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Hybridization of Curvilinear Time-Domain Integral
Equation and Time-Domain Optical Methods

for Electromagnetic Scattering Analysis
S. P. Walker and Markku J. Vartiainen

Abstract—Full-field solutions for scattering and similar prob-
lems become prohibitively expensive for electrically large bod-
ies. Fortunately, broadly “optical” methods become accurate
as larger bodies are considered. Often, however, large bodies
have significant features that are not electrically large and here
hybrid approaches are appropriate. In this paper, we present
a novel hybridization of time-domain integral equation methods
with time-domain physical optics (PO). For both methods, an
isoparamteric curvilinear treatment is adopted. The application
of the approach is demonstrated by investigating the convergence
of the solution for a pulse incident on a large target with a small
feature (a 16-pulsewidth plate with a �1/3-pulsewidth sphere
placed centrally just in front of it). It is demonstrated that a
full-field solution for the sphere and a fairly small region around
the sphere, coupled with the PO solution of the remainder of
the plate, produces a converged prediction of the time-dependent
fields.

Index Terms—Electromagnetic scattering, transient scattering.

I. INTRODUCTION

T HE cost of large electromagnetic scattering computa-
tions, for purposes such as electromagnetic pulse (EMP),

electromagnetic compatibility (EMC), and radar cross section
(RCS), rises sharply with frequencyf , varying with anything
up to the sixth power. A fuller discussion of this is provided
by Miller [1], [2]. One consequence is that full-field solutions
on many of the bodies of real interest are way beyond reach.

One approach is to employ one of the wide range of optical
methods. Broadly, optical methods are good for bodies of
which the length scale is large compared to a wavelength. For
problems of the class for which they are suitable, solutions can
be obtained at costs some orders of magnitude lower than the
cost of full-field solutions. However, many problems combine
both a large overall size and important features that are not
large compared to a wavelength; optical methods would be
inaccurate and field solutions too expensive. It is because of
this that there is a considerable body of work addressing the
hybridization of various forms of optical treatment with full-
field solutions, allowing each to be used for that portion of the
body for which it is most suited.

Differential equation approaches are widely used for scat-
tering calculations [3] and there have been hybrid approaches
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to these [4]. We will restrict ourselves here to integral equation
approaches. There have been many reported hybridizations of
integral and optical methods in the frequency domain, but
none of which we are aware in the time domain. There has
been an increased interest in time-domain methods of late,
partly because they can exhibit less unfavorable cost scalings
than frequency-domain methods and partly because of the
advantages of true time-domain modeling for applications such
as EMP and EMC studies and for the obtaining of broad-
band responses with an single analysis. The attractions of
time-domain hybrid approaches broadly mirror those of the
frequency domain and an extension of hybridization into the
time domain seems logical.

In the remainder of Section I, we briefly review the work
on hybridization in the frequency domain. Section II describes
the present boundary integral-equation time-domain (IETD)
treatment, concentrating on those aspects which are especially
relevant to the hybridization. Section III describes the hy-
bridization approach adopted and in Section IV, we present
results from its application.

An overview of frequency-domain current-based hybrid
methods combining physical optics (PO) and moment method
(MM) can be found in several fairly comprehensive reviews
[5]–[7], so our survey here will be brief.

Hodges and Rahmat–Samii introduce a hybrid method
which incorporates PO with a combination of MM solution
for electric field integral equation (EFIE) and magnetic field
integral equation (MFIE). PO current is introduced as an
approximation of the MFIE integral operator. Initially [5]
only the “first” contribution from PO region is assumed,
whereas later [8], the authors describe an iterative approach
with the hybrid code accounting for higher order interactions
(e.g., multiple reflections and creeping waves). The iterative
technique is applied in the resonance range to a monopole
on a cylinder configuration. Although a low-frequency target,
results for surface field strengths are in good agreement with
experimental data.

Jacobus and Landstorfer [6] solve the EFIE using PO current
approximations for three-dimensional (3-D) bodies of arbitrary
shape. Time-domain scattering response was investigated by
means of Fourier transform in a manner similar to Thiele
and Chan [9]. Later [10], Jacobus and Landstorfer extend
the technique, accounting for the influence of edges of flat
polygonal patches on a body. They use Sommerfeld’s solution
for calculating exact current density as a summation of a
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PO current and a fringe wave. In later papers [11], [12], a
correction term is employed for PO current close to wedges
based on the uniform theory of diffraction (UTD) [13]. In those
papers, code verification was by comparing hybrid results for
low-frequency solutions using MM for geometries such as a
sphere, a dipole-sphere, and a cube.

Medgyesi–Mitschang and Wang [14] apply PO-MM hybrid
formulation in asymptotic regions of bodies of revolution.
They solve EFIE formulation by incorporating optically de-
rived Ansatz solutions for surface currents of the scatterer.
The MM is thus hybridized with currents derived by Fock
theory [15] or PO. The hybrid technique was applied to a
sphere and to cone spheres. Results were compared with MM
solutions and their technique using both PO-MM and Fock-
MM approaches appears to be accurate for scatterers in the
near-resonance range.

II. TIME-DOMAIN INTEGRAL EQUATION TREATMENT

Derivations of the MFIE are presented in several references
[16]. Here, we will only quote it for scattering from a perfectly
conducting body subject to some incident wave with theHHH

field at some locationrrr on the surface given in terms of an
integral of the history of the field over all other (primed)
surface locations
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We will (in later discussion) refer to the pointrrr at which the
field is being found as the field point or node; contributions to
this field will come from integrations over boundary points or
nodes atrrr0 on s0. Time is t and t� is retarded time. We solve
for the surfaceHHH field rather than the surface currentnnn �HHH

(although either approach can be used and the hybridization is
unaffected). The vector fromrrr to rrr0 we denoteRRR.

The surface is divided intoM quadrilateral elements. We
perform a local curvilinear transformation of these curved
patches into flat bi-unit squares in intrinsic space via poly-
nomial shape functions with an associated isoparametric rep-
resentation of field variablesinter alia providing a continuous
surface field. The temporal variation is similarly treated. The
integrations are then performed using Gaussian quadrature.
This whole process is presented more fully elsewhere [17].

We arrive at the discretized form, giving the field at a
particular one of theN nodes
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Here, the nested summations are over elements and then
temporal and spatial shape functions within elements. The
matrixKKK is the result of integrating (via Gaussian quadrature)
the kernels of (1) over each element. In practice, there is
yet one further nested summation over partitions of elements;
some weakly singular and some hypersingular integrals require
additional partitioning of the elements. This is described more

fully in the references cited and elsewhere [17], [18]. The work
involved in using (2) can be identified as follows.

1) The main system matrix resulting from integration over
each element, “from” each of theN nodes, in turn, must
be formed. This has a cost scaling withN2 (i.e., with
frequencyf to the fourth power).

2) At each timestep, the summations must be evaluated.
This process may be interpreted here as a large matrix-
vector multiplication; the main system matrix multiply-
ing historical values of surface field. For each node,
contributions fromN other nodes must be considered,
giving a cost scaling withN2 at each timestep. With
the number of timesteps needed itself typically scaling
with the body size (i.e.,�N1=2), this yields an overall
cost scaling withf5. For sizeable problems, this is the
dominant cost component in the method.

Later discussion of the hybrid approach will be helped by
consideration of a diagrammatic representation of this. The
position is rather more complicated for the implicit formulation
actually adopted. Further, the smooth quadratic modeling of
the temporal variation used results in the main system matrix
actually being in sizeN � N � �6 as the historical value
at some retarded time is, in general, a weighted sum of
values at a number of neighboring timesteps. Both of these
complications can be safely ignored for present purposes;
the representation below is for an explicit treatment with
“constant” time elements

2
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Note that here the equivalent of the single vector of un-
knowns in the frequency-domain case is actually a set ofN

vectors of historical surface field values. Each row of the
system matrix operates on a different one of these with the
members of each history vector being the historical values at
the retarded times appropriate for the node pair at issue. The
most recent members of these vectors are those operated on
by the diagonal members of the matrix and are the new field
values sought for the present timestep.

As mentioned, the above discussion is for an explicit
treatment. In practice, instabilities result unless an implicit
treatment (or some less accurate averaging process) is used
[17], [19]. An implicit method has other major advantages,
both of accuracy and of cost saving by avoiding the need to
constrain the timestep to suit the smallest nodal spacing. The
summation process of (2) above is actually the formation of the
“right-hand side” for the sparse matrix equation to be solved at
each timestep; it is as this that we will refer to it subsequently.
Again, further details are available in the references cited.

Equations (1)–(3) provide approximations to the surface
fields; if the scattered fields are of interest, they are obtained
as a postprocessing activity by integration over these surface
fields.
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III. T IME-DOMAIN HYBRIDIZATION

Consider the 3-D body where we have identified that region
(I) where the local geometry requires a full-field solution
and that (II) where time domain PO will be used. We will
take the fraction of nodes falling within (I) to be�. For
subsequent convenience in illustration, we will take the regions
to comprise consecutively numbered nodes, but this is not
necessary.

It is helpful to consider the consequences of this in terms
of system matrix sizes and shapes, to identify the main
computational cost components, and opportunities for their
reduction.

The discussion is most readily approached via a brief
consideration of the issues in the simpler frequency domain.
We would then have had a matrix of the following form:2

4A B

C D

3
5
2
4HHH

3
5 =

2
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3
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Fractions � and (1 � �) of columns lie in A and B,
respectively, and similarly rows in A and C. We would only
ever form (2) for nodes in (I)—regions A and B of the matrix.
Regions C and D are never formed. Values ofHHH in (II), the
lower part of the column, are known from the PO solution;
these are simply multiplied by portion B and taken to the right-
hand side. We are left with only matrix region A to solve. The
main cost components are thus of order�N2 (forming the A
and B portions) and�3N3—the generally still dominant cost
of solving the remaining matrix A. The cost in the frequency
domain thus falls with the (inverse) cube of the fraction, which
must be treated by the integral equation; equivalently, the cost
of the integral equation analysis scales with the cube of the
number of nodes involved, as usual.

We turn now to the time domain, where the cost scaling
and cost saving issues are less straightforward. Our objective
is still to obtain approximations to the surface fields. For region
II this is simple; the surfaceHHH field at any location and time
is given by the PO approximation

HHH(rrr; t) = �2nnn� (nnn�HHH inc(rrr; t)) (5)

where the discretization adopted retains a continuous field
distribution at the interface of the regions just as it does
elsewhere. For nodes within region I we apply (1), which
shows the field “here and now” to be a simple geometrically
weighted integral of earlier surface fields over all the rest of
the body. Partitioning the domain of integration of (1) into
regions I and II we have
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As in the frequency-domain case, we simply do not form
an equation for nodes in II.

For nodes in I the field is found from the usual integrations
over the IETD region I plus the integrations over the optical
region II. This integration is of known quantities and, thus,
can readily be evaluated. In terms of (6), it can be interpreted
as an addition to the incident wave term. For region II, this
integration requires that for each of�N nodes we multiply
out (1 � �)N matrix coefficients and field values, resulting
in an overall cost a factor� � 1 lower than the fully IETD
approach. This is obviously as yet much less attractive than
the ��3 factor saving in the frequency domain. However, for
harmonic illumination, each surface-field value in region II
will oscillate sinusoidally. Because of this, the result of any
integration over this portion of the surface from any field node
will, itself, oscillate harmonically. (Equivalently, for a pulsed
incident wave the short-pulse duration provides similar time
saving.) The consequence is that for any field node in II, the
integration over the surface I need be performed for one half of
one period; subsequent integrations will merely duplicate this
result. The cost of these integrations will vary with��N2

and be a modest multiple of the equivalent activity in the
frequency-domain case. It is a cost scaling with frequency to
the fourth power. The treatment otherwise of region I is as
normal with a cost�N2 per timestep.

The overall cost then depends on the number of timesteps
for which the IETD analysis must be performed. If it is
necessary to model for a transit time of the whole body we
have an overall cost of�2N5=2 or �2f5: It could be that effects
on region I from parts of region II very remote from region I
can be neglected and that a modeling duration of a few transit
times of the IETD region I is acceptable. If so, the overall
cost is correspondingly reduced.

In terms of matrix manipulations we have a modification of
(3) above [where the single history vector is to be taken to
represent the multiple ones of (3)]2
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IV. RESULTS

One difficulty with such a treatment is in finding suitable
test cases to validate the implementation; if they are small
enough to be calculable by other means, they are too small
for the hybrid approach to be expected to perform well.
We have adopted a three-stage approach to validation and
demonstration. The time-domain PO implementation has been
investigated in isolation with no IETD region. No results are
given here, but behavior is as expected; for example, results
on large spheres tend toward analytical results. The efficacy
of the hybridization is demonstrated, by analysis of a problem
small enough to be soluble by a full-field solution (and, thus, a
problem for which the hybrid is of little practical benefit) and
for which an analytical solution exists. Finally, for a problem
too large to be treated by a full-field solution and for which we
have no analytical solution, we demonstrate the convergence
of the hybrid result as the IETD region I is increased in size.
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Fig. 1. BistaticEEE-plane RCS of a two wavelength sphere calculated via:
the Mie series, wholly IETD, wholly POTD, and three IETD/POTD hybrid
approaches. The size of the POTD regions is defined by the angle� in degrees
its radius subtends at the center.

A. Correctness of Hybridization

Fig. 1 shows the bistatic rcs of a two-wavelength (1282
node) diameter sphere calculated by the Mie series and a set
of hybrid analyses in which different fractions of the surface
were analyzed using POTD with the balance employing the
full IETD. The extent of the POTD region is characterized by
the half angle it subtends, as indicated in the inset in Fig. 1.

With no POTD region (the “zero degrees” case) the agree-
ment between the Mie series and the wholly IETD solution
is good. As the extent of the POTD region is increased,
the accuracy of the solution generally declines. In Fig. 2 we
consider in more detail two bistatic angles, 65� and 110�,
at which the wholly POTD (180� half angle) case differs
markedly from the Mie series solution. We show the change
in RCS as the POTD region is reduced from a 180� degree
half angle in stages to end with a wholly IETD solution. A
general reduction in error as the increasingly IETD solution
is employed is seen.

While use on such a target is of no practical interest as the
cost of a full-field solution is anyway trivial, it indicates that
the hybridization itself is performing in a satisfactory manner.

B. Convergence Study

We now analyze a large problem for which no analytical
solution is available. We consider a unit radius sphere placed
centrally 1.75 diameters in front of a square plate of side

Fig. 2. RCS at bistatic angles of 65� and 110� versus the (half) angular
extent of the POTD region. Corresponding exact Mie series results also shown.

50 diameters. This arrangement is shown in Fig. 3. Lettered
locations on the side view indicate points on the surface of the
sphere at which results are extracted or mentioned. Similarly,
fields computed at the set of locations indicated on the plate
vertically below the sphere will also be plotted. This assembly
is just such as requires a hybrid treatment, with the length
scales of the plate and sphere so different. A full-field solution
would be prohibitively expensive for a case with the pulse
width of order the sphere diameter, but for this same case an
optical treatment of the sphere and its immediate surroundings
would be very inaccurate. Here, we will treat via IETD the
sphere itself and various circular regions of the plate directly
behind the sphere centered on the sphere axis.

We illuminate from a direction 6� off-normal, with an
incident wave given by

HHH inc(rrr; t) = HHH0 exp

8>>><
>>>:

4 ln 2
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c
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9>>>=
>>>;
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The pulse-width parameterg is selected to make the width
at half maximum of this pulse 2.75 sphere diameters.

We investigate the behavior of the solution as the diameter
of the circular IETD region is changed. It is to be expected
that as the diameter of the IETD region is increased, the results
will change until the IETD region has encompassed locations
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Fig. 3. Sphere and plate arrangement, showing incident wave, the IETD and
POTD regions, and various observation locations.

where the field is significantly perturbed by the sphere in ways
which have in turn a significant effect on some particular
location of interest.

Fig. 4 shows theHHH field magnitude at location (a) for:

1) the diameter of the IETD region on the plate set to
6.5 sphere diameters, the biggest IETD region studied
(continuous line);

2) the diameter of the IETD region on the plate set to zero
with just the sphere treated by IETD and all the plate
treated by POTD (black circles, no line);

3) a wholly POTD solution (dashed line).

The wholly POTD solution is grossly inaccurate, with the
second peak as the reflected wave passes (a) naturally not
captured. Both of the hybrid cases do capture it and, indeed,
their predictions are very similar. The smooth oscillatory
behavior just after the second large peak, which the larger
IETD region case predicts, is not predicted by the case with
only the sphere analyzed via IETD. Nonetheless, even here
the difference is only about 4% of the peak field. Figures
are not shown, but very similar observations could be made
concerning behavior at locations (b) and (c).

Both hybrid cases capture the secondary peak at about
t = 2, postdating the main pulse by one transit time from
the plate edge to the sphere. Naturally, this also is not
predicted by the POTD treatment. (Note that in Fig. 4 the
actual time dependence is in all cases smoother than the figure
indicates. The graphs are plotted with straight lines joining
values at timesteps; the actual analysis uses quadratic temporal
elements.)

Fig. 5 is an attempt to show the degree of convergence in
the results as the IETD region is increased. On the horizontal
axis is plotted the area of the IETD region. The first point
(area = 0) corresponds to a wholly POTD solution; the second
(area = 3:14) corresponds to just the sphere being treated by
IETD; other cases are for the sphere and, in addition, circular
regions on the plate of increasing size being treated by IETD.
On the vertical axis is plottedHHH field magnitude for a set
of times corresponding to the occasions of largest difference
between the maximum IETD and wholly POTD solutions.

Fig. 4. HHH field magnitude versus time at location (a) (indicated in Fig. 3)
for various extents of IETD region. Dotted line: POTD throughout. Solid line:
IETD region diameter 6.5 sphere diameters. Individual circular points: IETD
on all the sphere, POTD on the plate.

These times are the two large negative peaks, the positive
peak at time�1.1, and the later positive peak at�2. Each of
these times is represented by a line on the graph. It is clear that
the result is converging as the diameter of the IETD region is
increased and that for most practical purposes, the converged
solution is obtained with a relatively small region treated by
IETD.

Such convergence might be expected to be associated with
inclusion in the IETD region of all of the surface where the
field is significantly influenced by the presence of the sphere;
elsewhere, the POTD provides a good approximation. We
investigate this by examining the plate surfaceHHH field at the
series of points radially along theE direction indicated in
Fig. 3.

The time-dependentHHH field magnitude at these points, cal-
culated using an IETD region 13 sphere diameters in diameter
(the biggest studied), is shown in Fig. 6. The locations of the
points, in sphere diameters from the axis, are indicated on the
figure. Note that the final point is outside the IETD region and,
thus, the field there is the POTD field.

To provide scale, the inset shows the field for the full
duration with fields at only locations 0.0 and 6.775 (the
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Fig. 5. HHH field magnitude at location (a) (indicated in Fig. 3) versus the
areal extent of the IETD region. Results shown for the four times indicated.

POTD field) shown to avoid excessive clutter. The main
part of Fig. 6 concentrates on a zoomed view of the period
just after the primary pulse when a small secondary pulse
is evident. This pulse is a consequence of the perturbation
by the sphere of what would otherwise be the PO field
on the plate due to the incident pulse. It is seen that as
locations further from the sphere are considered the height
of the secondary pulse falls steadily. For the furthest off-
axis IETD location (6.428 diameters) this secondary pulse
height is only about 1% of the peak field magnitude. This
compares to about 5% at the most central location with
intermediate locations showing a steady gradation between
these values. The associated temporal shift between these cases
is a consequence of the progressively longer time required
for the perturbation due to the sphere to propagate out to
the progressively more distant locations. Naturally, there is
no radius at which the perturbation is literally nonexistant, but
these observations, that by the�6.5 diameters studied here the
field is very little different from the unperturbed field, support
the observations regarding convergence made earlier.

V. CONCLUSIONS

The extension of integral equation hybrid methods into the
time domain has been demonstrated.

Fig. 6. Time-dependent surfaceHHH field magnitude calculated with an IETD
region of 6.5 diameters. Field shown at indicated distances in sphere diameters
from the axis in theEEE direction (locations indicated on Fig. 3).

For the small sphere where an analytical solution is avail-
able, convergence of the hybrid to the analytical solution is
observed as the region treated via IETD is increased.

The plate and sphere problem is large; a wholly integral
equation treatment would be impractical and a wholly op-
tical treatment would not even be qualitatively correct. The
hybrid approach developed seems well able to deal with the
problem; the behavior expected qualitatively is observed and
convergence is obtained as the IETD region is increased. The
actual computational cost saving is naturally highly problem
dependent and would, for example, be even larger for a larger
plate. Here, for even the largest IETD region studied, costs
are reduced relative to what they would be for a wholly IETD
solution by about two orders of magnitude. The approach
seems capable of yielding the time-dependent fields on large
bodies with locally small features.
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