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Virtual Array Synthesis Method
for Planar Array Antennas

Leo I. Vaskelainen

Abstract—A new array antenna synthesis method, which we
call the virtual array synthesis method, is presented. In this
method, the excitation values of a virtual array are synthesized
using some known synthesis method. The geometry of the virtual
array can be chosen so that there will be a suitable synthesis
method for that geometry and the synthesis of the virtual array
can be done accurately enough. In the synthesis method pre-
sented, the excitation values of the virtual array are transformed
into the excitation values of the actual array geometry. Matrix
operations are simple and large arrays can be easily synthesized.

I. INTRODUCTION

T HERE are several synthesis methods for planar arrays
having elements on a rectangular lattice and rectangular

boundary [1], [6]; for example, the Fourier transform method
or polynomial expansions. Polynomial representation with
roots radially displaced from the unit circle can be used for
equispaced linear arrays and, with a restricted number of
destination array factors, for equispaced planar arrays [4].
Contour transformation can be used to synthesize contoured
footprints that are symmetric about both thex and y axes
[2]. For more general array geometry and destination beam
shape, the least squares synthesis or quadratic programming
type synthesis method [3] must be used, often combined
with iterative methods [5], which, with large arrays, leads to
difficult calculation and often to iterative optimizing methods.

In Section II, it is shown that by one matrix inversion and
two matrix multiplications with real-valued easily calculated
matrices, the excitation values of an array can be transformed
into the excitation values of another array so that the integral
of the squared absolute value of the difference between these
two array factors is minimized. If we thus have a suitable
synthesis method for some array geometry, it is easy to convert
this synthesis result for another geometry.

For planar arrays with a rectangular lattice, the Woodward
synthesis is a very fast and simple synthesis method. In
Section II, the one-dimensional (1-D) Woodward synthesis
represented in [1] or [6] is rewritten for two-dimensional
(2-D) arrays. A large Woodward synthesized array can be
used as a virtual array during the synthesis process and the
excitation values of that virtual array can be transformed into
the excitation values of the actual array geometry, as shown
in Section IV. In Section V some examples of the use of the
virtual array synthesis method are calculated. The virtual array
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synthesis method also gives an easy method to synthesize the
excitation values for thinned arrays of any geometry and find
the less significant elements for removal. An example is given
in Section V.

II. V IRTUAL ARRAY METHOD

If we have an unknown array antenna withK isotropic
elements, each having position vector~rk, and excitationak the
radiation patternE(û) of the array antenna for the direction
of a unit vectorû can be written

E(û) =
KX

k=1

ak � ejk0~rk�û (1)

wherek0 = 2�=� is the wave number in free-space. On the
other hand, we can write the radiation patternD(û) of a known
array antenna withP isotropic elements, each having position
vector ~�p and excitation�p

D(û) =

pX

p=1

�p � ejk0~�p�û: (2)

The known array antenna can be “virtual” in the sense that it
is used only as a destination array, which is easy to synthesize
but can be impractical to realize. If we define the error function

"(û) = E(û)�D(û) (3)

and calculate the integral of the square of the absolute value
of error for all directions (over the solid angle
 = 4�)
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it turns out that@s=@Re(ai) = 0 and@s@Im(ai) = 0 when
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(5)
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The selection of the error function of (3) leads to a very
simple solution for excitation valuesak as we can see. The
cost functions does not optimize the phase of the gain function
as the type of cost function used, for example, in [7] can.
The analytical solution for the integrals in (5) does not allow
the use of different weight values in different directions as is
usually used in the least-squares type optimization methods
[8].

Type
H



e�jko~r0�û d
 integrals are easily calculated in a
local polar coordinate system, where the direction of~r is � = 0I




e�jko~r�û d
 =

Z �

0

sin(�) � e�jk0j~rj cos(�) d� �

Z 2�

0

d'

=4�
sin(k0j~rj)

k0j~rj
: (6)

By defining aK �K matrix SSSrr with elements

Srr (i; k) = 4�
sin(k0j~ri � ~rkj)

k0j~ri � ~rkj
(7)

and aK � P matrix SSSrv with elements

Srv(i; p) = 4�
sin(k0j~ri � ~�pj)

k0j~ri � ~�pj
(8)

we can write a matrix equation for the excitationsai that
minimizes the integrals of the square of the absolute value of
error for all the directions defined in (4)

SSSrrAAA =SSSrvAAAv

AAA = [a1 a2 � � � aK ]T

AAAv = [�1 �2 � � � �K]T (9)

whereT is the transpose of a matrix.
No normalizing of the array factors (or element excitation

amplitudes) is assumed in (9). In the cost functions in (4) the
array factors of the virtual array and the actual array can have
any common scalar multiplier.

For the virtual array synthesis method we need an easy syn-
thesis method for some virtual array geometry. In Section III,
we extend the 1-D Woodward synthesis method for 2-D
equally spaced arrays and in Section IV, we combine the
Woodward synthesis and the virtual array synthesis method.

Equation (9) can be used for any array geometry if one can
find a synthesis method for the virtual array. If the virtual
array is a planar array, the actual antenna must also be planar
or at least symmetrical to the plane of the virtual array so
that it also has a symmetrical array factor. The virtual array
synthesis method is, thus, most convenient to use to synthesize
planar arrays, but (9) can also be used to modify some array
geometries, for example, to synthesize excitation values for
thinned arrays of any geometry.

III. T WO-DIMENSIONAL WOODWARD SYNTHESIS

We start by considering a planar array in they-z plane
having M elements inz direction andN elements iny
direction. Element spaces aredz in z direction anddy in y

direction. For this array we write the normalized array factor
where the excitations in (1) are

�wmn =
1

MN
e�j(2�k=M)(m�(M+1)=2))

� e�j(2�l=N)(n�(N+1=2)) (10)

and elementmn is in location z = dz (m � (M + 1)=2),
y = dy (n � (N + 1)=2).

When these excitations and element locations are substituted
in (1) beamsFkl(�; ') can be readily calculated (see, for
example, [1]). The ordersk and l (k = 0;�1;�2 � � � ; l =
0;�1;�2 � � �) represent different beams.

These beamsFkl(�; ') are orthogonal in the sense that they
have zeros in the same directions
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while in orthogonal directions = k; t = l Fkl(�; ') has
a maximum(Fkl(�kl; 'kl) = 1). There may also be other
maximums (grating lobes), which are directed in orthogonal
directions(s; t) and which obey the equationss � k = pM
and t� l = qN , wherep andq are integers(0;�1;�2; � � �).

From now on we select only those orthogonal directions
where there is only one maximum and the orthogonal direc-
tions receive real values, which means that we must select the
(s; t) values according to (12a) and (12b)

�M=2 � s < M=2

�N=2 � t < N=2 (12a)
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(12b)

These directions are selected symmetrically around the
direction � = �=2; ' = 0, which is not necessary, but is
usually convenient.

By using these orthogonal beams it is very easy to syn-
thesize shaped array factors. If we have a destination beam
D(�; '), we can start by selecting the numberss and t
according to (12) and calculating the corresponding orthogonal
directions from (11). Next ordersk andl can be chosen so that
k = s and l = t whenD(�st; 'st) 6= 0. The coefficients for
the orthogonal beams are

�kl = D(�kl; 'kl) (13)

and the array factor is the sum of the orthogonal beams
Fkl(�; ') with amplitudes�kl

F (�; ') =
X
k;l

�kl �Fkl(�; '): (14)

We know thatF (�kl; 'kl) = D(�kl; 'kl) in all directions
(�kl; 'kl) and that in all the other orthogonal directions that
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are selected according to (12)F (�kl; 'kl) = 0. If dz or dy
is greater than�=2, there may be grating lobes outside the
range of (12) in real angles. Between the Woodward directions
F (�; ') 6= D(�; ') andF (�; ') can, in fact, receive values in
a very broad range. The only way to control the fit of the
Woodward synthesized beam to the destination function is to
increase the numbersM andN (the size of the array) and the
Woodward synthesis thus leads to unnecessarily large arrays.

The excitations�mn can now be calculated by adding up
the excitations of the individual beams from (10)

�mn =
1

MN
�
X
k;l

�kl � e
�j(2�k=M)(m�(M+1=2))

� e�j(2�l=N)(n�(N+1=2)): (15)

If we now writeNw�1-vector� containing the�kl values
in any selected order (Nw = number of orthogonal directions,
whereD(�kl; 'kl) 6= 0) andNv � 1 vectorAAA including the
�mn values (Nv = number of elements in the virtual array),
(16) can be presented in matrix form

AAAv = VVV � (16)

where the elements of theVVV matrix are

Vi1;i2 =
1

MN
e�j[(2�k=M)(m�(M+1)=2)]

� e�j[(2�l=N)(n�(N+1)=2)]: (17)

wherei1 corresponds to the order ofmn combination andi2
to the order ofkl combination.

In Figs. 3 and 4, we present a Woodward synthesized result
when the destination function is the “threebox” function seen
in Figs. 1 and 2. It is clearly seen that when the directions of
the orthogonal beams are fixed, it is in many cases difficult
to fit them with the destination function in a convenient way.
In Fig. 5, a Woodward synthesis is presented in which four
times the number of elements are used and a rather good fit
with the destination function is attained. It is thus possible to
use an “oversized” Woodward synthesized array as a virtual
array and calculate the excitations of the actual array from (9).
In (9), the destination function values are for the array factor
and, when needed, the values must be corrected by the gain
function of the element.

IV. V IRTUAL ARRAY METHOD

COMBINED WITH WOODWARD SYNTHESIS

The virtual array synthesis procedure can be started by
selecting the size of the virtualM � N element evenly
spaced array. The size of the virtual array must be so large
that the result of the Woodward synthesis can be used as a
destination function for the final synthesis. The size of the
virtual array also determines the number of directions in which
the Woodward synthesized beam is known to have exactly
the same values as the destination function has. When the
actual array is smaller than the virtual array, it cannot have
as accurate details in its gain function as the virtual array
has and the errors of the gain function in directions between
the Woodward directions of the virtual array will partially be
filtered out in the final synthesis.

Fig. 1. Destination function “threebox.”

Fig. 2. Contour map of destination function “threebox.”

Fig. 3. Woodward synthesis of destination beam in Fig. 1, using a 15� 15
element array withdz = 0:55� and dy = 0:55�.

When the geometries of the actual array and the virtual array
are selected, the Woodward directions can be calculated from
(11), the elements of the matricesSSSrr andSSSrv from (7) and (8)
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Fig. 4. Contour map of Fig. 3. Levels 0,�3,�6,�10,�15,�20, and�30
dB below the maximum of the destination function are presented. Orthogonal
directions(+) are also presented.

Fig. 5. Woodward synthesis of destination beam in Fig. 1 using a 30�

30 element array withdz = 0:55� and dy = 0:55�: In the contour map
levels 0,�3, �6, �10,�15,�20, and�30 dB below the maximum of the
destination function are presented.

and the elements of the matrixVVV from (17). The elements of
the� matrix are the values of the destination functionD(�; ')
in these directions. From (9) and (16), we can determine the
unknown excitationsAAA of the actual array

AAA = SSS�1
rr SSSrrVVV �: (18)

The element spacesdz anddy selected for the virtual array
must be so small that the Woodward beams have no grating
lobes in the real directions. If the virtual array has any grating
lobes, (19) tries to fit the gain function of the actual array also
with these grating lobes, too. Also, the actual array can’t have
any grating lobes. The maximum usable element spaces are
readily deduced from (12).

The choice of the size of the virtual array has some influence
to the accuracy of the synthesis. The array factor of the Wood-
ward synthesized virtual array may have substantial errors
between the orthogonal directions. It is thus advantageous to
use virtual array so large that the actual array cannot reproduce

Fig. 6. Virtual array synthesis of a 15� 15 element array withdz = 0:55�
and dy = 0;55� using a 48� 48 element Woodward synthesized array as
a virtual destination array.

the finest details of the array factor of the virtual array and the
detailed errors are smoothened out in the array factor of the
actual array. The maximum dimensions of the virtual array
should thus be 1.5–3 times the maximum dimensions of the
actual array.

The elements of�, which are values of the destination
functionD(�; ') in orthogonal directions, include the phases
of the destination function. For finding the optimum choice
of the destination pattern phases, (18) must be used as a part
of some iterative optimizing process. Usually for contoured
beams and a planar array a zero-phased destination beam gives
a minimum sidelobe pattern and is a good starting point for
selection of the phases.

V. EXAMPLES OF VIRTUAL ARRAY SYNTHESIS

First, we synthesize the same array, which is synthesized in
Figs. 3 and 4 using the virtual array method and a 48� 48
element array as the virtual array. The synthesis result is
presented in Figs. 6 and 7. When this result is compared
to the Woodward synthesized result, a much better fit with
the destination function and lower sidelobe level is obtained.
The amplitudes and phases of the two synthesis results are
compared in Appendix A. They are very similar and typical
for a zero-phase destination array factor.

Equation (9) also gives a fast way to calculate new excita-
tion values when a certain number of elements are removed
from the array. If we calculate from (7)SSSnrrr for not removed
elements, reorder the elements of matrixSSSrv calculated from
(8), and divideSSSrv into submatricesSSSrv = [SSSnrrr SSSrnrrv ], we
can use the array with nonremoved elements as the virtual
array and synthesize the changes in excitations

SSSnrrr (AAA+ dAdAdA) = [SSSnrrr SSSrnrrv ][AAA AAAr]
T : (19)

SSSrnrrv represents terms calculated from (8) between removed
and nonremoved elements,AAA contains the excitations of the
nonremoved elements,AAAr contains the excitations of the
removed elements, anddddAAA represents the excitation changes
of the nonremoved elements.
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Fig. 7. Contour map of Fig. 6.

Fig. 8. A 505-element circular array (elements in a griddz = 0; 55� and
dy = 0:55�) synthesized and optimally reduced to a 225 element array using
a 81� 81 element Woodward synthesized array as a virtual destination array.
In the contour map levels 0,�3, �6, �10, �15,�20, and�30 dB below
the maximum of the destination function are presented.

From (20), the excitation changes of the nonremoved ele-
ments are readily determined

dddAAA = (SSSnrrr )
�1SSSrnrrv : (20)

In Fig. 8, a circular array with 505 elements is synthesized
and then reduced in several steps to 225 elements (same
number of elements as in the earlier arrays) by removing the
elements that have the lowest excitation amplitudes and using
(20) to recalculate the new excitation values. The final array
geometry is presented in Fig. 8.

Some improvement has been obtained by the proper choice
of the element locations compared to Figs. 6 and 7, especially
on the slopes of the array factor.

VI. CONCLUSIONS

The new virtual-array synthesis method is a very fast and
simple synthesis method, especially for large planar arrays
when a 2-D Woodward synthesized array can be used as the

Fig. 9. Final array geometry after element reduction for calculation of Fig. 8.

TABLE I
EXCITATION VALUES IN CENTRAL LINE Y = 0

virtual array. The virtual array method can also be used for
any three-dimensional array for which a suitable virtual array
geometry and synthesis method can be found.

The solution always minimizes the integral of the squared
difference between the array factors of the actual array and
the virtual array. In that sense, the solution is optimal, but,
on the other hand, there is no way to compromise between
the sidelobe level and the fit in the region of the shaped
main beam. Excitations of arrays using stretched apertures
described in [7] for footprint patterns can be optimized without
any iterations or use of the derivatives of the cost func-
tion.

The accuracy of the synthesis result is not possible to
predict, but by proper selection of the virtual array size and
geometry, very good synthesis results can be obtained.
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APPENDIX A
EXCITATION VALUES COMPARISON BETWEEN WOODWARD

SYNTHESIS AND VIRTUAL ARRAY SYNTHESIS

In Table I, the normalized absolute values and phase angles
of the synthesized excitations are calculated for elements in
line y = 0. Woodward synthesis and virtual array synthesis
methods are used (see Figs. 4 and 5).
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