1998 IEEE.
Personal use of this material is
permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for
creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the
IEEE.
IEEE Transactions on Antennas and Propagation
Volume 46 Number 4, April 1998
Table of Contents for this issue
Complete paper in PDF format
On the Behavior of the Sierpinski Multiband Fractal Antenna
Carles Puente-Baliarda, Member, IEEE, Jordi Romeu, Member, IEEE,
Rafael Pous, Member, IEEE, Angel Cardama, Member, IEEE
Page 517.
Abstract:
The multiband behavior of the fractal Sierpinski antenna
is described in this paper. Due to its mainly triangular shape, the
antenna is compared to the well-known single-band bow-tie antenna. Both
experimental and numerical results show that the self-similarity
properties of the fractal shape are translated into its electromagnetic
behavior. A deeper physical insight on such a behavior is achieved by
means of the computed current densities over the antenna surface, which
also display some similarity properties through the
bands.
References
-
D. L. Jaggard, "On fractal electrodynamics," in
Recent Advances in Electromagnetic
Theory, H. N. Kritikos and D. L. Jaggard,
Eds.New York: Springer-Verlag, 1990, pp. 183-224.
-
Y. Kim and D. L. Jaggard, "The fractal random array,"
Proc. IEEE, vol. 74, pp.
1278-1280, Sept. 1986.
-
D. L. Jaggard and T. Spielman, "Triadic cantor target
diffraction," Microwave Opt. Technol.
Lett., vol. 5, pp. 460-466, Aug. 1992.
-
D. L. Jaggard, "Prologue to special section on fractals in
electrical engineering," Proc.
IEEE, vol. 81, pp. 1423-1427, Oct. 1993.
-
M. M. Beal and N. George, "Features in the optical transforms
of serrated apertures and disks," J. Opt. Soc.
Amer., vol. 6, no. 12, pp. 1815-1826, Dec.
1989.
-
Y. Kim, H. Grebel, and D. L. Jaggard, "Diffraction by
fractally serrated apertures," J. Opt. Soc.
Amer., vol. 8, no. 1, pp. 20-26, Jan.
1991.
-
X. Sun and D. L. Jaggard, "Wave interactions with generalized
cantor bar fractal multilayers," J. Appl.
Phys., vol. 70, no. 5, pp. 2500-25007, Sept.
1991.
-
H. O. Peitgen, H. Jürgens,
and D. Saupe, Chaos and
Fractals.New York: Springer-Verlag,
1990.
-
M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitgen, D.
Saupe, R. F. Voss, Y. Fisher, and M. Mc Guire, The
Science of Fractal Images.New York:
Springer-Verlag, 1988.
-
H. Jones, D. E. Reeve, and D. Saupe, Fractals and
Chaos, A. J. Crilly, R. A. Earnshaw, and H. Jones,
Eds.New York: Springer-Verlag, 1990.
-
B. B. Mandelbrot, The Fractal Geometry of
Nature.San Francisco, CA: Freeman,
1983.
-
C. Goutelard, "Fractal theory of large arrays of lacunar
antennas," in Electromagn. Wave Propagat. Panel
Symp. (AGARD-CP-528), France, June 1992, pp.
35/1-35/15.
-
C. Puente and R. Pous, "Fractal design of multiband and low
side-lobe arrays," IEEE Trans. Antennas
Propagat., vol. 44, pp. 1-10, May 1996.
-
P. E. Mayes, "Frequency-independent antennas and broad-band
derivatives thereof," Proc.
IEEE, vol. 80, pp. 103-112, Jan. 1992.
-
P. E. Mayes, G. A. Deschamps, and W. T. Patton,
"Backward-wave radiation from periodic structures and application
to the design of frequency-independent antennas,"
Proc. IRE, vol. 49, pp.
962-963, May 1961.
-
G. A. Deschamps and J. D. Dyson, "The logarithmic spiral in a
single-aperture multimode antenna system," IEEE
Trans. Antennas Propagat., vol. AP-19, pp.
90-96, Jan. 1971.
-
V. H. Rumsey, Frequency Independent
Antennas.New York: Academic, 1966.
-
R. L. Carrel, "Analysis and design of the log-periodic dipole
antenna," Doctoral dissertation, Dept. Elect. Eng., Univ.
Illinois, Urbana-Champaign, 1961.
-
H. Jasik, Antenna Engineering
Handbook.New York: McGraw-Hill, 1961, pp.
2.10-2.13.
-
C. Puente, J. Romeu, R. Pous, X. Garcia, and F. Benitez,
"Fractal multiband antenna based on the Sierpinski gasket,"
Electron. Lett., vol. 32, pp.
1-2, Jan. 1996.
-
C. Puente, J. Romeu, R.
Bartolomé, and R. Pous,
"Perturbation of the Sierpinski antenna to allocate operating
bands," Electron. Lett., vol.
32, pp. 2186-2188, Nov. 1996.
-
C. Puente, J. Claret, F.
Sagués, J. Romeu, M. Q.
López-Salvans, and R. Pous,
"Multiband properties of a fractal tree antenna generated by
electrochemical deposition," Electron.
Lett., vol. 32, pp. 2298-2299, Dec. 1996.
-
C. Puente, "Fractal antennas," Ph.D. dissertation,
Dept. Signal Theory Communicat., Universitat
Politécnica de Catalunya, June
1997.
-
N. Cohen, "Fractal antennas: Pt. 2,"
Communicat. Quart., pp. 53-66,
Summer 1996.
-
D. H. Werner and P. L. Werner, "Frequency independent
features of self-similar fractal antennas," Radio
Sci., vol. 31, no. 6, pp. 1331-1343, Nov./Dec.
1996.
-
W. Sierpinski, "Sur une courbe dont tout point est un point
de ramification," C. R. Acad.,
Paris 160 302, 1915.
-
A. Rubio, A. Salinas, R.
Gómez, and I.
Sánchez, "Time-domain
analysis of dielectric-coated wire antennas and scatterers,"
IEEE Trans. Antennas Propagat., vol.
42, pp. 815-819, June 1994.
-
G. H. Brown and O. M. Woodward, "Experimentally determined
radiation characteristics of conical and triangular antennas,"
RCA Rev., pp. 425-452, Dec.
1952.
-
J. W. Duncan and V. P. Minerva, "100:1
bandwidth balun transformer," in Proc.
IRE, vol. 48, pp. 156-164, Feb. 1960.
-
G. Mur, "Absorbing boundary conditions for the
finite-difference approximation of the time-domain electromagnetic-field
equations," IEEE Trans. Electromagn.
Compat., vol. EMC-23, pp. 377-382, Nov.
1981.