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Simultaneous Time- and
Frequency-Domain Extrapolation

Raviraj S. Adve,Member, IEEE, and Tapan K. Sarkar,Fellow, IEEE

Abstract—In this paper, given the early-time response and the
low-frequency response of a causal system, we simultaneously
extrapolate them in the time and frequency domains. The ap-
proach is iterative and is based on a simple discrete Fourier
transform. Simultaneous extrapolation in time and frequency
domains is further enhanced by using the matrix pencil technique
in the time domain and the Cauchy method in the frequency
domain. The results are further enhanced through the Hilbert
transform, hence enforcing the physical constraints of the system
and thereby guaranteeing a causal extrapolation in time. It is,
therefore, possible to generate information over a larger domain
from limited data. It is important to note that through this
extrapolation, no new information is created. The early-time
and low-frequency data are complementary and contain all the
desired information. The key is to extract this information in an
efficient and accurate manner.

Index Terms—Extrapolation, frequency-domain analysis, time-
domain analysis.

I. INTRODUCTION

I N most of computational electromagnetics, the solution
technique assumes a time-harmonic behavior for all field

quantities. This implies that the solution is in the frequency
domain. The principal reason for this has been that the
frequency-domain formulations are more tractable analytically.
Time-domain solutions are then found using an inverse Fourier
transform.

Frequency-domain formulations use either the integral equa-
tion (IE) approach or the differential equation (DE) approach.
In using an IE formulation, such as the method of moments
(MoM), the spatial sampling has to be carried out in one
spatial dimension less than the number of dimensions pos-
sessed by the problem. However, frequency-domain codes
usually cannot efficiently handle multiple inhomogeneous me-
dia. Further, the matrix involved in the solution is full. DE
formulations, like the finite-element method can treat medium
inhomogeneities and nonlinearities in a more straightforward
manner. However, the spatial sampling has to be carried out in
as many spatial dimensions as possessed by the problem. Also,
DE techniques are difficult to use in the case of unbounded
regions [1].

The drawback to frequency-domain formulations is that
the analysis program has to be executed for each frequency
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of interest. Hence, a broad-band analysis can be very time
consuming. Particularly when the frequency becomes high
one needs to solve a large matrix equation, which takes
an enormous amount of computer resources. Also, as the
frequency of interest increases, the time required for analysis
at each frequency point also increases.

With the increasing speed and memory of digital computers,
many scattering problems are being performed in the time
domain. There are four basic reasons for time domain mod-
eling [2]. In certain electromagnetic problems, a time-domain
formulation requires fewer arithmetic operations. Second, in
seeking broad-band information, the time-domain model is
intrinsically a better choice. The transient response obtained is
limited only by the bandwidth of the excitation and the spatial
discretization.

Another advantage of time-domain modeling is that prob-
lems involving nonlinear media can usually be modeled easily
in the time domain. This advantage holds true for time-varying
media. Handling nonlinear media and time-varying media can
be extremely difficult in the frequency domain. The other
reason for using time-domain analysis is that gating can be
used to eliminate unwanted reflections.

A time-domain formulation using integral equations usually
results in the method of marching on time (MOT). Here, the
value of an unknown at a given timet1 is dependent on the
excitation att1 and the values of all the unknowns fort < t1.
By properly choosing a time step, an explicit solution for
the unknowns can be obtained. However, MOT algorithms
suffer from some serious defects. One main disadvantage is
the persistent presence of late-time high-frequency oscillations.
These usually unstable oscillations occur even when the time
step is chosen such that the Courant stability condition is
satisfied [3]. Many different approaches have been suggested
to overcome these instabilities [4]–[6]. However, the stability
problems have not been eliminated.

Time-domain formulations using DE’s begin with the time-
dependent Maxwell curl equations. These formulations usually
require a “numerically gentle” turning on of the excitation.
Hence, finding an impulse response is impossible from a
time-domain DE code. A very popular time domain formu-
lation is the finite-difference time-domain (FDTD); here, the
differential operators are approximated by finite differences.
However, here, too, the time variation is obtained through a
time-stepping procedure. In addition, some sort of absorbing
boundary conditions need to be imposed to terminate the
spatial discretization at a finite distance from the scatterer, i.e.,
the spatial discretization is not allowed to extend to infinity.
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In summary, modern-day computer programs can easily
analyze an electromagnetic system in the low-frequency and
early-time regions. In the low-frequency region, the analysis
can be speedily performed with a few unknowns. In the early-
time region, instabilities such as the late-time oscillations have
not set in. For DE programs, an absorbing boundary condition
is not necessary. Also, since the execution time of a MOT
program is directly proportional to the analysis time period,
the early time-domain analysis is not very time consuming.

These drawbacks in current methods create a need for a tool
that can use information from both the time and frequency
domains and yield broad-band frequency information and sta-
ble late-time information. The basic philosophy is as follows:
consider that we require wide-band information about certain
parameters both in the time and in the frequency domain. We
utilize a frequency-domain technique such that the IE for the
finite-element method (FEM) to generate information about
the parameter from a low frequencyf1 (close to dc—zero fre-
quency) to some frequencyf2—this problem may be tractable
for the computer at hand. Next, we use a time-domain code
like the time-domain IE or FDTD or FEM-TD to generate
information about the same parameter for the same excitation
from time t = 0 to t = T . As long asTf2 > 1 andf1 ' 0,
we have all the necessary information desired from the partial
solutions in time and frequency domains. The key is to find
a method to extract this information. In this paper, a solution
methodology is outlined.

It is important to point out that the simultaneous extrap-
olation in time and frequency domains tacitly assumes a
bandlimited system. For example, when solving a frequency-
domain problem, a spatial discretization of the scatterer by
elements whose dimensions are of the order of a tenth of
a wavelength in the medium of interest is used. In the
time domain, the excitation is considered to be effectively
bandlimited. The highest frequency up to which a solution
can be accurately obtained is limited, again for time-domain
problems, by the spatial discretization of the structure. Typ-
ically, as in the frequency domain, this highest frequency is
such that the spatial discretization is of the order of a tenth
of the wavelength.

In [7], Pereira–Filho and Sarkar present the matrix-pencil
approach for extrapolating the time-domain data without re-
quiring any frequency-domain information. This technique
works very well if adequate time-domain data is available [8].
However, it suffers from one restriction. In the matrix-pencil
approach, the required information is the free response of the
system, i.e., the system response after the excitation has died
down. In our current approach, no such restriction applies.

II. EXTRAPOLATION BASED ON THE

DISCRETE FOURIER TRANSFORM

Consider a functiony(t) that represents the current as a
function of time at a particular position on a scatterer. This
current is the transient response to some known excitation.
The associated frequency-domain response is represented by
Y (j2�f). The frequency and time domains are related through

the Fourier transform

Y (j2�f) =

Z
1

0

y(t)e�j2�ft dt: (1)

The Fourier integral starts at zero because the time domain
response is causal, i.e.,y(t) = 0, t < 0. As a result of using
an integral-equation frequency-domain code we have samples
of Y (j2�f) at f = i�f , i = 0, � � �, Nf � 1. On using a time-
domain code based on MOT program we have samples ofy(t)
at t = k�t, k = 0, � � �Nt�1. Using this information, we want
to find Y (2�f) up toF =Mf�f andy(t) up toT =Mt�t.
Since we only have samples ofY (2�f) and y(t) at discrete
points in t and f , instead of using the Fourier transform as
defined in (1), we use the discrete Fourier transform pair [9].

Yk '
Mt�1X

i=0

yie
�j2�k�fi�t�t (2)

yi '
Mf�1X

k=0

Yke
j2�k�fi�t�f (3)

where,Yk = Y (j2�k�f) andyi = y(i�t). To minimize the
effects of discretization [10], the record length(Mf andMt)
should be large.

In the simplest form, the proposed extrapolation procedure
is as follows.

1) Pad the available time domain data(yi, i = 0, � � �Nt�1)
with zeros to create a sequence of lengthMt such that
Mt > 2Nt.

2) Perform aMt point DFT on this sequence as defined by
(2); define the resulting sequence to beY 0(k), k = 0,
� � �, Mf � 1.

3) Replace the firstNf samples inY 0(k) with the known
frequency-domain dataYk; k = 0, � � �, Nf � 1; define
the resulting sequence to beYnew(k).

4) Perform aMf point inverse discrete Fourier transform
(DFT) (IDFT) on Ynew(k) as defined by (3); define the
resulting sequence to bey0(i), i = 0, � � �, Mt � 1.

5) Replace the firstNt samples iny0(i) with the known
time-domain datayi, i = 0, � � �, Nt � 1; define the
resulting sequence to beynew(i).

6) Subsequent processing is an iteration on Steps 2–5.

The extrapolated data is inYnew(k), k = 0, � � �, Mf � 1
and ynew(i), i = 0, � � �, Mt � 1.

The DFT is used over the quicker fast Fourier transform
(FFT) because in a DFT there are no restrictions on the fre-
quency step or the number of samples. In a FFTMt�t�f =
Mf�t�f = 1. However, there are some hidden problems
with the above extrapolation procedure. As explained by
Brigham [10], a “discontinuity” in the data sequence produces
the discrete equivalent of the Gibbs phenomenon. In our case,
such a discontinuity arises because of the replacing the known
dataYk into Y 0(k) [Step 3)] and replacingyi into y0(i) [Step
5)]. As explained in (2) and (3), even if the entire data
sequencesy(i), i = 0, � � �, Mt � 1 and Yk, k = 0, � � �,
Mf�1 were known perfectly, the DFT and IDFT produce only
approximations to the realYk andyi. Hence, when replacing
the known data into these sequences, a discontinuity arises at
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sample numberNt in ynew(i) and at sample numberNf in
Ynew(k).

Brigham suggests the use of windows to minimize this
discontinuity. Harris [11] details the use of many windows.
However, the use of a window reduces resolution of the
DFT and IDFT. Nonuniform sampling can be utilized through
the use of the DFT technique described in [12]. However,
here, the high-frequency Gibbs phenomenon is reduced, but
not eliminated. Hence, in this work we smooth over the
discontinuity to eliminate the Gibbs phenomenon. In the
frequency domain, we use the Hilbert transform [13], [14]
and the Cauchy method [15] to smooth over the discontinuity.
In the time domain, data is smoothed using the matrix pencil
technique [7], [8].

A. The Hilbert Transform

To maximize the use of the given information and to smooth
the data in the frequency domain, we use a method based on
the Hilbert transform as described in [13]. The method is an
iterative technique to extrapolate/interpolate frequency-domain
data relying on the fact that the underlying time-domain data
is causal. It then uses the property that if the underlying time-
domain data is causal, the real and imaginary parts of the
frequency-domain response have to be related through the
Hilbert transform [9]. The details of the method can be found
in [13], [14].

In this application, the given information is the firstNf

frequency-domain samples. Using this and theY 0(k) found in
Step 2) as the initial guess, the output is a smoother frequency
response.

B. The Cauchy Method

The Cauchy method provides an approximation for a func-
tion by a ratio of two polynomials if the function values and its
derivatives are available at some, not necessarily equispaced,
points. The frequency response is modeled as

Y (s) ' A(s)

B(s)
=

PP

k=0
aks

k

PQ

k=0
bksk

; s = k�f: (4)

GivenYnew(k) at samplesk = 0, � � �, Mf � 1, the problem
reduces to finding the order of the polynomials and the
coefficients that define them. The algorithm converts the above
equation to a matrix equation to estimate the polynomial orders
and the coefficients. In practice, the polynomial orders are
not large (usually<10) and so the information required to
estimate the orders and the coefficients is not as much as is
available. Indeed, unnecessarily over determining the system
of equations leads to numerical errors. The details of the
Cauchy method are available in [15]–[17].

To smooth the data aroundk = Nf , we use theNf

2
samples

before sample numberNf and Nf

2
samples starting from

sample numberNf + Nf

2
. Using this information and the

Cauchy method, we estimate the samples from numberNf+1

to Nf +
Nf

2
� 1. This results in a smoother data set.

C. The Matrix Pencil

The matrix pencil method models the time-domain sequence
as a sum of complex exponentials

y(t) =
MX

j=1

Rje
sj t: (5)

Such a model is valid because the scatterer can be treated as
a linear time-invariant (LTI) system. Given theMt samples in
y0(i), the problem reduces to estimatingM;Rj andsj . Once
these parameters are found,y(t) can be evaluated at the desired
time pointst = i�t. In the matrix pencil approach too the
problem is formulated as a matrix equation. Hence, here too,
unnecessarily over determining the system of equations leads
to numerical errors. The details of the matrix pencil algorithm
and a copy of the associated program can be found in [7].

We use theNt

2
samples just before sample numberNt to get

one estimate of the response at the sample numbersNt+1 to
Nt +

Nt

10
. Another estimate is found by using theNt

2
samples

starting at numberNt +
Nt

10
+ 1 in a reverse order. A moving

average of these two estimates gives us a smooth data set for
the time domain sequence.

D. The Extrapolation Procedure

The Hilbert transform, the Cauchy method and the matrix
pencil method each have a strong physical basis. Therefore,
using these three signal processing tools results in minimizing
the errors providing a smooth extrapolation. This is crucial
because the technique is iterative and the errors would accu-
mulate leading to severe instabilities.

On using these tools, the updated iteration procedure is as
follows.

1) Pad the available time-domain data with estimates of the
samples using the matrix pencil to create a sequence of
length Mt.

2) Perform aMt point DFT on this sequence; define the
resulting sequence to beY 0(k), k = 0, � � �, Mf � 1.

3) Use the Hilbert transform to smooth the data and get a
better estimate of the frequency response.

4) Replace the firstNf samples inY 0(k) with the known
frequency domain dataYk, k = 0, � � �, Nf � 1; define
the resulting sequence to beYnew(k).

5) Use the Cauchy method to smooth the data around
sample numberNf .

6) Perform aMf point IDFT on Ynew(k); define the
resulting sequence to bey0(i), i = 0, � � �, Mt � 1.

7) Replace the firstNt samples iny0(i) with the known
time-domain datayi, i = 0, � � �, Nt � 1; define the
resulting sequence to beynew(i).

8) Smooth the time-domain data around sample number
Nt using the matrix pencil.

9) Subsequent processing is an iteration on Steps 2)–8).

III. N UMERICAL EXAMPLES

To validate this iterative technique and to evaluate its
usefulness, the above algorithm is tested on five examples. A
program to evaluate the currents on an arbitrary shaped closed
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or open body using the electric field integral equation (EFIE)
and triangular patching is used [18]. The rational is that we use
the EFIE in both the time [3] and in frequency domains [18],
using the same surface patching scheme for both domains.
This approach eliminates some of the effects of discretization
from this study. The triangular patching approximates the
surface of the scatterer with a set of adjacent triangles. Fig. 1
shows an example of the triangulation scheme used. The figure
shows a disk being approximated by 128 triangles and 208
edges. The current perpendicular to each nonboundary edge is
an unknown. The frequency-domain data has been generated
using the program described in [18]. The spatial discretization
limits the highest frequency to which the solution can be
accurately computed.

Although the program can be used with an arbitrary excita-
tion, we use a linearly polarized plane wave with a Gaussian
profile in time. The excitation has the form

E
inc = uiE0e

�

2

2 (6)

where


 =
(t � t0 � r � k)

�
(7)

ui the unit vector that defines the polarization of the
incoming plane wave;

E0 the amplitude of the incoming wave;
� controls the width of the pulse;
t0 a delay and is used so the pulse rises smoothly from

zero for timet < 0 to its value at timet;
r the position of an arbitrary point in space;
k the unit wave vector defining the direction of arrival of

the incident pulse.

The spectrum of this Gaussian plane wave is given by

F (j!) =
p
2��e

�[
(!�)2

2 +j!t0]

; ! = 2�f:

To obtain the response to the above Gaussian plane wave,
the frequency response of the system is multiplied by the
Gaussian spectrum.

The bodies chosen are a plate, a disk, a sphere, a cube,
and a cone-hemisphere combination. All bodies are assumed
to be perfectly conducting. In all computationsE0 is chosen
to be 377 V/m. The program uses five iterations and the
smoothing procedure based on the Hilbert transform uses
twenty iterations. To yield an explicit solution for the unknown
currents, the time step(�t) is determined by the spatial
discretization used in each example. The frequency step(�f)
is 2 MHz.

In all the examples, the extrapolated time-domain response
is compared to the output of the MOT program. In the figures,
the extrapolated time response is labeled “reconstructed time
response,” while the output of the MOT program is labeled
“response from MOT.” The extrapolated frequency-domain
response is compared to the frequency response obtained
from the MoM program. The figures compare magnitudes of
the frequency-domain responses. The extrapolated response is
labeled “reconstructed response” while the output of the MoM
program is labeled “response from MoM.”

Fig. 1. Triangle patching of a disk.

Example 1—Square Plate:The first example we present is
a square plate of zero thickness and side 1 m, centered at the
origin. The plate is located in thexy plane. Eight divisions
are made in thex direction and nine in they direction. By
joining the diagonals of each resulting rectangle, 144 triangular
patches with 199 unknowns are obtained. This division scheme
allows us to evaluate the current at the center of the plate.
The excitation arrives from the direction� = 0, � = 0, i.e.,
along the negativez direction.ui is along thex axis. In this
example,� = 2 ns andt0 = 10 ns. The time step used in the
MOT program is 92.59 ps.

In this example, the MOT program evaluates the current
at the center for the first 1500 time steps (fromt = 0 to
t = 0:138 �s). The MoM program evaluated the frequency
response at 501 samples (fromf = 0 to f = 1 GHz). The
first 233 time samples (uptot = 21:48 ns) and the first 37
frequency samples (up tof = 72 MHz) have been used as
input to the computer program. In this case,f2T = 1:55.
Using this data, the program extrapolated the time-domain
data up to 1500 samples(Mt = 1500) and the frequency
domain data upto 501 samples(Mf = 501). The results of
the extrapolation in the time domain can be seen in Fig. 2. As
can be seen the reconstruction is indistinguishable from the
output of the MOT program.

The frequency response of the system is shown in Fig. 3.
The extrapolation is shown up to 500 MHz (the first 251
samples) since for frequencies higher than 500 MHz the
response is very close to zero. Fig. 3 shows the comparison of
the magnitudes of the frequency responses. The reconstruction
is nearly perfect and is visually indistinguishable from the
results of the MoM program.

Example 2—Disk:The next example is a disk of zero
thickness, as shown in Fig. 1. The disk lies in thexy plane
and is centered at the origin. It has a radius of 0.3 m. The
triangulation uses 128 triangles resulting in 208 edges. 32 of
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Fig. 2. Time-domain response of the plate.

Fig. 3. Frequency-domain response of the plate.

the edges are boundary edges yielding 176 unknowns. The
excitation arrives from� = 0, � = 0, i.e., along the negative
z direction.ui is along thex axis. Here,� = 1 ns andt0 =
10 ns . The time step used is 47.76 ps.

In this example, the MOT program evaluated the current
at the center for the first 1500 time steps (fromt = 0 to
t = 71:59 ns). The MoM evaluated the frequency response
at 501 frequency points (fromf = 0 to f = 1 GHz). The
first 334 time samples (up tot = 15:90 ns) and the first 95
frequency points (up tof = 188 MHz) are used as input to
the extrapolation program, i.e., for this example,f2T = 2:99.
Using this data, the program extrapolated in the time domain
up to 1500 samples and in the frequency upto 501 samples.
The results of the time-domain extrapolation are shown in
Fig. 4.

The frequency response of this system is shown in Fig. 5.
The extrapolation is shown up to 600 MHz above which the
response is very close to zero. Fig. 5 compares the magnitude
of the reconstructed frequency response with the output of
the MoM program. The agreement between the computed

responses and the reconstructed responses both in the time
and frequency domains appears to be reasonable.

Example 3—Sphere:The next example is a sphere of radius
0.5 m. The sphere is centered at the origin. The “top” half of
the sphere(� = 0 to � = �

2
) has six divisions in the� direction.

The first “ring” extends from� = 0 to � = �
16

. The other five
rings are equispaced in� from � = �

16
to � = �

2
. Each ring,

starting from the top has 6, 16, 20, 24, 28, and 32 triangular
patches. The sphere is symmetric with respect to thexy plane.
This scheme is chosen so all triangles as close to equilateral
as possible. If the� direction were also divided uniformly,
the triangles would be skewed. Also, this scheme allows us to
evaluate the current at the point (�0.5, 0.0, 0.0).

The excitation arrives from� = �
2
, � = �, i.e., along

the x direction. ui is along thez axis. In this example
� = 3 ns andt0 = 22 ns. The time step used in the MOT
program is 0.199 43 ns.

The MOT program evaluated the current at the point (�0.5,
0.0, 0.0) for the first 500 time steps (fromt = 0 to t = 99:515
ns). The MoM program evaluated the current for the first
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Fig. 4. Time-domain response of the disk.

Fig. 5. Frequency-domain response of the disk.

501 frequency samples (up tof = 1 GHz). The first 183
time samples (up tot = 36:29 ns) and the first 37 frequency
samples (up tof = 72 MHz) are input to the program resulting
in f2T = 2:61. Using this information, the extrapolation is
carried out withMt = 500 andMf = 501.

The results of the extrapolation in the time domain are
shown in Fig. 6. As can be seen, even for only 500 time
samples, the output of the MOT program is quite unstable
and gives erroneous results. However, the extrapolated results
are relatively stable. This is an advantage of this method.
The late-time information is mainly obtained from the low-
frequency data. This given data is stable and, hence, the late
time information is stable. In using an integral equation MOT
program, the late-time information is frequently unstable.

The frequency-domain extrapolation is shown in Fig. 7. The
extrapolation is shown upto 300 MHz since above 300 MHz
the response is close to zero. In Fig. 7 the magnitude of the
extrapolated frequency response is compared to the response
obtained from the MoM program. The agreement between the
reconstructed response and the response obtained from the
MoM is reasonable.

Example 4—Cube:The fourth example is a cube of side
1 m centered at the origin. The faces of the cube are lined
along the three coordinate axes. The faces atx = 0:5 m and
x = �0:5 m have five divisions in they andz direction. All
other faces have four divisions in one direction and five in the
other. This allows us to find the current at the center of the top
face. The excitation arrives from the direction� = 0; � = 0,
i.e., along the�z axis.ui is along thex axis. In this example,
� = 2:357 ns andt0 = 20 ns. The time step chosen for the
MOT program is 0.157 13 ns.

The MOT program evaluated the current at the center of the
top face for the first 500 time steps (fromt = 0 to t = 78:41
ns). The MoM program evaluated the frequency response at
501 samples (fromf = 0 to f = 1 GHz). The first 193
time samples (up tot = 30:17 ns) and the first 49 frequency
points (up tof = 96 MHz) were used as the given data. For
this example,f2T = 2:9. Using this information, the time
and frequency domains were extrapolated with parameters
Mt = 500 andMf = 501. Fig. 8 shows the results of the time-
domain extrapolation. Here, again, we see that while the MOT
program has started to give unstable results, the extrapolated
time-domain response is stable.
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Fig. 6. Time-domain response of the sphere.

Fig. 7. Frequency-domain response of the sphere.

Fig. 8. Time-domain response of the cube.

The frequency response of this system, up to 300 MHz is
shown in Fig. 9. The reconstructed response and the response
obtained from the MoM are close.

Example 5—Cone-Hemisphere:The final example, we
have chosen is a combination of a cone and a hemisphere.
The hemisphere is attached to the base of the cone forming
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Fig. 9. Frequency-domain response of the cube.

Fig. 10. Time-domain response of the cone hemisphere.

one compound three-dimensional object. The base of the cone
and hemisphere is centered at the origin. The base of the cone
and hemisphere have a radius of 1 m. The height of the cone
is 2 m. The central axis of the combination lies on thez axis.

The triangular patch approximation for the cone has six
divisions in thez direction. The planes defining the “rings” are
at z = 2:0, z = 1:75, z = 1:4, z = 1:05, z = 0:7, z = 0:35,
andz = 0. Each ring, starting from the top has 7, 16, 20, 24,
28, and 32 triangles, respectively. The hemisphere has three
divisions in the� direction. The “rings” extend from� = �

to � = 2�
3

, � = 5�
6

to � = 2�
3

, and� = 2�
3

to � = �
2
. Each

ring, starting from the bottom, has 13, 28, and 32 triangular
patches, respectively. Such a triangulation scheme allows for
the current at the point (�0.1, 0.0, 0.0) to be evaluated.

The excitation arrives from� = �
2
, � = �, i.e., along

the x direction. ui is along thez axis. In this example,
� = 6 ns andt0 = 25 ns. The time step used is 90.39 ps.
The frequency step used is 2 MHz.

The MOT program evaluated the first 1300 time samples
(from t = 0 to t = 117:42 ns). The MoM program evaluated
the first 501 frequency samples (fromf = 0 to f = 1 GHz).
The first 482 time samples (uptot = 43:97 ns) and the first
25 frequency samples (up tof = 48 MHz) were used as input

to the time-frequency extrapolation program. This results in
f2T = 2:11. Using this information the time-domain response
was extrapolated to 1300 samples and the frequency domain to
501 samples. The results of the time-domain extrapolation are
shown in Fig. 10. As seen the data from the MOT program (la-
beled “response from MOT”) is unstable for late times. How-
ever, the reconstructed time response continues to be stable.

The magnitude of the reconstructed frequency-domain re-
sponse is compared with the magnitude of the frequency
response obtained from the MoM. The agreement between the
two responses is good.

IV. CONCLUSION

In this paper, we have presented a technique based on the
Fourier transform for simultaneous extrapolation in the time
and frequency domains. Because the required information is
only the early-time response and the low-frequency response,
the technique yields major savings in program execution time.
Typically, for good reconstruction it appears that one needs a
time-bandwidth product of the order of 1.5–3.0. However, this
factor is dependent on the quality of the time and frequency-
domain data. Since two smaller problems are solved, the
computer resources required are modest. Even though the
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Fig. 11. Frequency response of the cone hemisphere.

starting information is obtained from techniques that have the
potential to become unstable in late times, the extrapolation
scheme does not exhibit such behavior.

It is important to note that the early time-domain data and
low-frequency domain data are complementary. The extrap-
olation does not create any new information. The early-time
data provides the missing high-frequency information and the
low-frequency data provides the late-time information. The
Hilbert and Fourier transforms are utilized to combine the
complementary data and perform extrapolation.

As the Fourier transform, the Hilbert transform, the Cauchy
and matrix-pencil methods are independent of the electromag-
netic issues, the specific application from numerical electro-
magnetics is irrelevant. In this paper, we apply the extrapola-
tion procedure to the problem of extrapolating the current on
a scatterer being excited by a uniform plane wave.

To test the proposed technique, the algorithm has been
tested on five different examples. The number of time-domain
samples to be used by the extrapolation technique was chosen
such that the response used extends a short time after the
excitation has died down. The number of frequency samples
used was chosen such that the first resonance is included.
Currently, work is under way to generalize this case to more
than one resonance. We have seen that the technique yields
accurate extrapolated results over a wide dynamic range in
both time and frequency domains. The examples presented
have only one resonance in the frequency domain.
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