling. If
the element emitting the outgoing wave is not too close to
the element receiving it, the amplitude of the incoming wave
can be considered constant over the receiving element. Only
phase variations have to be taken into account. Since an
incoming wave hitting the element from a certain direction
is completely known except for its amplitude, the element can
be solved for this incoming wave after normalization using any
technique available (for example solving the integral equations
for the element in question using subsectional expansion
functions in a moment method technique). The outgoing
waves emitted by the currents induced on the element by the
incoming wave can be determined. This means that the relation
between the incoming and outgoing waves on the element can
be established. This relation does not depend on the array
structure, only on the layer structure (which determines the
shape of the waves, i.e., thez and r dependence and the
interrelation between the wave field components), and the
element structure (which determines the amplitude and the�

dependence of the waves).

IV. SOLUTION OF AN ELEMENT

In practice, the first step to solve an array is to solve the
element from which it is built, simultaneously for the following
excitations: the feeds exciting the element directly and the
waves coming in from the different lateral directions. For all
these excitations, the outgoing waves emitted by the currents
induced on the element can be calculated. For a numerical
solving procedure, both the outgoing and the incoming waves
have to be described with a finite number of parameters. This
is done in the following two sections.
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Fig. 1. Discretization of the outgoing waves.

A. Outgoing Expansion Waves

For the outgoing waves, we approximate the function de-
scribing the complex amplitude of the wave in terms of
the angle� using a number of basis functions. The wave
corresponding to such a basis function is called an outgoing
expansion wave. Using subsectional expansion, we arrive at
a scheme as depicted in Fig. 1. Notice that the value at the
end point equals the value at the starting point due to the fact
that � = 0 is the same direction as� = 2�. In case of the
subsectional scheme, it is easy to refer to a discrete number of
reference directions for the outgoing expansion waves (where
the corresponding subsectional basis function has the value
one), namely the numberNw. It is evident that other basis
functions can be used to describe the complex amplitudes of
the outgoing waves. Of course, this leads to other types of
outgoing expansion waves.

B. Incoming Expansion Waves

In a numerical solving procedure, it is impossible to con-
sider waves coming in from all directions. Therefore, only
waves coming in from a finite number of reference directions
are considered. They are defined as the incoming expansion
waves. Waves coming in from other directions are approxi-
mated by a decomposition into the two neighboring incoming
expansion waves. If the number of incoming expansion waves
is sufficiently large, the error introduced by this approximation
is negligible.

C. Matrix Relations

The relation between outgoing expansion waves on the
one hand and primary feeds (feed voltages) and incoming
expansion waves on the other hand can be expressed in matrix
form

W e
o = W e

oF
e
v �F

e
v +W e

oW
e
i �W

e
i (4)

whereW e
o , W e

i , andF e
v are the column matrices containing

the amplitudes of the outgoing expansion waves, the incoming
expansion waves, and the feed voltages, respectively, for the
element andW e

oF
e
v andW e

oW
e
i the matrices containing the

coupling coefficients between the outgoing expansion waves
and the feed voltages and between the outgoing expansion
waves and the incoming expansion waves, repectively, for
the element. The superscripte indicates that the matrices are
for a single element. Similarly, the relation between the feed

responses (the feed currents) on the one hand and the feed
voltages and the incoming expansion waves on the other hand
can also be expressed in matrix form
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e
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The dimension of bothW e
o andW e

i is the product of the
number of dominant singularities (both TM and TE) andNw.
The dimension of bothF e

v andF e
i is the number of feeds.

V. SOLUTION OF THE ARRAY

For an array withNe elements, it is clear that there are
incoming and outgoing expansion waves for each element.
The total number of incoming and outgoing expansion waves
for the array is thus the product ofNe with the number of
expansion waves for a single element. Equations (4) and (5)
can be written for the global array

Fi =FiFv � Fv + FiWi �Wi (6)

Wo =WoFv � Fv +WoWi �Wi (7)

where the global column matrices consist of the column
matrices for the different elements and the global coupling
matrices consist of the coupling matrices for the different
elements on their diagonals. The dimensions of the respective
matrices are the dimensions of the corresponding matrices for
a single element multiplied with the number of elements. It
is clear that for each array geometry there is also a relation
between the incoming expansion waves and the outgoing
expansion waves. Each outgoing expansion wave emitted by
one of the array elements will generate incoming expansion
waves on a subset of the total number of elements of the
array. In order to establish the relationship, the definition of
the concept outgoing expansion waves and the decomposition
technique for incoming expansion waves have to be used.

In Fig. 2(a), it is depicted how the amplitudes of the
expansion waves emitted by an element in two neighboring
reference directions give rise to an amplitude of a wave emitted
in an intermediate direction. In Fig. 2(b), it is depicted how
a wave hitting an element from a certain direction can be
decomposed into the two neighboring incoming expansion
waves. Using these two principles the relation between the
discrete number of incoming expansion waves and the discrete
number of outgoing expansion waves in the array can be
written as

Wi = WiWo �Wo: (8)

It is important to emphasize that most of the elements in
the matrixWiWo are zero. Solving (6)–(8) yields

Fi =(FiFv + FiWi � (U �WiWo �WoWi)
�1

�WiWo �WoFv) � Fv (9)

whereU is the unit matrix. The matrix between brackets in
(9) is the admittance matrix of the feed structure of the array
calculated including full mutual coupling.
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(a)

(b)

Fig. 2. (a) Interpolation for outgoing expansion waves. (b) Decomposition
of an incoming expansion wave.

VI. NUMERICAL RESULTS

In order to prove the capabilities of the new technique,
it was applied to the double scalar form of the mixed-
potential integral expressions for the electromagnetic field in
a stratified dielectric medium derived in [4]. The calculations
were performed using the subsectional expansion technique of
[4] to model the element and the expansion wave concept to
model mutual coupling in the array. On the patches 10� 10
subsections and for each element, eight reference directions
were used(� = 0; �=4; �=2; � � �).

The first antenna structure involved is the array of two
elements given in [6]. Each element consists of a coaxially fed
microstrip patch. The dielectric layer between ground plane
and patch has permittivity 2.55 and thickness 1.57 mm. The
patch hasx dimension 16.93 andy dimension 16.00 mm. The
coaxial feed is located at 5.5 mm from the center of ay-
directed patch edge. For this antenna theS parameters were
calculated for both theE-plane and theH-plane configuration
for several separations between the elements at the calculated
frequency of the element (5.08 GHz). The results are given
in Fig. 3.

The second structure is the linear eight-element microstrip
array antenna of [3]. The layer configuration consists of a first
dielectric layer (made of foam) with a thickness of 6.35 mm

(a)

(b)

Fig. 3. The calculated and measured amplitude ofS12 at the calculated and
measured resonant frequency for both (a) theE-plane and (b) theH-plane
case as a function of the normalized distance between the reference points
of the two elements.

and with a relative permittivity of 1.03 sandwiched between
a ground plane and a second dielectric layer, made of 3M
Cuclad, with a thickness of 0.50 mm and with a relative
permittivity of 2.17. The patch configuration is located on
top of the second layer and consists of eight square patches
with dimension 31.9 mm. Each patch is fed by a coaxial
feed located 4.95 mm from the center of an edge. The used
connectors are of the SMA type. The patches are positioned
in each other’sE or H plane. The distance between the patch
centers is 60 mm. For this antenna theS parameters calculated
between the feed of the first patch and the feeds of the seven
other patches are compared to the measured ones both for the
E-plane and theH-plane configuration at three frequencies.
The results are given in Figs. 4 and 5.

Both examples illustrate the accuracy of the expansion wave
technique. It yields results which agree very well with the
measured results concerning both amplitude and phase.

VII. D ISCUSSION

Theoretically, the accuracy of the expansion wave technique
as presented here is determined by three approximations. The
first one is the approximation of the exact Green’s functions
by the superposition of their dominant pole and branch point
contributions. The accuracy of this approximation is discussed
in the first part of this paper. The second one is the transversal
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Fig. 4. The calculated and measured amplitudes of theS parameters between the feed of the first element and the feeds of the seven other elements at
the frequencies 3.125 GHz, 3.3 GHz (the resonant frequency), and 3.475 GHz, both for theE-plane and theH-plane case as a function of the normalized
distance between the reference point of the first element and the reference points of the seven other elements.

“far-field” approximation used in deriving (3) from (1) and
(2). The error caused by this depends on the ratio of the
size of the element emitting the waves and the distance from
the observation point. The third is the transversal “far-field”
assumption that the wave incident on an element can be
regarded as having a constant amplitude over the element
and plane wave phase variation over the element. It has
to be emphasized that these “far-field” approximations are
fundamental. The inaccuracy introduced by them cannot be
overcome by increasing the number of expansion wave direc-
tionsNw. The traditional considerations concerning accuracy
of “far-field” approximations hold (in case of an element of
sizeD = �vacuum=2; the well-known threshold2D2=�vacuum
yields a distance of�vacuum=2).

In order to allow smaller unit cells, the accuracy of the
expansion wave scheme has to be improved. In our view, this
can be reached by using entire domain expansion both for
the outgoing and the incoming waves. The functionscos(m�)

with m = 0; 1; 2; � � � andsin(n�) with n = 1; 2; � � � instead of
rooftops can be used to form the outgoing wave of Fig. 1. The
same functions can be used to describe the incoming waves.
It is evident that this modification to the expansion wave
technique has no effect on the solving procedure described
in this paper. Only the elements in the coupling matrices will
change. The advantage of this alteration is that by using a
cylindrical decomposition of the waves actually present in the
structure, the “far-field” approximations are not necessary any
more. The accuracy of the description can be increased just
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Fig. 5. The calculated and measured phases of theS parameters between the feed of the first element and the feeds of the seven other elements at the
frequencies 3.125 GHz, 3.3 GHz (the resonant frequency), and 3.475 GHz, both for theE-plane and theH-plane case as a function of the normalized distance
between the reference point of the first element and the reference points of the seven other elements.

by increasing the maximumm andn used thus by using more
expansion waves. Only the first approximation remains.

Very important is that in the numerical results section, it
is proven that the new theoretical concept of the expansion-
wave technique (introduced in the sections before) does work
for practical antennas. Comparing calculations with measure-
ments, the technique yields very good agreement. However,
the expansion-wave technique is not just an alternative to
more rigorous techniques. In our view, it eliminates efficiently
and elegantly the problem that arises when one wants to use
the flexible subsectional expansion technique for arrays of
arbitrary elements—the large number of unknowns necessary
to describe mutual coupling. To get good accuracy, only eight
reference directions per element were needed in the numerical

results section compared to 10� 10 subsections per patch if
subsectional expansion was used also at the array level.

Although in this paper the technique was only applied to
arrays of probe fed single patch elements, from the theoretical
line of reasoning, it is clear that it can be applied also in
the case of other feed types, stacked patch configurations, and
even more complex elements. We expect that for all these
elements the total number of eight reference directions will be
sufficient to get high accuracy. For very complex elements,
involving multiple patches with arbitrary shapes, probes, and
other possible components, this will result in an enormeous
reduction of the number of unknowns at the array level.
The calculation time on the array level will be a constant
independent of the configuration of the element.
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The software available at this moment always takes into
account all singularities discussed in this paper. For larger
arrays, this still results in a large number of unknowns.
Currently, we are working on a scheme to decide for a given
layer structure and array configuration what singularities as
a minimum have to be taken into account in order to get
accurate results. When this is finished, a comparison between
measured results and results calculated using the expansion
wave technique will be possible for the 7� 7 array given
in [7].

VIII. C ONCLUSIONS

Based on the results of Part I, a new way is derived
to model mutual coupling in microstrip arrays. It is shown
how the new technique yields a number of unknowns much
lower than for conventional subsectional expansion techniques
without changing the accuracy. The technique opens the way to
model larger arrays of arbitrary elements in a more acceptable
calculation time.

REFERENCES

[1] J. R. Mosig and F. E. Gardiol, “General integral equation formulation
for microstrip antennas and scatterers,”Proc. Inst. Elect. Eng., vol. 132,
pt. H, pp. 424–432, Dec. 1985.

[2] D. M. Pozar, “Input impedance and mutual coupling of rectangular
microstrip antennas,”IEEE Trans. Antennas Propagat., vol. AP-30, pp.
1191–1196, Nov. 1982.

[3] G. A. E. Vandenbosch and A. R. Van de Capelle, “Use of a combined
expansion scheme to analyze microstrip antennas with the method of
moments,”Radio Sci., vol. 27, pp. 911–916, Nov./Dec. 1992.

[4] G. A. E. Vandenbosch and A. R. Van de Capelle, “Mixed-potential
integral expression formulation of the electric field in a stratified
dielectric medium—Application to the case of a probe current source,”
IEEE Trans. Antennas Propagat., vol. 40, pp. 806–817, July 1992.

[5] F. J. Demuynck, G. A. E. Vandenbosch, and A. R. Van de Capelle, “The
expansion wave concept—Part I: Efficient calculation of spatial Green’s
functions in a stratified dielectric medium,”IEEE Trans. Antennas
Propagat, this issue, pp. 397–406.

[6] A. H. Mohammadian, N. M. Martin, and D. W. Griffin, “A theoretical
and experimental study of mutual coupling in microstrip antenna arrays,”
IEEE Trans. Antennas Propagat., vol. 37, pp. 1217–1223, Oct. 1989.

[7] D. M. Pozar, “Finite phased arrays of rectangular microstrip patches,”
IEEE Trans. Antennas Propagat., vol. AP-34, pp. 658–665, May 1986.

Guy A. E. Vandenbosch (M’92), for photograph and biography, see this
issue, p. 406.

Filip J. Demuynck (M’95), for photograph and biography, see this issue, p.
406.


