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Hybridization of Curvilinear Time-Domain Integral
Equation and Time-Domain Optical Methods
for Electromagnetic Scattering Analysis

S. P. Walker and Markku J. Vartiainen

Abstract—Full-field solutions for scattering and similar prob-  to these [4]. We will restrict ourselves here to integral equation
lems become prohibitively expensive for electrically large bod- approaches. There have been many reported hybridizations of
ies. Fortunately, broadly “optical” methods become accurate integral and optical methods in the frequency domain, but
as larger bodies are considered. Often, however, large bodies . . . . ’
have significant features that are not electrically large and here none of V\_’h'Ch we a_re aware_ In_the time Fjoma'”- There has
hybnd approaches are appropriate. In this paper, we present been an |nCreased Interest In t|me'doma|n methOdS Of |ate,
a novel hybridization of time-domain integral equation methods partly because they can exhibit less unfavorable cost scalings
with time-domain physical optics (PO). For both methods, an than frequency-domain methods and partly because of the
isoparamteric curvilinear treatment is adopted. The application advantages of true time-domain modeling for applications such

of the approach is demonstrated by investigating the convergence . g
of the solution for a pulse incident on a large target with a small as EMP and EMC studies and for the obtaining of broad-

feature (a 16-pulsewidth plate with a ~1/3-pulsewidth sphere band responses with an single analysis. The attractions of
placed centrally just in front of it). It is demonstrated that a time-domain hybrid approaches broadly mirror those of the

full-field solution for the sphere and a fairly small region around  frequency domain and an extension of hybridization into the
the sphere, coupled with the PO solution of the remainder of time domain seems logical

;ir;eldréllate, produces a converged prediction of the time-dependent In the remainder of Section I, we briefly review the work

on hybridization in the frequency domain. Section Il describes
the present boundary integral-equation time-domain (IETD)
treatment, concentrating on those aspects which are especially
|. INTRODUCTION relevant to the hybridization. Section Il describes the hy-

: . bridization approach adopted and in Section IV, we present
HE cost of large electromagnetic scattering computa- . o
sults from its application.

tions, for purposes such as electromagnetic pulse (EM'B%’An overview of frequency-domain current-based hybrid

electromagnetic compatibility (EMC), and radar cross section - . .
(RCS), rises sharply with frequengy varying with anything methods combining physical optics (PO) and moment method

up to the sixth power. A fuller discussion of this is providefMM) can be found in several fairly comprehensive reviews

: . & . [5]-[7], so our survey here will be brief.
by Miller [1], [2]. On_e consequence is that full-field solution Hodges and Rahmat-Samii introduce a hybrid method
on many of the bodies of real interest are way beyond reach

One approach is to employ one of the wide range of opti Wlhlch incorporates PO with a combination of MM solution

C i : g
methods. Broadly, optical methods are good for bodies @)rr electric field integral equation (EFIE) and magnetic field

: . #ntegral equation (MFIE). PO current is introduced as an
which the length scale is large compared to a wavelength. or roximation of the MFIE integral operator. Initially [5]
problems of the class for which they are suitable, solutions caRP 9 P ’ y

be obtained at costs some orders of magnitude lower than fly the "first’ contribution from PQ region |s.assumed,
' : . Whereas later [8], the authors describe an iterative approach
cost of full-field solutions. However, many problems combine.. : ; : . :
. ) with the hybrid code accounting for higher order interactions
both a large overall size and important features that are I%O

i i e.g., multiple reflections and creeping waves). The iterative
large compared to a wavelength; optical methods would hé> " . : S
. , : . . echnique is applied in the resonance range to a monopole
inaccurate and field solutions too expensive. It is because 0 . : .

. . : . n a cylinder configuration. Although a low-frequency target,
this that there is a considerable body of work addressing treesults for surface field strengths are in good agreement with
hybridization of various forms of optical treatment with full- ) 9 9 9
field solutions, allowing each to be used for that portion of theexpenmental data. .

N : Jacobus and Landstorfer [6] solve the EFIE using PO current
body for which it is most suited. o : . . .
) . . . pproximations for three-dimensional (3-D) bodies of arbitrary

Differential equation approaches are widely used for scat: : . . ) :

. . . shape. Time-domain scattering response was investigated by
tering calculations [3] and there have been hybrid approaches : . o :

means of Fourier transform in a manner similar to Thiele
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PO current and a fringe wave. In later papers [11], [12], fally in the references cited and elsewhere [17], [18]. The work
correction term is employed for PO current close to wedgés/olved in using (2) can be identified as follows.

based on the uniform theory of diffraction (UTD) [13]. Inthose 1) The main system matrix resulting from integration over
papers, code verification was by comparing hybrid results for ~ each element, “from” each of th¥ nodes, in turn, must
low-frequency solutions using MM for geometries such as @  be formed. This has a cost scaling witf* (i.e., with

sphere, a dipole-sphere, and a cube. frequency to the fourth power).

Medgyesi—Mitschang and Wang [14] apply PO-MM hybrid 2) At each timestep, the summations must be evaluated.
formulation in asymptotic regions of bodies of revolution. This process may be interpreted here as a |arge matrix-
They solve EFIE formulation by incorporating optically de-  vector multiplication; the main system matrix multiply-

rived Ansatz solutions for surface currents of the scatterer. ing historical values of surface field. For each node,
The MM is thus hybridized with currents derived by Fock  contributions fromN other nodes must be considered,
theory [15] or PO. The hybrid technique was applied to a  giving a cost scaling withV? at each timestep. With
sphere and to cone spheres. Results were compared with MM the number of timesteps needed itself typically scaling
solutions and their technique using both PO-MM and Fock-  with the body size (i.e.~~N'/2), this yields an overall

MM approaches appears to be accurate for scatterers in the cost scaling withf>. For sizeable problems, this is the

near-resonance range. dominant cost component in the method.
Later discussion of the hybrid approach will be helped by
[I. TIME-DOMAIN INTEGRAL EQUATION TREATMENT consideration of a diagrammatic representation of this. The

Derivations of the MFIE are presented in several referendd@sition is rather more complicated for the implicit formulation

[16]. Here, we will only quote it for scattering from a perfecth2ctually adopted. Further, the smooth quadratic modeling of
conducting body subject to some incident wave with fiie the temporal variation used results in the main system matrix
field at some location on the surface given in terms of an2ctually being in sizeV x N x ~6 as the historical value

integral of the history of the field over all other (primedftt SOme retarded time is, in general, a weighted sum of
surface locations values at a number of neighboring timesteps. Both of these

complications can be safely ignored for present purposes;

9w H (7, 1) = 47 Hine (7, 1) _|_/ (n' x H(¥ 1*)) the represe_ntation below is for an explicit treatment with
a0 “constant” time elements
x%—i—(ﬁ'x%—f;(r’,t*)) x%ds’ 1) s y s t m h h h h h
1 1 1 1 1
We will (in later discussion) refer to the pointat which the | H [=|Hine |+ s s s s s
field is being found as the field point or node; contributions t t ottt
this field will come from integrations over boundary points or m a t r zlll 2 N
nodes at’ ons’. Time ist andt* is retarded time. We solve 3

for the surfacell field rather than the surface curremtx H
(although either approach can be used and the hybridization isNote that here the equivalent of the single vector of un-
unaffected). The vector from to ' we denoteR. knowns in the frequency-domain case is actually a seW of
The surface is divided intd/ quadrilateral elements. Wevectors of historical surface field values. Each row of the
perform a local curvilinear transformation of these curveslystem matrix operates on a different one of these with the
patches into flat bi-unit squares in intrinsic space via polyaembers of each history vector being the historical values at
nomial shape functions with an associated isoparametric refpe retarded times appropriate for the node pair at issue. The
resentation of field variabldster alia providing a continuous most recent members of these vectors are those operated on
surface field. The temporal variation is similarly treated. They the diagonal members of the matrix and are the new field
integrations are then performed using Gaussian gquadratwaues sought for the present timestep.
This whole process is presented more fully elsewhere [17]. As mentioned, the above discussion is for an explicit
We arrive at the discretized form, giving the field at areatment. In practice, instabilities result unless an implicit

particular one of theV nodes treatment (or some less accurate averaging process) is used
W [17], [19]. An implicit method has other major advantages,
onH" = AxH* . KIH" 2 both of accuracy and of cost saving by avoiding the need to

T THines n; ny: Zﬁ: K JH; @ constrain the timestep to suit the smallest nodal spacing. The

summation process of (2) above is actually the formation of the

Here, the nested summations are over elements and theght-hand side” for the sparse matrix equation to be solved at
temporal and spatial shape functions within elements. Tkach timestep; it is as this that we will refer to it subsequently.
matrix K is the result of integrating (via Gaussian quadraturdgain, further details are available in the references cited.
the kernels of (1) over each element. In practice, there isEquations (1)—(3) provide approximations to the surface
yet one further nested summation over partitions of elemenfiglds; if the scattered fields are of interest, they are obtained
some weakly singular and some hypersingular integrals requa® a postprocessing activity by integration over these surface
additional partitioning of the elements. This is described mofields.
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[ll. TiME-DOMAIN HYBRIDIZATION As in the frequency-domain case, we simply do not form

Consider the 3-D body where we have identified that regi équation for nodes in II. _ _
(I) where the local geometry requires a full-field solution For nodes in | the field is fOU”‘_’ from the usual Integrations
and that (II) where time domain PO will be used. We wilPVer the IETD region | plus the integrations over the optical
take the fraction of nodes falling within (I) to bé. For 'edion II._ This integration is of known quantities a_nd, thus,
subsequent convenience in illustration, we will take the regiofi@" readily be evaluated. In terms of (6), it can be interpreted
to comprise consecutively numbered nodes, but this is st an addition to the incident wave term. For region I, this
necessary. integration requires that for each 6V nodes we multiply

It is helpful to consider the consequences of this in ternf!t (1—6)~ matrix coefficients and field values, resulting
of system matrix sizes and shapes, to identify the malfy @n overall cost a factof — 1 lower than the fully IETD
computational cost components, and opportunities for th&pProach. This is obviously as yet much less attractive than
reduction. the 6=3 factor saving in the frequency domain. However, for

The discussion is most readily approached via a brigprmonic illumination, each surface-field value in region Il
consideration of the issues in the simpler frequency domami" oscillate sinusoidally. Because of this, the result of any

We would then have had a matrix of the following form: integration over this portion of the surface from any field node
will, itself, oscillate harmonically. (Equivalently, for a pulsed

A B incident wave the short-pulse duration provides similar time
H|=|H,.|- (4) saving.) The consequence is that for any field node in Il, the
C D integration over the surface | need be performed for one half of
. o one period; subsequent integrations will merely duplicate this
Fractions ¢ and (1 — 6) of columns lie in A and B, reqit. The cost of these integrations will vary Wit N>

respectively, and similarly rows in A and C. We would onlyyng he a modest multiple of the equivalent activity in the
ever form (2) for nodes in (I)—regions A and B of the matriXqrequency-domain case. It is a cost scaling with frequency to
Regions C and D are never formed. Valuesibfin (Il), the e fourth power. The treatment otherwise of region | is as
lower part of the column, are known from the PO solutiorhormal with a cost/N2 per timestep.

these are simply multiplied by portion B and taken to the right- The gyerall cost then depends on the number of timesteps
har_ld side. We are left with only matrix reglon A tp solve. Theyr which the IETD analysis must be performed. If it is
main cost components are thus of ordeé¥” (forming the A acessary to model for a transit time of the whole body we
and B portions) and® N3—the generally still dominant COSt have an overall cost @f N5/2 or 62 f5. It could be that effects

of solving the remaining matrix A. The cost in the frequencyy, region | from parts of region Il very remote from region |
domain thus falls with the (inverse) cube of the fraction, which,, pe neglected and that a modeling duration of a few transit

must be treated by the integral equation; equivalently, the C@gtes of the IETD region | is acceptable. If so, the overall
of the integral equation analysis scales with the cube of thgg; ig correspondingly reduced.

number of nodes involved, as usual. In terms of matrix manipulations we have a modification of

We turn now to the time domain, where the cost scalingy apove [where the single history vector is to be taken to
and cost saving issues are less straightforward. Our ObJeCtﬂé?Jresent the multiple ones of (3)]

is still to obtain approximations to the surface fields. For region

I this is simple; the surfacél field at any location and time A B
is given by the PO approximation =4, |+ H, |- (7)
C D
H(r,t)=—-2nx (n x Hi,.(r1)) (5)
where the discretization adopted retains a continuous field IV.  RESULTS

distribution at the interface of the regions just as it does One difficulty with such a treatment is in finding suitable
elsewhere. For nodes within region | we apply (1), whictest cases to validate the implementation; if they are small
shows the field “here and now” to be a simple geometricalgnough to be calculable by other means, they are too small
weighted integral of earlier surface fields over all the rest ér the hybrid approach to be expected to perform well.
the body. Partitioning the domain of integration of (1) int&®We have adopted a three-stage approach to validation and

regions | and Il we have demonstration. The time-domain PO implementation has been
investigated in isolation with no IETD region. No results are

2rH(r,t) =47 H,.(r, 1) —1-/ (n' x H(¥' ")) given here, but behavior is as expected; for example, results

R a0 R on large spheres tend toward analytical results. The efficacy

R , OH . rR of the hybridization is demonstrated, by analysis of a problem

X Rz T <n T (vt )> R ds small enough to be soluble by a full-field solution (and, thus, a

. L problem for which the hybrid is of little practical benefit) and
‘1‘/ (n' x H(r',1")) for which an analytical solution exists. Finally, for a problem
o . too large to be treated by a full-field solution and for which we

X — 4 <n/ % oH (,m/,t*)> % £ ds'. (6) have no analytical solution, we demonstrate the convergence
clt of the hybrid result as the IETD region | is increased in size.
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Fig. 1. BistaticE-plane RCS of a two wavelength sphere calculated via: .
the Mie series, wholly IETD, wholly POTD, and three IETD/POTD hybrid Half-angle subtended by POTD region
ﬁsprre;)(?iﬁzessﬁk;rtg(re]jg(;to{rfgeczgtz? regions is defined by the angldegrees Fig. 2. RCS at bistatic angles of 85and 110 versus the (half) angular

extent of the POTD region. Corresponding exact Mie series results also shown.

A. Carrectness of Hybridization 50 diameters. This arrangement is shown in Fig. 3. Lettered

Fig. 1 shows the bistatic rcs of a two-wavelength (1283cations on the side view indicate points on the surface of the
node) diameter sphere calculated by the Mie series and assitere at which results are extracted or mentioned. Similarly,
of hybrid analyses in which different fractions of the surfactelds computed at the set of locations indicated on the plate
were analyzed using POTD with the balance employing thertically below the sphere will also be plotted. This assembly
full IETD. The extent of the POTD region is characterized bis just such as requires a hybrid treatment, with the length
the half angle it subtends, as indicated in the inset in Fig. Iscales of the plate and sphere so different. A full-field solution

With no POTD region (the “zero degrees” case) the agregould be prohibitively expensive for a case with the pulse
ment between the Mie series and the wholly IETD solutiowidth of order the sphere diameter, but for this same case an
is good. As the extent of the POTD region is increasedptical treatment of the sphere and its immediate surroundings
the accuracy of the solution generally declines. In Fig. 2 weould be very inaccurate. Here, we will treat via IETD the
consider in more detail two bistatic angles,’6and 110, sphere itself and various circular regions of the plate directly
at which the wholly POTD (180 half angle) case differs behind the sphere centered on the sphere axis.
markedly from the Mie series solution. We show the changeWe illuminate from a direction % off-normal, with an
in RCS as the POTD region is reduced from a °18@gree incident wave given by
half angle in stages to end with a wholly IETD solution. A

2
general reduction in error as the increasingly IETD solution 41n2<t — 5)
is employed is seen. Hino(r,t) = Hgexp ¢ . (8)
While use on such a target is of no practical interest as the ' g?

cost of a full-field solution is anyway trivial, it indicates that

the hybridization itself is performing in a satisfactory manner. _ _ .
The pulse-width parameteris selected to make the width

at half maximum of this pulse 2.75 sphere diameters.

We investigate the behavior of the solution as the diameter
We now analyze a large problem for which no analyticalf the circular IETD region is changed. It is to be expected
solution is available. We consider a unit radius sphere plactit as the diameter of the IETD region is increased, the results
centrally 1.75 diameters in front of a square plate of sideill change until the IETD region has encompassed locations

B. Convergence Study
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Fig. 3. Sphere and plate arrangement, showing incident wave, the IETD
POTD regions, and various observation locations.

Surface ield magnitude

where the field is significantly perturbed by the sphere in ways
which have in turn a significant effect on some particular
location of interest.

Fig. 4 shows thell field magnitude at location (a) for: -1.5

1) the diameter of the IETD region on the plate set to
6.5 sphere diameters, the biggest IETD region studied
(continuous line);
2) the diameter of the IETD region on the plate set to zero
with just the sphere treated by IETD and all the plate
treated by POTD (black circles, no line); "2
3) a wholly POTD solution (dashed line).

The wholly POTD solution is grossly inaccurate, with the
Figyt+4. H field magnitude versus time at location (a) (indicated in Fig. 3)
second peak as the reﬂe(.:ted wave passes (a) natura”y fgg)\;[arious extents of IETD region. Dotted line: POTD throughout. Solid line:
captured. _Bo_th of the hybrid cases do capture it and-_'nde 7D region diameter 6.5 sphere diameters. Individual circular points: IETD
their predictions are very similar. The smooth oscillatorgn all the sphere, POTD on the plate.
behavior just after the second large peak, which the larger
IETD region case predicts, IS not predicted by the case W%ese times are the two large negative peaks, the positive
only the sphere analyzed via IETD. Nonetheless, even here . e
. . ; : eak at time~1.1, and the later positive peak a2. Each of
the difference is only about 4% of the peak field. Figur : . . .
. : these times is represented by a line on the graph. It is clear that
are not shown, but very similar observations could be mage . . . o
. . : e result is converging as the diameter of the IETD region is
concerning behavior at locations (b) and (c). _

Both hybrid cases capture the secondary peak at ab reased and that for most practical purposes, the converged
{ = 2, postdating the main pulse by one transit time frormP ution is obtained with a relatively small region treated by
the plate edge to the sphere. Naturally, this also is n '

predicted by the POTD treatment. (Note that in Fig. 4 the Such convergence might be expected to be associated with

actual time dependence is in all cases smoother than the figfhgusion in the IETD region of all of the surface where the
d is significantly influenced by the presence of the sphere;

indicates. The graphs are plotted with straight lines joinirf ! i e
values at timesteps; the actual analysis uses quadratic tempgfzgwhere, the POTD provides a good approximation. We
elements.) investigate this by examining the plate surfdéefield at the

Fig. 5 is an attempt to show the degree of convergenceS@ries of points radially along thé direction indicated in
the results as the IETD region is increased. On the horizontdg- 3.
axis is plotted the area of the IETD region. The first point The time-dependen¥ field magnitude at these points, cal-
(area = 0) corresponds to a wholly POTD solution; the seconeulated using an IETD region 13 sphere diameters in diameter
(area = 3.14) corresponds to just the sphere being treated Kie biggest studied), is shown in Fig. 6. The locations of the
IETD; other cases are for the sphere and, in addition, circul@ints, in sphere diameters from the axis, are indicated on the
regions on the plate of increasing size being treated by IETfigure. Note that the final point is outside the IETD region and,
On the vertical axis is plotted? field magnitude for a set thus, the field there is the POTD field.
of times corresponding to the occasions of largest differenceTo provide scale, the inset shows the field for the full
between the maximum IETD and wholly POTD solutiongduration with fields at only locations 0.0 and 6.775 (the

Time
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Fig. 5. H field magnitude at location (a) (indicated in Fig. 3) versus the Time

areal extent of the IETD region. Results shown for the four times indicated.
Fig. 6. Time-dependent surfaéé field magnitude calculated with an IETD
region of 6.5 diameters. Field shown at indicated distances in sphere diameters

POTD field) shown to avoid excessive clutter. The maitiem the axis in thels direction (locations indicated on Fig. 3).
part of Fig. 6 concentrates on a zoomed view of the period

just after the primary pulse when a small secondary pulseror the small sphere where an analytical solution is avail-
is evident. This pulse is a consequence of the perturbatighle, convergence of the hybrid to the analytical solution is
by the sphere of what would otherwise be the PO fielghserved as the region treated via IETD is increased.

on the plate due to the incident pulse. It is seen that astpe plate and sphere problem is large; a wholly integral
locations further from the sphere are considered the hei@%{uation treatment would be impractical and a wholly op-
of the secondary pulse falls steadily. For the furthest offical treatment would not even be qualitatively correct. The
axis IETD location (6.428 diameters) this secondary pul$brid approach developed seems well able to deal with the
height is only about 1% of the peak field magnitude. Thisroplem; the behavior expected qualitatively is observed and
compares to about 5% at the most central location Wihnvergence is obtained as the IETD region is increased. The
intermediate locations showing a steady gradation betweggal computational cost saving is naturally highly problem
these values. The associated temporal shift between these C8&B&ndent and would, for example, be even larger for a larger
is a consequence of the progressively longer time requirgfte. Here, for even the largest IETD region studied, costs
for the perturbation due to the sphere to propagate out ggs reduced relative to what they would be for a wholly IETD
the progressively more distant locations. Naturally, there i$tion by about two orders of magnitude. The approach

no radius at which the perturbation is literally nonexistant, bygems capable of yielding the time-dependent fields on large
these observations, that by thé.5 diameters studied here the,ggies with locally small features.

field is very little different from the unperturbed field, support

the observations regarding convergence made earlier.
9 9 9 ACKNOWLEDGMENT

The authors would like to thank Dr. M. Bluck and Dr. M.
D. Pocock of the Department of Mechanical Engineering, Im-

The extension of integral equation hybrid methods into thgerial College of Science Technology and Medicine, London,
time domain has been demonstrated. U.K., for their helpful discussions.

V. CONCLUSIONS
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