
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 3, MARCH 1998 373

A Method of Moments Approach for
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Abstract—This paper introduces a moment-method formula-
tion, which is capable of accurately modeling moderately thick
cylindrical wire antennas. New algorithms are presented for the
efficient computation of the cylindrical wire kernel and related
impedance matrix integrals. These algorithms make use of exact
series representations as well as efficient numerical procedures
and lead to a significant reduction in overall computation time
for thicker wires. Another major advantage of this moment-
method technique is that it is no longer restricted by the segment
length-to-radius ratio limitations inherent in past formulations,
thereby making it possible to achieve solution convergence for
a much wider class of wire antenna structures. Several exam-
ples illustrating the superior convergence properties of this new
moment-method formulation are presented and discussed.

Index Terms—Cylindrical antennas, moment methods.

I. INTRODUCTION

SEVERAL techniques have been developed over the years
for the numerical solution of antenna integral equations

of the Hallén as well as Pocklington type. The majority of
this work has focused on thin-wire forms of these integral
equations, which employ the so-called reduced-kernel ap-
proximation [1]–[4]. These techniques are primarily restricted
to modeling thin cylindrical wires with radii up to about
0.01�. Beyond this, the assumptions and approximations upon
which these methods are based begin to breakdown, yielding
inaccurate results. For this reason, there have been several
attempts to generalize these formulations in an effort to extend
their range of usefulness.

A survey of cylindrical antenna theory based on early
methods for obtaining solutions to Hall´en’s integral equa-
tion for moderately thick tubular wires with narrow gaps is
presented in [5]. Two different approaches for solving this
form of the cylindrical wire integral equation are considered.
The first technique involves iterative solutions that use an
approximation to the antenna current as a starting point, while
the second consists of converting the integral equation into a
set of linear simultaneous equations with Fourier coefficients
of the current distribution as unknowns. It was later shown
by King and Wu [6] and Chang [7] that the idealized delta-
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gap generator used in past formulations of Hall´en’s integral
equation were inadequate and would lead to inaccurate results
when used to model moderately thick open-ended thin-walled
tubular antennas.

An alternative method for numerically evaluating Hallén’s
integral equation for the moderately thick tubular dipole is
presented in [8]. This technique is based on an entire-domain
Galerkin procedure, which uses a polynomial representation
for the current distribution. The technique was shown to give
reasonable results when compared to measurements for dipoles
of radii as large as 0.1129� with lengths down to about 0.4�.
For shorter dipoles, however, significant divergence of the
computed curves from experimental results was observed. An
integral equation is developed in [9] for the dipole antenna
of revolution using the extended boundary condition method
originally proposed by Waterman [10]. A subdomain method
of moments (MoM) formulation is used to solve the integral
equation, which employs a piecewise sinusoidal expansion for
the current distribution. The advantage of this procedure is that
it leads to an integral equation that is formally exact and has
a regular kernel. However, it was found that for moderately
thick antennas, numerical instabilities begin to appear as the
wire segmentation is increased.

This paper introduces a subdomain MoM approach that
has been developed for the accurate and efficient analysis of
moderately thick cylindrical wire antennas. Most MoM codes
make use of a reduced-kernel approximation to decrease the
complexity of the cylindrical wire kernel and its associated
expressions. As discussed above, this assumption works well
for most wire structures, which have a radius of 0.01� or
less. As the wire radius increases, individual segments in a
MoM solution space tend to become very short and thick.
Traditionally, a measure of this quantity is referred to as the
segment length-to-radius ratio(�=a). The majority of thin-
wire codes using the reduced-kernel approximation have the
restriction that�=a should be greater than at least ten at all
times to insure accurate results. For most thin-wire problems,
this restriction presents no great difficulties. On the other
hand, for thicker wires, the model often cannot be sufficiently
broken into enough segments and, therefore, convergence in
the MoM solution cannot be achieved. However, by retaining
the full-kernel expression and reformulating the source model
to be more physically representative, it will be demonstrated
in this paper that significant reductions in�=a are possible.
In fact, this technique is capable of maintaining convergence
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for so-called “pancake” or “poker-chip” segmentation (i.e., for
�=a ratios even smaller than 0.05). By essentially removing
the restriction on�=a, which has plagued cylindrical wire
MoM formulations since their inception, it becomes possible
to analyze a much wider class of wire antenna structures.

The theoretical foundation for the development of a gen-
eralized moderately thick-wire MoM formulation which is
independent of the segment length-to-radius ratio�=a is
introduced in Section II. Also discussed in Section II is a new,
more physically realistic, voltage source model developed
primarily for use on thicker wires. Section III contains several
examples which illustrate the ability of the technique to
achieve convergence to measured results for several moder-
ately thick cylindrical wire dipoles, including a quarter wave
dipole (L = 0:25�) of radiusa = 0:1129� which is almost as
wide as it is long, i.e.,2a=L = 0:9032. Finally, techniques for
the efficient evaluation of the various moderately thick-wire
electric field integrals associated with this MoM formulation
are presented and discussed in the Appendix.

II. THEORY

The basis functions which will be adopted for use in this
paper are of the form [11]

In(z
0) = An +Bn sin [�(z

0 � zn)] +Cn cos [�(z
0 � zn)] (1)

with zn the midpoint of thenth segment such thatjz0� znj �
�n=2 where�n represents the segment length. This choice of
basis functions is commonly used because it represents very
well the actual currents, which arise in cylindrical wire appli-
cations and, therefore, leads to rapid convergence [12]. These
basis functions along with a point matching technique are
employed in conjunction with Pocklington’s integral equation
in such a way that both current and charge satisfy continuity
conditions at segment junctions [13]. This approach allows
two of the unknown coefficients in (1) to be eliminated,
leaving only one constant. Following this procedure leads
to a moment-method solution of Pocklington’s electric field
integral equation for arbitrary wire configurations, which may
be expressed as
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= ŝm �E
i
(�m; zm) (2)

wherem = 1;2; � � � ;N and

G(�m; zm � z0)

=

��
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The parameters(�m ; zm) represent the midpoint coordinates
of the observation segment,ŝm represents the unit vector in
the direction of assumed current on the observation segment,
and �̂n and ẑnare unit vectors for the local coordinate system
defined by the source segment. The termK(z� z0) defined in
(4) is known as the cylindrical wire kernel.

As discussed above, the MoM formulation used here as-
sumes a trigonometric current on each segment of the form
defined in (1). This suggests that the electric field due to
each of the three components of the current distribution (i.e.,
uniform, sine, and cosine) must be computed. It can be shown
that in order to calculate these fields, it is necessary to evaluate
a total of six different expressions (integrals) involving the
cylindrical wire kernel. These six expressions are summarized
below:
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It is possible to further simplify the expressions given in (7)
and (8) as well as (10) and (11). Evaluating the derivatives
which appear in (7) and (8) leads to the following useful
integral representations:
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The double integrals of (10) and (11) may be reduced to single
integrals of the form
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The integrals given in (14) and (15) are now in a form where
they may be readily integrated numerically. It was found that
accurate results may be achieved for the majority of cases by
using a very low-order numerical integration scheme, such as a
three-point Gaussian quadrature. Finally, it should be pointed
out that various useful techniques for evaluating (9) have been
discussed elsewhere in the literature [14]–[18] and, therefore,
will not be considered here.

For many thin-wire applications sufficient accuracy can be
achieved by invoking the reduced-kernel approximation [2]

K(z � z0) � K0(z � z0) =
e�j�R0

R0
(17)

where

R0 =
p

(z � z0)2 + �2: (18)

This approximation is based on the assumption that the wire
radius is vanishingly small, i.e.,a = 0. The use of this
reduced-kernel approximation leads to simplified forms for the
expressions, which are given in (6), (9), and (12)–(15). Hence,
in the case of the thin-wire reduced-kernel formulation, (6) and
(12)–(15) will reduce to simple closed-form expressions, while
the double integral of (9) reduces to a single integral given by

I0(�; z; a;�) =

Z �=2

��=2

K0(z � z0) dz0: (19)

Several techniques have been developed for evaluating this
integral, which are summarized in [15] and [18]–[20].

On the other hand, when the full-kernel formulation for
thicker wires is used, all six expressions involving the kernel
(6), (9), (12)–(15) are nonanalytic. As a consequence of this,
the computational overhead for the moderately thick-wire
formulation can be significant if an effort is not made to
devise efficient algorithms for evaluating these six expressions.
Several techniques will be developed in this paper for the
efficient as well as accurate analysis of these integrals. This
includes treatments based on a recently found exact series
representation for the cylindrical wire kernel integral [15], [18]
as well as efficient numerical procedures. These techniques

will be presented and discussed in detail in Sections A and B
of the Appendix.

Either the thin-wire reduced-kernel or the thick-wire full-
kernel formulation can be used to calculate the electric fields
due to a segment. The effectiveness of these solutions depend
on many factors including relative proximity to the source
segment and the wire radius under consideration. The reduced-
kernel MoM formulation is only valid for relatively thin wires
(a � 0:01�). However, it will be demonstrated in this paper
that the upper limit on the validity of this moment-method
formulation may be extended by at least a factor of ten
to include moderately thick wires with radii in the range
0:01� � a � 0:1�. This is accomplished in part by making
use of more accurate electric field expressions, which are in
terms of the full cylindrical wire kernel (4) rather than the
reduced kernel (17).

Many types of source models with varying degrees of
complexity have been discussed in the literature [4], [21]–[27].
The most common of these source models is one in which
a constant longitudinal electric field is applied over a single
segment [4]. This particular model has been extensively used
because it is simple and leads to adequate results for most thin-
wire applications. However, this approach was found to yield
inaccurate results for thicker wires even when a full-kernel
formulation is used. This is especially true for cases where the
segmentation is chosen such that�=a � 1. In other words,
use of a standard source model where the gap size varies with
segmentation will generally not lead to convergence in the
method of moments solution for thicker wire antennas.

This problem was eliminated by introducing a new voltage
source model in which the essential feature is that the gap size
remain fixed. A constant gap source model of this type was first
suggested by Tesche [23] for application to the high-frequency
moment-method solution of the electric field integral equation.
In this paper, a constant gap applied electric field source
model is incorporated into the full-kernel MoM formulation
outlined above. This results in an efficient as well as accurate
moment-method technique, which converges for values of
�=a sufficiently small for most practical applications, includ-
ing the modeling of moderately thick wires. Several examples
illustrating the superior convergence properties of this new
MoM technique are presented and discussed in the following
section.

III. RESULTS

A comparison is made in this section between calculated
and measured values of input impedance for several mod-
erately thick-wire dipole configurations. The calculations of
input impedance were performed using three different MoM
formulations. The thin-wire reduced-kernel formulation with a
standard variable gap applied E-field voltage source model is
one technique that will be considered. The second technique
is a thick-wire formulation, which is obtained by replacing
the reduced-kernel approximations with their corresponding
full-kernel representations given in (6), (9), and (12)–(15).
The third and final technique is also a thick-wire formulation,
which maintains the same full-kernel treatment of the integrals,
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Fig. 1. MoM code predictions for the input resistance in ohms as a function of�=a for a half-wave dipole(L = 0:5�) of radiusa = 0:0509� with a
gap width-to-radius ratiob=a = 1:189. The measured value of resistance is indicated by the dashed line.

but uses a constant gap rather than a variable gap applied E-
field voltage source model. The measured input impedance
values were taken from a table of antenna characteristics for
moderately thick-wire dipoles compiled by King [28].

Calculated values of input resistance and reactance as a
function of wire length-to-radius ratio�=a are shown in
Figs. 1 and 2, respectively, for a moderately thick half-wave
dipole (L = 0:5�) with a radius of a = 0:0509� such
that 2a=L = 0:2036. For this example, the gap width of
the feed may be expressed in terms of the wire radius as
b = 1:189a. The measured value of input impedance for
this case is indicated by the dashed lines which appear in
Fig. 1 (resistance) and Fig. 2 (reactance). The number of
segmentsN corresponding to particular values of�=a have
been included for reference purposes on the plots. The input
impedance values predicted by the variable gap source thin-
wire reduced-kernel MoM formulation, referred to as the
“old source/thin-wire” formulation, are conveyed in the set
of curves marked by the symbol X. As expected, these
curves clearly demonstrate the well-known fact that the old
source/thin-wire formulation is not valid for application if
�=a values smaller than about ten are required. In fact,
for the small values of�=a being considered here, this
formulation is predicting an input impedance that is essentially
zero. The curves marked by the solid squares represent the
input impedance values predicted by the variable gap source
thick-wire full-kernel MoM formulation, which we call the
“old source/thick-wire” formulation. These curves show that
as the segmentation is increased and�=a correspondingly
decreases, the predicted values of impedance diverge from
the measured values. This divergent behavior is linked to the
fact that the gap width of the source model is a function

of segmentation. In other words, as the wire segment size
decreases so does the gap width of the source model. This
leads to inaccurate results for thicker wires even though the
MoM formulation is based on a full-kernel treatment of the
impedance matrix integrals. Finally, the set of curves marked
by solid diamonds were generated from the “new source/thick-
wire” MoM formulation. The only difference between this
formulation and the old source/thick-wire formulation is that
the old variable gap-source model has been replaced by a new
source model, which maintains a constant gap size independent
of segmentation. The plots contained in Figs. 1 and 2 illustrate
the superior convergence properties of the new source/thick-
wire formulation. Excellent agreement with measurements is
maintained for values of�=a as small as 0.05.

Now suppose that instead of a moderately thick half-wave
dipole of radius 0.0509�, we consider a quarter-wave dipole
(L = 0:25�) with a wire radius ofa = 0:1129� and a
gap width given byb = 1:189a. This particular antenna
has the property that it is almost as wide as it is long, i.e.,
2a=L = 0:9032. Convergence plots of the input resistance
and reactance for this case are shown in Figs. 3 and 4,
respectively. Once again, even for this extreme case, the new
source/thick-wire formulation consistently yields results which
are in excellent agreement with measurements.

The improvement in efficiency gained by employing the
thick-wire MoM formulation introduced in this paper may be
demonstrated by comparing it to the results obtained when a
standard “brute force” numerical approach is used to perform
the required full-kernel integrations. For instance, suppose
we consider a quarter-wave dipole at 300 MHz (L = 0:25
m) with a = 0:1129 m and b = 0:1342 m. We first use
the efficient thick-wire code to calculate the resulting input
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Fig. 2. MoM code predictions for the input reactance in ohms as a function of�=a for a half-wave dipole(L = 0:5�) of radiusa = 0:0509� with a
gap width-to-radius ratiob=a = 1:189. The measured value of reactance is indicated by the dashed line.

Fig. 3. MoM code predictions for the input resistance in ohms as a function of�=a for a quarter-wave dipole(L = 0:25�) of radiusa = 0:1129� with
a gap width-to-radius ratiob=a = 1:189. The measured value of resistance is indicated by the dashed line.

impedance which, for a 51-segment model, was found to
be Zin = 19:528 � j39:569
 (see Figs. 3 and 4). The
code was executed on a 120-MHz Pentium computer with a
required impedance matrix fill time of 3.46 s. Next, we replace
the routines developed for efficient evaluation of the full-
kernel integrals with routines which employ a “brute force”

numerical integration scheme based on Gaussian quadrature.
Table I contains calculated values of input impedance and
associated matrix fill times obtained for the same 51-segment
quarter-wave dipole example using various orders of Gaussian
quadrature integration. These results suggest that comparable
accuracy may be achieved by using the efficient thick-wire
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Fig. 4. MoM code predictions for the input reactance in ohms as a function of�=a for a quarter-wave dipole(L = 0:25�) of radiusa = 0:1129� with
a gap width-to-radius ratiob=a = 1:189. The measured value of reactance is indicated by the dashed line.

TABLE I
INPUT IMPEDANCE AND MATRIX FILL -TIME ESTIMATES FOR A 51-SEGMENT

QUARTER-WAVE DIPOLE AT 300 MHz. FULL-KERNEL INTEGRALS ARE

EVALUATED NUMERICALLY USING AN N -POINT GAUSSIAN QUADRATURE SCHEME

formulation with at least a factor of ten reduction in overall
computation time.

IV. CONCLUSIONS

Conventional MoM codes, which are based on a reduced-
kernel formulation with a variable gap applied E-field voltage
source model, are not suitable for application to wires with
radii larger than about 0.01�. A new subdomain MoM formu-

lation was introduced in this paper, which is not only valid
for thin wires (a � 0:01�), but is also valid for moderately
thick wires (0:01� � a � 0:1�). This was accomplished by
replacing the old thin-wire reduced-kernel treatment with a
new thick-wire full-kernel treatment and by reformulating the
source model to be more physically representative for thicker
wires. It was demonstrated that one of the major advantage of
this new MoM technique is that it is no longer restricted by the
�=a limitations inherent in past formulations and is, therefore,
capable of achieving solution convergence for a much wider
class of wire antenna structures. Finally, an emphasis has been
placed on the development of efficient yet accurate algorithms
for the computation of the full kernel and various associated
expressions.

APPENDIX

A. Series Representations forK(z � z0);DzK(z � z0);
andD�K(z � z0)

Exact series expansions for the cylindrical wire kernel and
associated derivatives with respect toz and � have recently
been derived in [15] and [18]. These expansions provide a
means by which the integrals given in (6), (12), and (13) may
be efficiently as well as accurately evaluated. A convenient
form of these exact series are

1
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e�j�R

�R
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2nX

k=0

An;k
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(23)

R =
p
(z � z0)2 + �2 + a2: (24)

A set of recurrence relations for the efficient computation of
the coefficientsAn;k (23) have been developed in [15] and
[29]. This set of recursions is given by

An;0 =

(
�1; n = 0

�
1

(2n)2
An�1;0; n> 0 (25)

An;k =
1

2j
(2n� k + 1)

�
2n+ k

k

�
An;k�1: (26)

Past methods implemented (20)–(22) using recurrence rela-
tions (25) and (26) to incrementAn;k, while summing over the
variablek for eachn until somenmax was reached for which
the series achieved a specified convergence tolerance. One
drawback of these approaches, however, is that they involve
calculating terms which are too small to have a significant
impact on the series.

A new and more efficient approach for evaluating these
series will be presented here that eliminates the need to
calculate insignificant terms. We begin the development of
this new algorithm by defining a modified expression for (20)

1

�
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e�j�R

�R

1X
n=0

2nX
k=0

Fn;k (27)

where

Fn;k = An;k

(�2�a)2n

(�R)2n+k
: (28)

This modified form ofAn;k leads to the following set of
recurrence relations:

Fn;k =
(�1)(2n+ k � 1)(2n+ k)

(2n� k � 1)(2n� k)(2n)2
(�2�a)2

(�R)2
Fn�1;k (29)

Fn;k =
(2n+ k � 1)(2n+ k)

j(2k)(�R)
Fn;k�1: (30)

Further examination of (30) provides insight into the behavior
of the recursion. To find the maximum value of the recursion
for a givenn, we setFn;k equal toFn;k�1 in (30) and solve
for k

kmax =
1
2
[(1� 2�R) +

p
(1� 2�R) + 8n(2n+ 1)]: (31)

For values ofn that are much larger thanR, the value at
which Fn;k reaches a maximum is atk = 2n. Each value of
Fn;k for a givenn will decrease for decreasing values ofk.
For this reason, it becomes important to only calculate those
values of (20) that are of computational significance. Equation
(31) predicts that the maximum recursion value ofFn;k for a

given n is Fn;2n, provided thatn is sufficiently large. Also,
Fn;k tends toward smaller values for each succeedingk less
than k = 2n. The recursion in (30) can be run backward
from k = 2n until the result is smaller than some predefined
convergence tolerance. The other noncalculated terms should
have little or no impact on the final result and can be ignored.

Before implementing a computationally efficient method
for the calculation of (20), it is helpful to define an addi-
tional recurrence relation. Combining (29) and (30) yields the
following useful relation:

Fn;k =
(2n+ k � 3)(2n+ k � 2)(2n+ k � 1)(2n+ k)

(2k)(2k � 2)(n2)

�
(�2�a)2

(�R)3
Fn�1;k�2 (32)

which corresponds to a “diagonal” movement. An efficient
implementation of (20) may now be realized by setting a lower
limit for k in (27) as follows:

1

�
K(z � z0) = �

e�j�R

�R

1X
n=0

2nX
k=kmin(n)

Fn;k (33)

wherekmin(n) is a lower limit fork based on previous values
in the recursion forFn;k. Two convergence tolerances are set
within the iteration. The first tolerance governs howkmin(n)
is incremented asn increases saving a considerable amount of
computation. The second convergence tolerance checks that
each inner summation in (33) is still large enough to have an
impact on the final solution. If not, the summation is assumed
to have reached convergence and is therefore terminated.

Previous methods for the computation of (20) summed all
values of k for a given value ofn. The value ofn was
incremented until the inner summation term passed below
some predefined convergence value. This new method saves
much of the computation over the old method by using the
kmin value in the inner summation of (33). For most problems
of computational interest,kmin remains relatively close to 2n.
For larger values ofn, most of the terms calculated in (20)
have little or no impact on the final answer. In some cases, over
80% of the terms calculated using previous methods could be
ignored using this new method.

Finally, it is now possible to derive a useful convergence
property of (33) and, hence, (20). For large values ofa and
small values ofR, the expressions tend to converge slowly
or not at all. A quantitative measure of the convergence of
these expressions can be calculated by making use of (32).
When the maximum value for the recursion (31) is substituted
into (32) and simplified for large values ofn, the following
expression is obtained:

Fn;k =
4(�a)2

R4
Fn�1;k�2: (34)

Careful examination of (34) and (24) reveals thatFn;k in
(33) will always tend to approach zero. However, from the
computational point of view, the rate of convergence is a very
important factor in determining the efficiency of the method.
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To apply the same results to the derivatives of the kernel, we
start with simplified expressions for the derivatives given by

DzK(z � z0) = �(z � z0)
e�j�R

(�R)3

1X

n=0

2nX

k=0

F 1
n;k (35)

D�K(z � z0) =
1

��

e�j�R

(�R)3

" 
1X
n=0

2nX
k=0

F 2
n;k

!

�
 

1X
n=0

2nX
k=0

F 3
n;k

!#
(36)

where

F 1
n;k =Fn;k[(2n+ k + 1) + j�R] (37)

F 2
n;k =Fn;k(��)

2[(2n+ k + 1) + j�R] (38)

F 3
n;k =Fn;k(2n)(�R)

2: (39)

From (37)–(39), it is easy to see that all of the derivative
terms fall off as fast or faster thanFn;k for decreasing values
of k. Thus, with slight modification, a routine designed to
calculate the kernel can be made to simultaneously compute
both the derivative terms with little increase in overall com-
putational time. Also, the lower boundkmin(n) will apply to
the calculation of the derivative terms as well.

B. Numerical Methods for Evaluating
K(z � z0); DzK(z � z0); andD�K(z � z0)

In Appendix A, series forms of the kernel and the asso-
ciated derivatives of the kernel were presented. Also, a fast
method for the calculation of these expressions was introduced.
However, field points that are in close proximity to the
source segment of moderately thick wires can cause numerical
instability in the calculation of these exact expressions. For
these cases, a large number of terms is needed for convergence
and other methods become more attractive for the calculation
of these expressions. One such method for the calculation of
(6), (12), and (13) has been developed in [15], which involves
complete elliptic integrals of the first, second, and third kinds.

The cylindrical wire kernel can be split into two inte-
grals—one in which the integrand is singular and the other
in which the integrand is slowly varying—that may be treated
separately

1

�
K(z � z0) =

1

2�

"Z 2�

0

1

�R0
d�0 +

Z 2�

0

e�j�R
0 � 1

�R0
d�0

#
:

(40)

The second integral in (40) contains an integrand that is slowly
varying and can be integrated using a relatively low-order
numerical integration scheme such as three-point Gaussian
quadrature. The first integral can be expressed in the form [15]

1

�

Z �

0

1

�R0
d�0 =

1

�

1

�
p
�a

kF
��
2
; k
�
; 0 � k< 1 (41)

where

F
��
2
; k
�
=

Z �=2

0

d'p
1� k2 sin2 '

(42)

represents a complete elliptic integral of the first kind and

k =
2
p
�ap

(z � z0)2 + (� + a)2
: (43)

Expressions for the derivatives of the kernel may be found
by following a similar procedure. Performing the indicated
differentiation of the integral form of the kernel yields the
following results:

DzK(z � z0) =��(z � z0)=1(z � z0; �; a) (44)

D�K(z � z0) = (�a)=2(z � z0; �; a)� (��)=1(z � z0; �; a)

(45)

where

=1(z � z0; �; a) =
1

�

Z �

0

[1 + j�R0]
e�j�R

0

(�R0)3
d�0 (46)

=2(z � z0; �; a) =
1

�

Z �

0
[1 + j�R0]

e�j�R
0

(�R0)3
cos�0 d�0:

(47)

The integrals (46) and (47) can be evaluated numerically,
but the results will be inadequate for points calculated in the
vicinity of the singularity. Extracting the singularity from=1

leads to

=1(z � z0; �; a)

=
1

2�(�2�a)1=2
kF
��
2
; k
�
+

1

4�(�2�a)3=2

� k3

1� k2
E
��
2
; k
�
+

1

�

�
Z �

0

(
[1 + j�R0]e�j�R

0 � [1 + (�R0)2=2]

(�R0)3

)

� d�0; � 6= a (48)

where

E
��
2
; k
�
=

Z �=2

0

q
1� k2 sin2'd' (49)

is a complete elliptic integral of the second kind. For the case
where� = a, (48) reduces to

=1(z � z0; a; a)

=
1

2�(�a)
kF
��
2
; k
�
+

1

4�(�a)3

� k3

1� k2
E
��
2
; k
�
+

1

�

�
Z �

0

(
[1 + j�R0]e�j�R

0 � [1 + (�R0)2=2]

(�R0)3

)
d�0

z 6= z0: (50)
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A similar singularity extraction procedure may be followed in
order to arrive at an expression for=2 given by

=2(z � z0; �; a)

=
1

2�(�2�a)3=2

��
(�2�a)

(2 � k2)

k
� k

�
F
��
2
; k
�

+
k(2� k2)

2(1� k2)
E
��
2
; k
�
� (�2�a)

2(1� k2)

k

� �
��
2
; k2; k

�i
+

1

�

�
Z �

0

(
[1 + j�R0]e�j�R

0 � [1 + (�R0)2=2]

(�R0)3

)

� cos�0 d�0; � 6= a (51)

where

�
��
2
; k2; k

�
=

Z �=2

0

d'

(1� k2 sin2')
p
1� k2 sin2 '

(52)

is a complete elliptic integral of the third kind. For the case
in which � = a, (51) reduces to

=2(z � z0; a; a)

=
1

2�(�a)3

��
(�a)2

(2� k2)

k
� k

�
F
��
2
; k
�

� k(2� k2)

2(1� k2)
E
��
2
; k
�
� (�a)2

2(1� k2)

k

� �
��
2
; k2; k

�o
+

1

�

�
Z �

0

(
[1 + j�R0]e�j�R

0 � [1 + (�R0)2=2]

(�R0)3

)

� cos �0 d�0 z 6= z0: (53)

Given that efficient algorithms exist for the calculation of
the elliptic integrals [30] and that the singularities in the
expressions for the kernel and associated derivatives have been
removed, these expressions can be used anywhere in the MoM
problem as a rigorous solution. For most of the expressions
in the moment-method impedance matrix, this method is too
slow to be of computational value when compared to the
fast implementation of the series expressions in Appendix A.
However, at the points where the series representations fail to
converge quickly or at all, these expressions can be used. In
most moment-method problems, the fast series method is used
for a majority of the problem, and the singularity free elliptic
integral method discussed in this section is used for self (i.e.,
� = a; z = 0 and z0 = ��=2) and nearby segments, which
constitute only a small portion of the total problem.

Two different methods have been presented for calculating
the kernel and the two derivatives of the kernel with respect
to � andz. A method based on exact series formulations was
presented in Appendix A, which was used for nonself and less
critical terms. A more numerically rigorous formulation based
on the evaluation of generalized elliptic integrals (discussed in
this section) is used for more critical cases. If the following

condition is satisfied:

�ap
(z � z0)2 + �2 + a2

> 0:15 (54)

then the more computationally intensive elliptic integral forms
must be used. Otherwise, the exact series solutions are em-
ployed. This cutoff was derived through numerical investiga-
tion using (34) as the starting point.
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