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Virtual Array Synthesis Method
for Planar Array Antennas

Leo I. Vaskelainen

Abstract—A new array antenna synthesis method, which we synthesis method also gives an easy method to synthesize the
call the virtual array synthesis method, is presented. In this excitation values for thinned arrays of any geometry and find

method, the excitation values of a virtual array are synthesized o |egs significant elements for removal. An example is given
using some known synthesis method. The geometry of the virtual .

array can be chosen so that there will be a suitable synthesis in Section V.
method for that geometry and the synthesis of the virtual array

can be done accurately enough. In the synthesis method pre- II. VIRTUAL ARRAY METHOD
sented, the excitation values of the virtual array are transformed ) - )
into the excitation values of the actual array geometry. Matrix If we have an unknown array antenna with isotropic

operations are simple and large arrays can be easily synthesized.elements, each having position vecfipr and excitationz;, the
radiation patternZ(#) of the array antenna for the direction

|. INTRODUCTION of a unit vectoru can be written
HERE are several synthesis methods for planar arrays K L
having elements on a rectangular lattice and rectangular E(u) = Z ay, - /P70 1)
boundary [1], [6]; for example, the Fourier transform method k=1

or polynomial expansions. Polynomial representation WiWhereko — 27/X is the wave number in free-space. On the
roots radially displaced from the unit circle can be used f%rtFer hand, we can write the radiation pattéri) of a known

eqw_spaf:ed linear arrays and, W'_th a restricted number ay antenna withP isotropic elements, each having position
destination array factors, for equispaced planar arrays [¢ é:torﬁ and excitationo
P p

Contour transformation can be used to synthesize contoure
footprints that are symmetric about both theand y axes P o
[2]. For more general array geometry and destination beam D(u) = Z Yp cefber 2)
shape, the least squares synthesis or quadratic programming p=1

type synthesis method [3] must be used, often combinedyyg known array antenna can be “virtual” in the sense that it
with iterative methods [5], which, with large arrays, leads t ,sed only as a destination array, which is easy to synthesize

difficult calculation and often to iterative optimizing methodsy can be impractical to realize. If we define the error function
In Section I, it is shown that by one matrix inversion and

two matrix multiplications with real-valued easily calculated e(u) = E(u) — D(u) (3)

matrices, the excitation values of an array can be transformed

into the excitation values of another array so that the integfld calculate the integral of the square of the absolute value

of the squared absolute value of the difference between th&éerror for all directions (over the solid angfe = 4w)

two array factors is minimized. If we thus have a suitable

synthesis method for some array geometry, it is easy to convert s = ]{ e(u)e™ (u) d2

this synthesis result for another geometry. & . ,

For planar arrays with a rectangular lattice, the Woodward _ ]{ {Z €9 FoTR A _ Z o e;’kon‘p.n}

synthesis is a very fast and simple synthesis method. In Q ’ r

Section Il, the one-dimensional (1-D) Woodward synthesis K ,

represented in [1] or [6] is rewritten for two-dimensional {Z azez’jkm.a _Z a;e]’koﬁp.a} aQ  (4)
p=1

k=1 p=1

(2-D) arrays. A large Woodward synthesized array can be
used as a virtual array during the synthesis process and the
excitation values of that virtual array can be transformed infoturns out thatds/0Re(a;) = 0 and9s0Im(a;) = 0 when
the excitation values of the actual array geometry, as shown K
in Section IV. In Section V some examples of the use of the Z ]{ —jEo(7i— %)

. . . ag e d?
virtual array synthesis method are calculated. The virtual array a

k=1
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The selection of the error function of (3) leads to a verglirection. For this array we write the normalized array factor
simple solution for excitation values, as we can see. Thewhere the excitations in (1) are

cost functions does not optimize the phase of the gain function 1 (2mk /MY m—(M 413/ 7))
as the type of cost function used, for example, in [7] can. Oy = UN e "o
The analytical solution for the integrals in (5) does not allow =i 2ml/N)(n—(N+1/2)) (10)

the use of different weight values in different directions as is
usually used in the least-squares type optimization methasisd elementnn is in locationz = d, (m — (M + 1)/2),
[8]. o y =d, (n— (N +1)/2).

Type ¢, e~/*™% dQ integrals are easily calculated in a When these excitations and element locations are substituted
local polar coordinate system, where the directiof&f¢ =0 in (1) beamsFy(f,) can be readily calculated (see, for
example, [1]). The orderg and! (k = 0,£1,£2---1 =

]{ =ikl goy — /7T sin() - e~ FolFleos(®) g o dp 0,E1,%2- ) represent different beams.
Q 0 0 These beams}; (¢, ¢) are orthogonal in the sense that they
Car Sin]§k|0‘|‘|ﬂ)' (6) have zeros in the same directions
ol|”

0 — s A
st — arcos M @

ftox ) s A\
7) s =arcsin | - - @/ 1- <M : @> (11)

while in orthogonal directions = k,t = [ Fy(6,¢) has

a maximum (Fy;(Pxi, vx1) = 1). There may also be other
maximums (grating lobes), which are directed in orthogonal
directions(s,?) and which obey the equations— & = pM
andt — [ = ¢V, wherep andq are integerg0,+1,42, - - ).

we can write a matrix equation for the excitations that ~ From now on we select only those orthogonal directions
minimizes the integraé of the square of the absolute value ofvhere there is only one maximum and the orthogonal direc-

By defining aK x K matrix S, with elements

Son i, 1) = 4 R0l Z 7 )

kol — 7|
and aK x P matrix S,, with elements

sin(kol|7; — fp )

SM) Zap =4r sy Y
(i:p) kol — 70|

(8)

error for all the directions defined in (4) tions receive real values, which means that we must select the
(s,t) values according to (12a) and (12b)
STTA = STN A7)
A=lay ar - ag]” —M/2< s < M/2
— <
A” = [a1 [ - O[;(]T (9) N/2 = t < N/2 (123)
where1" is the transpose of a matrix. —Md,[A<s< Md, /)

No normalizing of the array factors (or element excitation 5 5
amplitudes) is assumed in (9). In the cost functian (4) the _Ndy 1 — (ﬁ : i) < < Nd, 1 — <£ . i> )
array factors of the virtual array and the actual array can have M d.) — A M d,
any common scalar multiplier. (12b)

For the virtual array synthesis method we need an easy syn- N .
thesis method for some virtual array geometry. In Section 1], Thgse directions are selec_ted _symmetrlcally around ) the
we extend the 1-D Woodward synthesis method for 2-frection? = /2, = 0, which is not necessary, but is
equally spaced arrays and in Section IV, we combine tllfléua”y (_:onvenlent. o
Woodward synthesis and the virtual array synthesis method BY using these orthogonal beams it is very casy to syn-

Equation (9) can be used for any array geometry if one C%esae shaped array factors. If we have a destination beam
find a synthesis method for the virtual array. If the virtua (6, ), we can start by selecting the numbersand ¢

array is a planar array, the actual antenna must also be pla?t%‘fordmg t0 (12) and calculating the corresponding orthogonal

or at least symmetrical to the plane of the virtual array qurectlons from (11). Next ordess and! can be chosen so that

that it also has a symmetrical array factor. The virtual arri%g st?]ndl :ltbwhen D(0s1,51) # 0. The coefficients for
synthesis method is, thus, most convenient to use to syntheé orthogonal beams are

planar arrays, but (9) can also be used to modify some array Mot = D(Or1, pr1) (13)
geometries, for example, to synthesize excitation values for )
thinned arrays of any geometry. and the array factor is the sum of the orthogonal beams
Fi1(6, ¢) with amplitudesay,
1. Two-DIMENSIONAL WOODWARD SYNTHESIS F(6,0) = At - Fu(f, 9). (14)
We start by considering a planar array in the plane ol
having M elements inz direction and N elements iny We know thatF(8y;, 1) = D(6r1, ¢r:) in all directions

direction. Element spaces ade in z direction andd, in y (6, ¢x) and that in all the other orthogonal directions that
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are selected according to (12)(6x;, ¢r) = 0. If d. or d,

is greater than\/2, there may be grating lobes outside the
range of (12) in real angles. Between the Woodward directions
F(6,¢) # D(6,¢) and F (8, ¢) can, in fact, receive values in

a very broad range. The only way to control the fit of the
Woodward synthesized beam to the destination function is to
increase the number® and N (the size of the array) and the

IN

s 8 0l

Woodward synthesis thus leads to unnecessarily large arrays.a lm’ =

The excitationsy,,,, can now be calculated by adding up 0. ,}
the excitations of the individual beams from (10) lm,” ‘ \ \

_ —i(27k/M)(m—(M+1/2)) -40 l l
O, = MN Z At - € S 150
; 100
) e—J(ZWI/N)(n—(N+1/2)). (15) 50 50
i 0 theta (deg.)
If we now write N,, x 1-vectorA containing the\;; values phi (deg.)

in any selected order\[, = number of orthogonal directions, Fig. 1. Destination function “threebox.”
where D(6;;, ¢x1) # 0) and N, x 1 vector A including the

amn Values (V,, = number of elements in the virtual array), 180
(16) can be presented in matrix form
160
A, =VA (16)
140
where the elements of thE matrix are
120
1 ,
= =[xk /M) (m— (M +1)/2)] 3
Vitio = MNE §1oo
e—I2TIN)(n—(N+1)/2)] (17) £ a0
s
where:1 corresponds to the order efn combination and2 60
to the order ofk! combination. sk o L L - L

In Figs. 3 and 4, we present a Woodward synthesized result , . ‘ _ ' . . .
when the destination function is the “threebox” function seen 20F i RN R P . RN R ERR
in Figs. 1 and 2. It is clearly seen that when the directions of I
the orthogonal beams are fixed, it is in many cases difficult "8 w0 40 =20 0 20 40 60 80
to fit them with the destination function in a convenient way. Phi (deg.)

In Fig. 5, a Woodward synthesis is presented in which fogy. 2. contour map of destination function “threebox.”

times the number of elements are used and a rather good fit
with the destination function is attained. It is thus possible to

use an “oversized” Woodward synthesized array as a virtual
array and calculate the excitations of the actual array from (9).

'lﬂ'@’h‘ﬂl“

spaced array. The size of the virtual array must be so large
that the result of the Woodward synthesis can be used as a
destination function for the final synthesis. The size of the
virtual array also determines the number of directions in which Phi (deg.)
the Woodward synthesized beam is known to have exactly _ o o _

the same values as the destination function has. When J - \;\ﬁggv\fv?{&fy!t%‘f‘goggjzsni“g%gi‘j"m n Fig. 1, using 2 15
actual array is smaller than the virtual array, it cannot have

as accurate details in its gain function as the virtual array

has and the errors of the gain function in directions betweenWhen the geometries of the actual array and the virtual array
the Woodward directions of the virtual array will partially beare selected, the Woodward directions can be calculated from
filtered out in the final synthesis. (11), the elements of the matric8s, andsS,., from (7) and (8)

150

In (9), the destination function values are for the array factor Oy L ’ B -
and, when needed, the values must be corrected by the gain ’/Wh“ R
function of the element. Bl y /”"'\‘\\\\\\“6\\“\\\ o
IV. VIRTUAL ARRAY METHOD e l’, M’II ' ’ “““\‘ i \l“_
COMBINED WITH WOODWARD SYNTHESIS _30~_ lllulh ’“” “" ’“ i “/’7"‘! wm’,l;,””” ”"II/ _

The virtual array synthesis procedure can be started by \({({({{{{{!{({,””I"“:; II’ "“\ J""N(’; ' "\ /”7”‘,"’ II‘ ,"’(I"%”””IIWWIII'

selecting the size of the virtual x N element evenly 40 i ! l\" oy ‘ "l'\\‘ ““ ‘ I mﬂﬂ
ﬁ\ﬁ/ﬂ\\

i IIW‘\

L

100

Theta (deg.)
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Fig. 4. Contour map of Fig. 3. Levels 8,3, -6, —10,—15,—20, and—30 Fig. 6. Virtual array synthesis of a 16 15 element array witd. = 0.55X
dB below the maximum of the destination function are presented. Orthogo@élddy, = 0,55 using a 48x 48 element Woodward synthesized array as

directions(+) are also presented.

180

160f -

a virtual destination array.

the finest details of the array factor of the virtual array and the
detailed errors are smoothened out in the array factor of the

actual array. The maximum dimensions of the virtual array
should thus be 1.5-3 times the maximum dimensions of the
actual array.

The elements ofA, which are values of the destination
function D(8, ¢) in orthogonal directions, include the phases
of the destination function. For finding the optimum choice
of the destination pattern phases, (18) must be used as a part
of some iterative optimizing process. Usually for contoured
beams and a planar array a zero-phased destination beam gives
a minimum sidelobe pattern and is a good starting point for
selection of the phases.

8060 020 (%eg)zo 40 60 80 V. EXAMPLES OF VIRTUAL ARRAY SYNTHESIS
_ _ o o _ First, we synthesize the same array, which is synthesized in
Fig. 5. Woodward synthesis of destination beam in Fig. 1 using &30 . . .
30 element array withi. = 0.55X andd4, = 0.55\. In the contour map Figs. 3 and 4 using the virtual array method and a>4&8
levels 0,—3, —6, —10, —15, —20, and—30 dB below the maximum of the element array as the virtual array. The synthesis result is
destination function are presented. presented in Figs. 6 and 7. When this result is compared
to the Woodward synthesized result, a much better fit with
and the elements of the matrix from (17). The elements of the destination function and lower sidelobe level is obtained.
the A matrix are the values of the destination functiftd, ¢) The amplitudes and phases of the two synthesis results are
in these directions. From (9) and (16), we can determine thempared in Appendix A. They are very similar and typical
unknown excitationsA of the actual array for a zero-phase destination array factor.
A=S'S, VA (18) . Equation (9) also gives_ a fast way to calculate new excita-
tion values when a certain number of elements are removed

The element spaces andd, selected for the virtual array from the array. If we calculate from (% for not removed
must be so small that the Woodward beams have no gratélgments, reorder the elements of mat$ix calculated from
lobes in the real directions. If the virtual array has any gratir@), and dividesS,, into submatricesS,, = [S;, S./"], we
lobes, (19) tries to fit the gain function of the actual array alg@n use the array with nonremoved elements as the virtual
with these grating lobes, too. Also, the actual array can't hagay and synthesize the changes in excitations
any grating lobes. The maximum usable element spaces are nr _ranr  qror
readily deduced from (12). Sh(A+dA) =[S SA AL (19)

The choice of the size of the virtual array has some influen&&; " represents terms calculated from (8) between removed
to the accuracy of the synthesis. The array factor of the Woaahd nonremoved elementd, contains the excitations of the
ward synthesized virtual array may have substantial errorenremoved elementsd, contains the excitations of the
between the orthogonal directions. It is thus advantageousrémnoved elements, antiA represents the excitation changes
use virtual array so large that the actual array cannot reprodudéethe nonremoved elements.
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Fig. 7. Contour map of Fig. 6. o
BF 4
180 — T T T T T T T T : ! ! ' . y L
: : : : : : : : : -6 -4 -2 0 2 4 6
140 Fig. 9. Final array geometry after element reduction for calculation of Fig. 8.
120
= TABLE |
£100 EXCITATION VALUES IN CENTRAL LINEY = 0
=
E 80
= Woodward- Virtual-array.
60 synthesis synthesis
40 Z/A lal ¢ [°] lal ¢ [°]
§ -3.85 0.012 -173.84 0.054 175.31
20 B -3.30 0.060 161.64 0.092 156.64
: -2.75 0.032 136.00 0.013 98.03
ol - L L - - L L -2.20 0.037 -92.84 0.053 -107.25
80 60 40 20 0 20 40 60 80 -1.65 0.057 -147.35 0.040 -141.92
Phi (deg.) -1.10 0.183 37.41 0.193 47.10
Fig. 8. A 505-element circular array (elements in a gtid= 0,55 and 888 2383 lé : ég gggg 13 : gg
dy = 0.55)) synthesized and optimally reduced to a 225 element array using 0'55 0‘702 *14'17 0'786 —13'69
a 81x 81 element Woodward synthesized array as a virtual destination array. 1 : 10 0 : 183 -39 ’ 41 0 ’ 193  _47 ’ 10
In the contour map levels G6;3, —6, —10, —15, —20, and—30 dB below 1.65 0.057 147'35 0 ’ 040 141 ’ 92
the maximum of the destination function are presented. 5 50 0 037 92 g4 O 053 107 25
2.75 0.032 -136.00 0.013 -98.03
o 3.30 0.060 -161.62 0.092 -156.64
From (20), the excitation changes of the nonremoved ele- 3.85 0.012 173.84 0.054 -175.31

ments are readily determined

dA = (S) S (20)

. . , : ._virtual array. The virtual array method can also be used for
In Fig. 8, a circular array with 505 elements is synthesized g : . : .

. any three-dimensional array for which a suitable virtual array
and then reduced in several steps to 225 elements (sam

) ; : eometry and synthesis method can be found.
number of elements as in the earlier arrays) by removing t i o .
o . .The solution always minimizes the integral of the squared
elements that have the lowest excitation amplitudes and usig
o . difference between the array factors of the actual array and
(20) to recalculate the new excitation values. The final ar

cometry is presented in Fid. 8 "We virtual array. In that sense, the solution is optimal, but,
9 yisp 9. o on the other hand, there is no way to compromise between

Some improvement has been obtained by the proper Ch.ofﬁg sidelobe level and the fit in the region of the shaped

of the element locations compared to Figs. 6 and 7, ESPECIaMin beam. Excitations of arrays using stretched apertures
on the slopes of the array factor. . - : y g - .
described in [7] for footprint patterns can be optimized without

any iterations or use of the derivatives of the cost func-
tion.

The new virtual-array synthesis method is a very fast andThe accuracy of the synthesis result is not possible to
simple synthesis method, especially for large planar arrageedict, but by proper selection of the virtual array size and
when a 2-D Woodward synthesized array can be used as ¢f@@metry, very good synthesis results can be obtained.

VI. CONCLUSIONS
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APPENDIX A [7] F. Ares, R. S. Elliot, and E. Moreno, “Design of planar arrays to obtain
EXcCITATION VALUES COMPARISON BETWEEN WOODWARD efficient footprint patterns with an arbitrary footprint boundarE’EE

In Table 1, the normalized absolute values and phase angles

Trans. Antennas Propagatvol. 42, pp. 1509-1514, Nov. 1994.
SYNTHESIS AND VIRTUAL ARRAY SYNTHESIS [8] L. I. Vaskelainen, “Iterative least-squares synthesis methods for confor-
mal array antennas with optimized polarization and frequency proper-
ties,” IEEE Trans. Antennas Propagatol. 44, pp. 1179-1185, July

of the synthesized excitations are calculated for elements in 1997,
line y = 0. Woodward synthesis and virtual array synthesis
methods are used (see Figs. 4 and 5).
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