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A Method of Moments Approach for
the Efficient and Accurate Modeling of
Moderately Thick Cylindrical Wire Antennas

Douglas H. WernerSenior Member, |IEEE

Abstract—This paper introduces a moment-method formula- gap generator used in past formulations of Bl integral
tion, which is capable of accurately modeling moderately thick equation were inadequate and would lead to inaccurate results

cylindrical wire antennas. New algorithms are presented for the \hap ysed to model moderately thick open-ended thin-walled
efficient computation of the cylindrical wire kernel and related tubular antennas

impedance matrix integrals. These algorithms make use of exact . . .
series representations as well as efficient numerical procedures An alternative method for numerically evaluating Halls
and lead to a significant reduction in overall computation time integral equation for the moderately thick tubular dipole is

for thicker wires. Another major advantage of this moment- presented in [8]. This technique is based on an entire-domain
method technique is that it is no longer restricted by the segment c4jarkin procedure, which uses a polynomial representation
length-to-radius ratio limitations inherent in past formulations, for the current distribution. The technique was shown to give
thereby making it possible to achieve solution convergence for : :
a much wider class of wire antenna structures. Several exam- reasonable results when compared to measurements for dipoles
ples illustrating the superior convergence properties of this new of radii as large as 0.1129with lengths down to about QM
moment-method formulation are presented and discussed. For shorter dipoles, however, significant divergence of the
Index Terms—Cylindrical antennas, moment methods. computed curves from experimental results was observed. An
integral equation is developed in [9] for the dipole antenna
of revolution using the extended boundary condition method
originally proposed by Waterman [10]. A subdomain method
VERAL techniques have been developed over the yeaEmoments (MoM) formulation is used to solve the integral
or the numerical solution of antenna integral equatiorequation, which employs a piecewise sinusoidal expansion for
of the Halén as well as Pocklington type. The majority othe current distribution. The advantage of this procedure is that
this work has focused on thin-wire forms of these integrélleads to an integral equation that is formally exact and has
equations, which employ the so-called reduced-kernel ap-regular kernel. However, it was found that for moderately
proximation [1]-[4]. These techniques are primarily restrictethick antennas, numerical instabilities begin to appear as the
to modeling thin cylindrical wires with radii up to aboutwire segmentation is increased.
0.02). Beyond this, the assumptions and approximations uponThis paper introduces a subdomain MoM approach that
which these methods are based begin to breakdown, yieldimas been developed for the accurate and efficient analysis of
inaccurate results. For this reason, there have been severatlerately thick cylindrical wire antennas. Most MoM codes
attempts to generalize these formulations in an effort to extenthke use of a reduced-kernel approximation to decrease the
their range of usefulness. complexity of the cylindrical wire kernel and its associated
A survey of cylindrical antenna theory based on earlgxpressions. As discussed above, this assumption works well
methods for obtaining solutions to Hefl’s integral equa- for most wire structures, which have a radius of 0.0dr
tion for moderately thick tubular wires with narrow gaps ifess. As the wire radius increases, individual segments in a
presented in [5]. Two different approaches for solving thisloM solution space tend to become very short and thick.
form of the cylindrical wire integral equation are consideredraditionally, a measure of this quantity is referred to as the
The first technique involves iterative solutions that use aegment length-to-radius rati@\/«). The majority of thin-
approximation to the antenna current as a starting point, whilére codes using the reduced-kernel approximation have the
the second consists of converting the integral equation intaestriction thatA /a should be greater than at least ten at all
set of linear simultaneous equations with Fourier coefficientisnes to insure accurate results. For most thin-wire problems,
of the current distribution as unknowns. It was later showthis restriction presents no great difficulties. On the other
by King and Wu [6] and Chang [7] that the idealized deltahand, for thicker wires, the model often cannot be sufficiently
broken into enough segments and, therefore, convergence in
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for so-called “pancake” or “poker-chip” segmentation (i.e., fofhe parametersp,,, z, ) represent the midpoint coordinates
A/a ratios even smaller than 0.05). By essentially removingf the observation segmerd,, represents the unit vector in
the restriction onA/a, which has plagued cylindrical wire the direction of assumed current on the observation segment,
MoM formulations since their inception, it becomes possiblend s,, andz,are unit vectors for the local coordinate system
to analyze a much wider class of wire antenna structures. defined by the source segment. The téiifr — 2') defined in

The theoretical foundation for the development of a geqd) is known as the cylindrical wire kernel.
eralized mOderately thick-wire MoM formulation which is As discussed above, the MoM formulation used here as-
independent of the segment length-to-radius raga is symes a trigonometric current on each segment of the form
introduced in Section Il. Also discussed in Section Il is a NneWefined in (1). This suggests that the electric field due to
more physically realistic, voltage source model developggch of the three components of the current distribution (i.e.,
primarily for use on thicker wires. S_e_ction I contains_sever%lniform, sine, and cosine) must be computed. It can be shown
examples which illustrate the ability of the technique 1§,,¢in order to calculate these fields, it is necessary to evaluate
achieve convergence to measured results for several modeky,io| of six different expressions (integrals) involving the

ately thick cylindrical wire dipoles, including a quarter Wave, 1i-drical wire k L Th : ; ed
dipole (L = 0.25)) of radiusa = 0.1129A which is almost as b)éll(r)wwﬂca WITE KErnel. These Six expressions are summanze

wide as it is long, i.e.2a/L = 0.9032. Finally, techniques for
the efficient evaluation of the various moderately thick-wire

1 27 _—jBR’
electric field integrals associated with this MoM formulation —K(z —2') = 2—/ eT d¢’ (6)
are presented and discussed in the Appendix. p T Jo p
10
Dz [7 ot — __I/’ ot 7
Il. THEORY (= =4 5?0z (= =4) 0
The basis functions which will be adopted for use in this i . 10 . .
paper are of the form [11] D,K(z—2)= @@A (z =) (8)
I,(z) = A, + By sin[3(2' — 2,)]+ C, cos [B(2 — z,)] (1) AJ2
I(p,z;a,A):/ K(z—2)d? 9)
with z, the midpoint of thexth segment such that’ — z,, | < —AJ2
A, /2 whereA,, represents the segment length. This choice of L P
basis functions is commonly used because it represents very(p, z;a, A) = _/ sin (B2')=—K(z —z')dz’  (10)
well the actual currents, which arise in cylindrical wire appli- B J-ns dp
cations and, therefore, leads to rapid convergence [12]. These AJ2

) . . . . . 1
basis functions along with a point matching technique areC(p, z;a, A) :—/
employed in conjunction with Pocklington’s integral equation BRIV

in such a way that both current and charge satisfy continuity. ) o ) ) )
conditions at segment junctions [13]. This approach allowsiS Possible to further simplify the expressions given in (7)

two of the unknown coefficients in (1) to be eliminated@d (8) as well as (10) and (11). Evaluating the derivatives
leaving only one constant. Following this procedure lead¥ich appear in (7) and (8) leads to the following useful
to a moment-method solution of Pocklington’s electric fielfitegral representations:

integral equation for arbitrary wire configurations, which may

4,
cos (,8,2’)%1((2 —z2)dZ. (11)

be expressed as DoK(:— )= (= z’)i /271' (14 jBR') e=irF "
. N AL ? 27 J, (BR)? R
jjld—: Z /—A /2 L ("G (pm, 2 — 2 ) d2' (12)
n=1 n
— 2w - /
5 (Pm s 2m) 2) D/,A(z—z’)_—ﬂ i (p—acosé’)w
wherem = 1,2,---, N and e—ifR’
. de’. 13
G 2m — 7) R (13)
2 2
= [{Sm B+ iz (8_§m < F a—zém gn>} The double integrals of (10) and (11) may be reduced to single
72 \0p0z 0z integrals of the form
K(z—2 ] (3)
e fomies S(p, za,A)
_ 1/7T (p—acos¢’) Xe_mR’l
) / 1 27 —ipR / m )y (p®+a®—2pacosd) 8R!
K(Z—Z)Ig‘/o R -d¢ (4) ~[(z—z’)sin(6z’)—|—jR’ Cos(ﬁz/)]izé/im e’

R =\/(z— )2 +p? + a2 — 2pacos¢’. (5) (14)
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will be presented and discussed in detail in Sections A and B

Cp, z;a, A) of the Appendi_x. _ _ _
1/ (p—acos ) o—iOR/ Either the thin-wire reduced-kernel or the thick-wire full-
= _/ X kernel formulation can be used to calculate the electric fields
T Jo (p* +a® —2pacos¢’) 6RI/ due to a segment. The effectiveness of these solutions depend
[(z—2")cos(Bz") — jR sin (52/)]|;sz/2 d¢’ on many factors including relative proximity to the source

(15) segment and the wire radius under consideration. The reduced-
kernel MoM formulation is only valid for relatively thin wires
(a < 0.01X). However, it will be demonstrated in this paper
that the upper limit on the validity of this moment-method
} formulation may be extended by at least a factor of ten
dz

by making use of the fact that

/A/2 g [ e—iBR'£2")
—A/Z% R

=+(p—acos¢)

to include moderately thick wires with radii in the range
0.01A < a < 0.1X. This is accomplished in part by making
2=AJ2 use of more accurate electric field expressions, which are in
terms of the full cylindrical wire kernel (4) rather than the
reduced kernel (17).
(16) Many types of source models with varying degrees of
complexity have been discussed in the literature [4], [21]-[27].

. : . . The most common of these source models is one in which
The integrals given in (14) and (15) are now in a form wherg ., qq longitudinal electric field is applied over a single

they may be readily integrated numerically. It was found th%gment [4]. This particular model has been extensively used

accurate results may be achieved for the majority of cases l?é/cause it is simple and leads to adequate results for most thin-

using a very Iow-order numerical intggratio_n scheme, SUCh_ e applications. However, this approach was found to yield
three-point Gaussian quadrature. Finally, it should be point ccurate results for thicker wires even when a full-kernel

out that various useful techniques for evaluating (9) have be}%'?mulation is used. This is especially true for cases where the
discussed elsewhere in the literature [14]-[18] and, therefog%gmentation is chosen such thifa < 1. In other words

will not be considered here. use of a standard source model where the gap size varies with

Fpr many t_hln-V\_nre applications sufficient accuracy can bafi%gmentation will generally not lead to convergence in the
achieved by invoking the reduced-kernel approximation [2] method of moments solution for thicker wire antennas.

e—JPRo This problem was eliminated by introducing a new voltage
Ro (17) " source model in which the essential feature is that the gap size
remain fixed. A constant gap source model of this type was first
suggested by Tesche [23] for application to the high-frequency
Ry = \/m (18) moment-method solution of the electric field integral equation.
In this paper, a constant gap applied electric field source
This approximation is based on the assumption that the wifgbdel is incorporated into the full-kernel MoM formulation
radius is vanishingly small, ieq = 0. The use of this outlined above. This results in an efficient as well as accurate
reduced-kernel approximation leads to simplified forms for thRoment-method technique, which converges for values of
expressions, which are given in (6), (9), and (12)—(15). Henc&/q sufficiently small for most practical applications, includ-
in the case of the thin-wire reduced-kernel formulation, (6) anflg the modeling of moderately thick wires. Several examples
(12)—(15) will reduce to simple closed-form expressions, whilgustrating the superior convergence properties of this new
the double integral of (9) reduces to a single integral given oM technique are presented and discussed in the following
AJ2 section.

In(p,z;a,A) = / Ko(z—2")dZ. (19)
NT

e—JiB(R'£2")

BRI[R £ (2 — 2)]

2'=—A/2

Kz-2)mKy(z—2)=

where

Several techniques have been developed for evaluating this Ill. RESuLTS

integral, which are summarized in [15] and [18]-[20]. A comparison is made in this section between calculated
On the other hand, when the full-kernel formulation foand measured values of input impedance for several mod-
thicker wires is used, all six expressions involving the kernefately thick-wire dipole configurations. The calculations of
(6), (9), (12)—(15) are nonanalytic. As a consequence of thisput impedance were performed using three different MoM
the computational overhead for the moderately thick-wifermulations. The thin-wire reduced-kernel formulation with a
formulation can be significant if an effort is not made tstandard variable gap applied E-field voltage source model is
devise efficient algorithms for evaluating these six expressiomse technique that will be considered. The second technique
Several techniques will be developed in this paper for the a thick-wire formulation, which is obtained by replacing
efficient as well as accurate analysis of these integrals. Thie reduced-kernel approximations with their corresponding
includes treatments based on a recently found exact sefidskernel representations given in (6), (9), and (12)—(15).
representation for the cylindrical wire kernel integral [15], [18T he third and final technique is also a thick-wire formulation,
as well as efficient numerical procedures. These technigwelich maintains the same full-kernel treatment of the integrals,
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Fig. 1. MoM code predictions for the input resistance in ohms as a functiah /ef for a half-wave dipole(L = 0.5\) of radiusa = 0.0509\ with a
gap width-to-radius ratid/a = 1.189. The measured value of resistance is indicated by the dashed line.

but uses a constant gap rather than a variable gap appliedbEsegmentation. In other words, as the wire segment size
field voltage source model. The measured input impedandecreases so does the gap width of the source model. This
values were taken from a table of antenna characteristics Feads to inaccurate results for thicker wires even though the
moderately thick-wire dipoles compiled by King [28]. MoM formulation is based on a full-kernel treatment of the
Calculated values of input resistance and reactance agmpedance matrix integrals. Finally, the set of curves marked
function of wire length-to-radius ratid\/a are shown in by solid diamonds were generated from the “new source/thick-
Figs. 1 and 2, respectively, for a moderately thick half-waweire” MoM formulation. The only difference between this
dipole (L = 0.54) with a radius ofa = 0.0509A such formulation and the old source/thick-wire formulation is that
that 2a/L = 0.2036. For this example, the gap width ofthe old variable gap-source model has been replaced by a new
the feed may be expressed in terms of the wire radius smurce model, which maintains a constant gap size independent
b = 1.189a. The measured value of input impedance foof segmentation. The plots contained in Figs. 1 and 2 illustrate
this case is indicated by the dashed lines which appeartive superior convergence properties of the new source/thick-
Fig. 1 (resistance) and Fig. 2 (reactance). The number wire formulation. Excellent agreement with measurements is
segmentsN corresponding to particular values of/a have maintained for values ofA/a as small as 0.05.
been included for reference purposes on the plots. The inpulNow suppose that instead of a moderately thick half-wave
impedance values predicted by the variable gap source thilipole of radius 0.0508, we consider a quarter-wave dipole
wire reduced-kernel MoM formulation, referred to as thél, = 0.25)A) with a wire radius ofe = 0.1129X and a
“old source/thin-wire” formulation, are conveyed in the segap width given byt = 1.189a. This particular antenna
of curves marked by the symbol X. As expected, thesms the property that it is almost as wide as it is long, i.e.,
curves clearly demonstrate the well-known fact that the ofi/L = 0.9032. Convergence plots of the input resistance
source/thin-wire formulation is not valid for application ifand reactance for this case are shown in Figs. 3 and 4,
A/a values smaller than about ten are required. In facgspectively. Once again, even for this extreme case, the new
for the small values ofA/a being considered here, thissource/thick-wire formulation consistently yields results which
formulation is predicting an input impedance that is essentiallye in excellent agreement with measurements.
zero. The curves marked by the solid squares represent th&he improvement in efficiency gained by employing the
input impedance values predicted by the variable gap soutb&k-wire MoM formulation introduced in this paper may be
thick-wire full-kernel MoM formulation, which we call the demonstrated by comparing it to the results obtained when a
“old source/thick-wire” formulation. These curves show thattandard “brute force” numerical approach is used to perform
as the segmentation is increased ahgda correspondingly the required full-kernel integrations. For instance, suppose
decreases, the predicted values of impedance diverge franm consider a quarter-wave dipole at 300 MHz £ 0.25
the measured values. This divergent behavior is linked to th§ with ¢« = 0.1129 m andb = 0.1342 m. We first use
fact that the gap width of the source model is a functiothe efficient thick-wire code to calculate the resulting input
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Fig. 2. MoM code predictions for the input reactance in ohms as a functiah /ef for a half-wave dipolg(L = 0.5)\) of radiusea = 0.0509) with a
gap width-to-radius ratid/c = 1.189. The measured value of reactance is indicated by the dashed line.
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Fig. 3. MoM code predictions for the input resistance in ohms as a functiak/ef for a quarter-wave dipoléL = 0.25)) of radiusa = 0.1129X with
a gap width-to-radius ratib/a = 1.189. The measured value of resistance is indicated by the dashed line.

impedance which, for a 51-segment model, was found twmerical integration scheme based on Gaussian quadrature.
be 7, = 19.528 — 539.569Q (see Figs. 3 and 4). TheTable | contains calculated values of input impedance and
code was executed on a 120-MHz Pentium computer withaasociated matrix fill times obtained for the same 51-segment
required impedance matrix fill time of 3.46 s. Next, we replacguarter-wave dipole example using various orders of Gaussian
the routines developed for efficient evaluation of the fullguadrature integration. These results suggest that comparable
kernel integrals with routines which employ a “brute forceaccuracy may be achieved by using the efficient thick-wire
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Fig. 4. MoM code predictions for the input reactance in ohms as a functieh/ef for a quarter-wave dipoléL = 0.25\) of radiusa = 0.1129X with
a gap width-to-radius ratib/a = 1.189. The measured value of reactance is indicated by the dashed line.

TABLE | lation was introduced in this paper, which is not only valid
INPUT IMPEDANCE AND MATRIX FILL-TIME ESTIMATES FOR A 51-SEGMENT for thin wires (a < 0.01/\)’ but is also valid for moderately
QUARTER-WAVE DiPOLE AT 300 MHz. RuLL-KERNEL INTEGRALS ARE . . - . .
EVALUATED NUMERICALLY USING AN /N -POINT GAUSSIAN QUADRATURE SCHEME thick v_vwes (0'01’\ = .a S 0'1’\)- This was accomplished _by
replacing the old thin-wire reduced-kernel treatment with a

Gaussian Quadrature 7, Fill Time new thick-wire full-kernel treatment and by reformulating the
{Number of Points) (Ohms) (Seconds) source model to be more physically representative for thicker
6 0.059-+2.009 2.80 wires. It was demon_stratgd that_ one of the major gdvantage of
: this new MoM technique is that it is no longer restricted by the
8 21.770+j35.761 4.44 A/a limitations inherent in past formulations and is, therefore,
10 20.640-37.124 6.59 capable of achieving solution convergence for a much wider
2 20.203-j37.974 9.18 class of wire antenna structures. Finally, an emphasis has been
- placed on the development of efficient yet accurate algorithms
14 19.945-}38.508 12.08 for the computation of the full kernel and various associated
16 19.776-j38.869 15.49 expressions.
18 19.663-j39.121 19.28
20 19.589-j39.293 23.40 APPENDIX
22 19.546:439.406 27.96 A. Series Representations fai(z — '), D, K(z — 2'),
24 19.526-§39.476 33.01 and D, K(z — z')
26 19.52039.517 38.56 Exact series expansions for the cylindrical wire kernel and
28 19.524-139.537 44.38 associated derivatives with respect4aand p have recently

been derived in [15] and [18]. These expansions provide a
means by which the integrals given in (6), (12), and (13) may
formulation with at least a factor of ten reduction in overalbe efficiently as well as accurately evaluated. A convenient

computation time. form of these exact series are
1 . / —jBR © )2n
IV. CONCLUSIONS BA(Z ST Z_:Okzo " (BR)F BR o0tk (20)
Conventional MoM codes, which are based on a reduced- R 2 Non
e - (8 pa)

kernel formulation with a variable gap applied E-field voltageD, K (z — 2') = 8(z — #) g Z Z n kT EEN TR
source model, are not suitable for application to wires with (s ) n=0k=0 (R)
radii larger than about 0.01 A new subdomain MoM formu- J2n+k+ 1)+ jOR] (21)
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1 e—ifR 2 20 2 pa) 2" iven n is F, »,, provided that: is sufficiently large. Also,
D,K(z =)= @W Z ZAnk((gRgizzM %,,k tends to\/vardp smaller values for each s){Jccege(kingss
n=0k=0 than £ = 2n. The recursion in (30) can be run backward
H(Bp)’[(2n + k + 1) + jBR] — 2n(5R)”} from k = 27 until the result is smaller than some predefined
(22) convergence tolerance. The other noncalculated terms should
have little or no impact on the final result and can be ignored.
where Before implementing a computationally efficient method
A (1/2) (2n—1) (2n+k)! 23 for the calculation of (20), it is helpful to define an addi-
L ) (27)%  k'(2n)!(2n — k)! (23) tional recurrence relation. Combining (29) and (30) yields the
R— \/(Z oY1t (24) following useful relation:
A set of recurrence relations for the efficient computation of f  — (2n+k—3)2n+k—-2)2n+k—1)(2n+ k)
the coefficientsA,, ; (23) have been developed in [15] and ’ (2k)(2k — 2)(n?)
[29]. This set of recursions is given by (5% pa)?
: 3 Fn—Lk—? (32)
-1 n=0 (BR)
Anp = { —WATL—LO, n>0 (25) which corresponds to a “diagonal” movement. An efficient
1 M+ k implementation of (20) may now be realized by setting a lower
Ank = 2—j(2n —k+ 1)( ? )An,k—1~ (26) limit for % in (27) as follows:
Past methods implemented (20)—(22) using recurrence rela- 1. e IR Z 2"
tions (25) and (26)pt0 incremelgmﬂyi,(wh?le sun?ming over the iz =2)= TR Y. P (39

H : . =0 k=k pn;
variablek for eachn until somen,,,, was reached for which n=0k=kmia(n)

the series achieved a specified convergence tolerance. One : - :
. . hereky,in(n) is a lower limit for k based on previous values
drawback of these approaches, however, is that they involve, /

X ) > .. _In the recursion forF}, .. Two convergence tolerances are set
calculating terms which are too small to have a significant. , . : . S
. . within the iteration. The first tolerance governs héw, (n)
impact on the series.

- . is incremented as increases saving a considerable amount of
A new and more efficient approach for evaluating these )
) . - computation. The second convergence tolerance checks that
series will be presented here that eliminates the need 10 . L o

e,?ch inner summation in (33) is still large enough to have an

calculate insignificant terms. We begin the development act on the final solution. If not, the summation is assumed
this new algorithm by defining a modified expression for (qu]p ' i :
have reached convergence and is therefore terminated.

1. . e—ipR 8 21 Previous methods for the computation of (20) summed all
SK(z=2")=— 7R ZZFM« (27) values of k for a given value ofn. The value ofn was
n=0k=0 incremented until the inner summation term passed below
where some predefined convergence value. This new method saves
(8 pa)?® much of the computation over the old method by using the
Foy=4,4 4 (28)  kmin value in the inner summation of (33). For most problems

(BR) of computational interest;,;, remains relatively close ton2
This modified form of A, , leads to the following set of For larger values of:, most of the terms calculated in (20)

recurrence relations: have little or no impact on the fin_al answer. In some cases, over
(—1)(2n + k — 1)(2n + k) (52 pa)? _80% of the_ terms calculated using previous methods could be
Fop= Gn— kD)@ — k)20 (FR)? Fo_1x  (29) ignored using this new method.
Finally, it is now possible to derive a useful convergence
F, = (2n ‘1‘.’“ —1)(2n + k)Fn,k—1~ (30) Property of (33) and, hence, (20). For large values:atnd
J(2k)(BR) small values ofR, the expressions tend to converge slowly

Further examination of (30) provides insight into the behavi@ not at all. A quantitative measure of the convergence of
of the recursion. To find the maximum value of the recursidf€Se expressions can be calculated by making use of (32).
for a givenn, we setF, , equal toF, ,_, in (30) and solve When the maximum value for the recursion (31) is substituted

for k into (32) and simplified for large values of, the following

expression is obtained:
kmax = 5 [(1 = 28R) + /(1 — 28R) + 8n(2n + 1)]. (31) -
_ 4(pa)’

For values ofn that are much larger tha®, the value at For= i Foq ko (34)
which F,, ; reaches a maximum is &= 2n. Each value of

I, for a givenn will decrease for decreasing values /af Careful examination of (34) and (24) reveals thaf; in

For this reason, it becomes important to only calculate tho§38) will always tend to approach zero. However, from the
values of (20) that are of computational significance. Equatieomputational point of view, the rate of convergence is a very
(31) predicts that the maximum recursion valuefyf, for a important factor in determining the efficiency of the method.
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To apply the same results to the derivatives of the kernel, wdere

start with simplified expressions for the derivatives given by /2
42
- / 1 —k2sin’ o (42)
. e —JjBR
D.K(z—=2)=p(z—7) BRY Z Z ok (35) represents a complete elliptic integral of the first kind and
n=0k=0
| eioR [ (& k= 2y/pa 43
D, K(z - ol = : (43)
M= =5, mp (ZZ ) VE=#F ey
s R Expressions for the derivatives of the kernel may be found
a ZZFM (36) by following a similar procedure. Performing the indicated
n=0k=0 differentiation of the integral form of the kernel yields the
following results:
where
1 . D.K(z—=2)==p(z =231 (z =2, p,a) (44)
Fr;k = FM[(Q”;F b+ 1)+ i8R BN D K(z— ) = (Ba)3s (2 — 2/, p, @) — (Bp)31 (2 — 2/, p, a)
Fiw =Far(Bp)[(2n+k +1) + jBR] (38) (45)
F = Fn 1(20)(BR)’. (39)

where

From (37)—(39), it is easy to see that all of the derivative .

terms fall off as fast or faster thahi, ; for decreasing values S (2 =2 p,a) = l/ [1+4 jBR'] €
of k. Thus, with slight modification, a routine designed to T Jo (BR)
calculate the kernel can be made to simultaneously compute 1 [ .

both the derivative terms with little increase in ove?/all corF:1- So(z =7 pya) = }/0 1 +36R/](5R/)3 cos ¢ dg.
putational time. Also, the lower bounfd,i, () will apply to (47)
the calculation of the derivative terms as well.

—JjBR

_d¢'  (46)

The integrals (46) and (47) can be evaluated numerically,

B. Numerical Methods for Evaluating but the results will be inadequate for points calculated in the
K(z—2),D.K(z —2),and D, K(z — #') vicinity of the singularity. Extracting the singularity frof;
leads to

In Appendix A, series forms of the kernel and the asso-
ciated derivatives of the kernel were presented. Also, a fast

o~ o
method for the calculation of these expressions was introduced. Si(z=4pa)

However, field points that are in close proximity to the = ;kF(z, k) + %
source segment of moderately thick wires can cause numerical 2m(0% pa)'/? 2 A (02 pa)*/?
instability in the calculation of these exact expressions. For k? E(T k) + 1

these cases, a large number of terms is needed for convergence e

and other methods become more attractive for the calculation [1+ jﬁR’]e—JﬁR —[14 (BR)?/2]
of these expressions. One such method for the calculation of /0 (BR')?

(6), (12), and (13) has been developed in [15], which involves ,

complete elliptic integrals of the first, second, and third kinds. ~d¢’, pFa (48)
The cylindrical wire kernel can be split into two inte-

grals—one in which the integrand is singular and the oth#here

in which the integrand is slowly varying—that may be treated T ™/2 \/—2
separately E (5, k) = /0 1 —k?sin” pdyp (49)

is a complete elliptic integral of the second kind. For the case

1 1 2w 2w e JBR _ 1
BA(Z -2 = o BR’ d¢’' + / Td(p/ . wherep = a, (48) reduces to
T Jo 0

(40) Si(z— 7', a,a)
1
The second integral in (40) contains an integrand that is slowly - WkF (_’ k) + W
varying and can be integrated using a relatively low-order B -
numerical integration scheme such as three-point Gaussian . kQE( k) + =

guadrature. The first integral can be expressed in the form [15] -
[ R (1 e 2 i
0 (5R/)3
z#£ 2. (50)

1
m ™ w—

kF(”k) 0<k<l (41)
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A similar singularity extraction procedure may be followed iondition is satisfied:

order to arrive at an expression for given by

(2 — 2, p, a)

= s |7 4G

)

‘)

(2—k2) 2(1 — k%)
HbTH —k2)E( k) — (P =
(g )]+
v [ BRI [+ (3R
0 (5R/)3
cosd'dd!,  pa (51)
where (1
T, /2 dsp [2
H(gjk Jk) :/0 (1— kZsin? p)\/1 — k2sin? ¢ (52) Bl

is a complete elliptic integral of the third kind. For the casef4]
in which p = a, (51) reduces to [5]

So(z— 2, a,a) (6]

. 1 2(2—]6’2) s [7]
-~ 27(Ba)? { [(ﬁa) k B k] r (5’ k) -
k(2—k?) /= 5 2(1 — k?)
21— kz)E(i’k) —(Fa) = -
T 1
=, k% k)t + —
AU "
[+ jBRNe PR —[14 (BR")? /2]
/0 (BR')? [11]
-cos ¢’ d¢’ z#£ 2. (53) [12]

Given that efficient algorithms exist for the calculation of

the elliptic integrals [30] and that the singularities in thef,lg]

pa
V=272 +p +a?

>0.15 (54)

then the more computationally intensive elliptic integral forms
must be used. Otherwise, the exact series solutions are em-
ployed. This cutoff was derived through numerical investiga-
tion using (34) as the starting point.
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