1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 46 Number 4, April 1998

Table of Contents for this issue

Complete paper in PDF format

On the Behavior of the Sierpinski Multiband Fractal Antenna

Carles Puente-Baliarda, Member, IEEE, Jordi Romeu, Member, IEEE, Rafael Pous, Member, IEEE, Angel Cardama, Member, IEEE

Page 517.

Abstract:

The multiband behavior of the fractal Sierpinski antenna is described in this paper. Due to its mainly triangular shape, the antenna is compared to the well-known single-band bow-tie antenna. Both experimental and numerical results show that the self-similarity properties of the fractal shape are translated into its electromagnetic behavior. A deeper physical insight on such a behavior is achieved by means of the computed current densities over the antenna surface, which also display some similarity properties through the bands.

References

  1. D. L. Jaggard, "On fractal electrodynamics," in Recent Advances in Electromagnetic Theory, H. N. Kritikos and D. L. Jaggard, Eds.New York: Springer-Verlag, 1990, pp. 183-224.
  2. Y. Kim and D. L. Jaggard, "The fractal random array," Proc. IEEE, vol. 74, pp. 1278-1280, Sept. 1986.
  3. D. L. Jaggard and T. Spielman, "Triadic cantor target diffraction," Microwave Opt. Technol. Lett., vol. 5, pp. 460-466, Aug. 1992.
  4. D. L. Jaggard, "Prologue to special section on fractals in electrical engineering," Proc. IEEE, vol. 81, pp. 1423-1427, Oct. 1993.
  5. M. M. Beal and N. George, "Features in the optical transforms of serrated apertures and disks," J. Opt. Soc. Amer., vol. 6, no. 12, pp. 1815-1826, Dec. 1989.
  6. Y. Kim, H. Grebel, and D. L. Jaggard, "Diffraction by fractally serrated apertures," J. Opt. Soc. Amer., vol. 8, no. 1, pp. 20-26, Jan. 1991.
  7. X. Sun and D. L. Jaggard, "Wave interactions with generalized cantor bar fractal multilayers," J. Appl. Phys., vol. 70, no. 5, pp. 2500-25007, Sept. 1991.
  8. H. O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals.New York: Springer-Verlag, 1990.
  9. M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen, D. Saupe, R. F. Voss, Y. Fisher, and M. Mc Guire, The Science of Fractal Images.New York: Springer-Verlag, 1988.
  10. H. Jones, D. E. Reeve, and D. Saupe, Fractals and Chaos, A. J. Crilly, R. A. Earnshaw, and H. Jones, Eds.New York: Springer-Verlag, 1990.
  11. B. B. Mandelbrot, The Fractal Geometry of Nature.San Francisco, CA: Freeman, 1983.
  12. C. Goutelard, "Fractal theory of large arrays of lacunar antennas," in Electromagn. Wave Propagat. Panel Symp. (AGARD-CP-528), France, June 1992, pp. 35/1-35/15.
  13. C. Puente and R. Pous, "Fractal design of multiband and low side-lobe arrays," IEEE Trans. Antennas Propagat., vol. 44, pp. 1-10, May 1996.
  14. P. E. Mayes, "Frequency-independent antennas and broad-band derivatives thereof," Proc. IEEE, vol. 80, pp. 103-112, Jan. 1992.
  15. P. E. Mayes, G. A. Deschamps, and W. T. Patton, "Backward-wave radiation from periodic structures and application to the design of frequency-independent antennas," Proc. IRE, vol. 49, pp. 962-963, May 1961.
  16. G. A. Deschamps and J. D. Dyson, "The logarithmic spiral in a single-aperture multimode antenna system," IEEE Trans. Antennas Propagat., vol. AP-19, pp. 90-96, Jan. 1971.
  17. V. H. Rumsey, Frequency Independent Antennas.New York: Academic, 1966.
  18. R. L. Carrel, "Analysis and design of the log-periodic dipole antenna," Doctoral dissertation, Dept. Elect. Eng., Univ. Illinois, Urbana-Champaign, 1961.
  19. H. Jasik, Antenna Engineering Handbook.New York: McGraw-Hill, 1961, pp. 2.10-2.13.
  20. C. Puente, J. Romeu, R. Pous, X. Garcia, and F. Benitez, "Fractal multiband antenna based on the Sierpinski gasket," Electron. Lett., vol. 32, pp. 1-2, Jan. 1996.
  21. C. Puente, J. Romeu, R. Bartolomé, and R. Pous, "Perturbation of the Sierpinski antenna to allocate operating bands," Electron. Lett., vol. 32, pp. 2186-2188, Nov. 1996.
  22. C. Puente, J. Claret, F. Sagués, J. Romeu, M. Q. López-Salvans, and R. Pous, "Multiband properties of a fractal tree antenna generated by electrochemical deposition," Electron. Lett., vol. 32, pp. 2298-2299, Dec. 1996.
  23. C. Puente, "Fractal antennas," Ph.D. dissertation, Dept. Signal Theory Communicat., Universitat Politécnica de Catalunya, June 1997.
  24. N. Cohen, "Fractal antennas: Pt. 2," Communicat. Quart., pp. 53-66, Summer 1996.
  25. D. H. Werner and P. L. Werner, "Frequency independent features of self-similar fractal antennas," Radio Sci., vol. 31, no. 6, pp. 1331-1343, Nov./Dec. 1996.
  26. W. Sierpinski, "Sur une courbe dont tout point est un point de ramification," C. R. Acad., Paris 160 302, 1915.
  27. A. Rubio, A. Salinas, R. Gómez, and I. Sánchez, "Time-domain analysis of dielectric-coated wire antennas and scatterers," IEEE Trans. Antennas Propagat., vol. 42, pp. 815-819, June 1994.
  28. G. H. Brown and O. M. Woodward, "Experimentally determined radiation characteristics of conical and triangular antennas," RCA Rev., pp. 425-452, Dec. 1952.
  29. J. W. Duncan and V. P. Minerva, "100:1 bandwidth balun transformer," in Proc. IRE, vol. 48, pp. 156-164, Feb. 1960.
  30. G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat., vol. EMC-23, pp. 377-382, Nov. 1981.