1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 4, April 1998

Table of Contents for this issue

Complete paper in PDF format

Multiport Network Model for CAD of Electromagnetically Coupled Microstrip Patch Antennas

Rajan P. Parrikar and Kuldip C. Gupta, Fellow, IEEE

Page 475.

Abstract:

In this paper, electromagnetically coupled (EMC) patch-antenna configurations on two-layered dielectric substrates are investigated. The radiating patch is located on the top of the upper substrate and is excited by feed circuitry underneath it on the lower substrate. The electromagnetic field problem is transformed into a network problem and a multiport network model (MNM) is developed to characterize the three-dimensional (3-D) fields associated with the radiating structure. Antenna characteristics such as input impedance and radiation pattern are computed using the MNM model and the approach is validated by comparison with experimental results.

References

  1. I. Bahl and P. Bhartia, Microstrip Antennas.Dedham, MA: Artech House, 1980.
  2. J. James, P. S. Hall, and C. Wood, Microstrip Antenna Theory and Design.London, U.K.: Peter Peregrinus, 1981.
  3. K. C. Gupta and A. Benalla, Microstrip Antenna Design.Norwood, MA: Artech House, 1988 (reprint volume).
  4. K. R. Carver and J. W. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propagat., vol. AP-29, pp. 2-24, Jan. 1981.
  5. L. Lewin, "Radiation from discontinuities in stripline," Proc. Inst. Elect. Eng., vol. 107C, pp. 163-170, Feb. 1960.
  6. C. Wood, P. S. Hall, and J. James, "Radiation conductance of open-circuit low dielectric constant microstrip," Electron. Lett., vol. 14, pp. 121-123, Feb. 1978.
  7. M. D. Abouzahra and L. Lewin, "Radiation from microstrip discontinuities," IEEE Trans. Microwave Theory Tech., vol. 27, pp. 722-723, Aug. 1979.
  8. H. G. Oltman and D. A. Huebner, "Electromagnetically coupled microstrip dipoles," IEEE Trans. Antennas Propagat., vol. AP-29, pp. 151-157, Jan. 1981.
  9. P. B. Katehi and N. G. Alexopoulos, "On the modeling of electromagnetically coupled microstrip antennas--The printed strip dipole," IEEE Trans. Antennas Propagat., vol. AP-32, pp. 1179-1186, Nov. 1984.
  10. D. M. Pozar and B. Kaufman, "Increasing the bandwidth of a microstrip antenna by proximity coupling," Electron. Lett., vol. 23, pp. 368-369, Apr. 1987.
  11. D. M. Pozar and S. M. Voda, "A rigorous analysis of a microstrip fed patch antenna," IEEE Trans. Antennas Propagat., vol. AP-35, pp. 1343-1350, Dec. 1987.
  12. H. Legay, J. Floc'h, J. Citerne, and G. Piton, "Etude theorique et experimentale d'antennas plaques alimentees par couplage de proximite a une line microruban," Ann. Telecommun., vol. 45, no. 3-4, pp. 192-202, 1990.
  13. M. Davidovitz and Y. T. Lo, "Rigorous analysis of a circular patch antenna excited by a microstrip transmission line," IEEE Trans. Antennas Propagat., vol. 37, pp. 949-958, Aug. 1989.
  14. G. Splitt and M. Davidovitz, "Guidelines for design of electromagnetically coupled patch antennas on two-layer substrates," IEEE Trans. Antennas Propagat., vol. 38, pp. 1136-1140, July 1990.
  15. J. S. Roy, S. K. Shaw, P. Paul, D. R. Poddar, and S. K. Chowdhury, "Some experimental investigations on electromagnetically coupled microstrip antennas on two-layer substrates," Microwave Opt. Tech. Lett., vol. 4, pp. 236-238, May 1991.
  16. N. C. Karmakar and A. Bhattacharya, "Electromagnetically coupled patch antenna--Theoretical and experimental investigations," Microwave Opt. Tech. Lett., vol. 5, pp. 115-118, Mar. 1992.
  17. N. C. Karmakar and M. E. Bialkowski, "Experimental investigations into an electromagnetically coupled microstrip patch antenna," Microwave Opt. Tech. Lett., vol. 5, pp. 447-453, Aug. 1992.
  18. Y. T. Lo, D. Solomon, and W. F. Richards, "Theory and experiment on microstrip antennas," IEEE Trans. Antennas Propagat., vol. AP-27, pp. 137-145, Mar. 1979.
  19. R. C. Booton, Jr., Computational Methods for Electromagnetics and Microwaves.New York: Wiley, 1992.
  20. D. C. Chang and J. X. Zheng, "Electromagnetic modeling of passive circuit elements in MMIC," IEEE Trans. Microwave Theory Tech., vol. 40, pp. 1741-1747, Sept. 1992.
  21. K. C. Gupta, "Multiport network approach for modeling and analysis of microstrip patch antennas and arrays," in Handbook of Microstrip Antennas, J. R. James and P. S. Hall, Eds.London, U.K.: Peter Peregrinus, 1989, vol. 1, pp. 455-526.
  22. --, "Multiport network modeling approach for computer-aided design of microstrip patches and arrays," in IEEE Antennas Propagat. Int. Symp., Blacksburg, VA, June 1987, pp. 786-789.
  23. A. Benalla and K. C. Gupta, "Multiport-network model and transmission characteristics of two-port rectangular microstrip antennas," IEEE Trans. Antennas Propagat., vol. 36, pp. 1337-1342, Oct. 1988.
  24. R. P. Parrikar, "Network modeling of electromagnetically coupled and active microstrip patch antennas," Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Colorado, Boulder, 1993.
  25. R. Harrington, Time Harmonic Electromagnetic Fields.New York: McGraw-Hill, 1961.
  26. C. Balanis, Advanced Engineering Electromagnetics.New York: Wiley, 1989.
  27. R. Collins, Field Theory of Guided Waves.New York: IEEE Press, 1991.
  28. H. Lee and V. K. Tripathi, "Generalized spectral domain analysis of planar structures having semi-infinite ground planes," in IEEE Microwave Theory Tech. Int. Symp. Dig., San Francisco, CA, May 30-June 1, 1984, pp. 327-329.
  29. R. T. Kollipara and V. K. Tripathi, "Quasi-TEM spectral domain technique for multiconductor structures with rectangular and trapezoidal conductor cross-section," Microwave Opt. Tech. Lett., vol. 3, pp. 4-6, Jan. 1990.
  30. R. Crampagne, M. Ahmadpanah, and J. Guiraud, "A simple method for determining the Green's function for a large class of MIC lines having multilayered dielectric substrates," IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp. 82-87, Feb. 1978.
  31. T. Okoshi, Planar Circuits for Microwaves and Lightwaves.New York: Springer-Verlag, 1985.
  32. A. Benalla and K. C. Gupta, "A generalized edge admittance network for modeling of radiation from microstrip patch antennas," in URSI Radio Sci. Meet., Boulder, CO, Jan. 1992, p. 65.
  33. M. Kirschning, R. H. Jansen, and N. H. L. Koster, "Accurate model for open end effect of microstrip lines," Electron. Lett., vol. 17, pp. 123-125, Feb. 1981.
  34. K. C. Gupta, R. Garg, and R. Chadha, Computer-Aided Design of Microwave Circuits.Dedham, MA: Artech House, 1981.
  35. K. C. Gupta and P. C. Sharma, "Segmentation and desegmentation techniques for analysis of two-dimensional microstrip antennas," in IEEE AP-S Symp. Dig., Los Angeles, CA, June 1981, pp. 19-22.