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Abstract—A uniform high-frequency solution is presented for
the field radiated at finite distance by a semi-infinite beam-
scanning array of magnetic line sources located on a perfectly
conducting half-plane. The field is represented in terms of Floquet
waves plus their relevant singly and doubly diffracted rays,
which arise from both the end of the array and the edge of
the half-plane. This representation is uniformly valid also when
transition conditions from propagating to evanescent Floquet
waves occur. Furthermore, it provides a simple and attractive
physical interpretation and is found numerically very effective,
due to the fast convergence of the Floquet wave expansion for
the field.

Index Terms—Antenna arrays, electromagnetic radiation, geo-
metrical theory of diffraction.

I. INTRODUCTION

A UNIFORM high-frequency solution for a semi-infinite
array of impressed magnetic line sources located on a

perfectly electric conducting (PEC) half plane is presented in
this paper. The sources have equal amplitudes, and a linear
phase tapering is introduced to provide beam scanning [see
Fig. 1(a)]. By invoking the localization principle of high-
frequency phenomena, the uniform asymptotic solution of
this canonical problem can be used to describe large finite
arrays of slots on a finite ground plane, i.e., this result can
be interpreted in terms of the uniform theory of diffraction
(UTD) [1] description of scattering and radiation phenomena.
In order to provide a physical insight and an efficient solution,
a Floquet wave (FW) approach is used, which is an extension
of that proposed in [2]–[5]. In particular, the field of the
corresponding infinite periodic array is expanded in terms
of FW, and the radiation of the actual semi-infinite array is
interpreted as the superposition of traveling wave-type currents
that are distributed on the semi-infinite aperture plane formed
by the array sources. Each aperture distribution radiates in
presence of the perfectly conducting half-plane. Since the
FW series exhibits excellent convergence properties when the
observation point is located away from the local surface,
this representation is found more efficient than the direct
summation of the spatial contributions from each element
of the array, particularly when the radiation from each FW-
type aperture is treated asymptotically. In this case, each
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Fig. 1. (a) Geometry of the array on a semi-infinite ground plane. (b)
Propagating Floquet waves (PFWp; p = 1; 0, �1), singly diffracted (D)
and doubly diffracted (DD) rays.

contribution can be interpreted as the sum of the FW’s
themselves and their relevant diffraction at the edge of the
aperture. Since the array is supported by a ground plane, the
singly diffracted rays undergo a subsequent diffraction at its
edge. In summary, as depicted in Fig. 1(b), the high-frequency
description of the total radiation mechanism is given in terms
of FW’s, singly diffracted rays excited at the edge of the array
by the incident FW’s, and doubly diffracted rays excited at
the edge of the half-plane by the singly diffracted grazing ray.
These latter ray contributions provide an estimate of the field
in the optical shadow region and ensure the continuity of the
total field at those grazing aspects, where the singly diffracted
field exhibits a discontinuity.

The high-frequency solution presented here provides a basic
example for studying other problems involving double diffrac-
tion of FW’s, which may occur whenever an array is located
on a finite supporting structure; consequently, it provides an
extension of the solutions derived in [2]–[5], which refer to
arrays of line source in free-space [2]–[4] and on an infinite
dielectric slab [5]. Although the model is two-dimensional,
the physical picture provided by our solution can be applied
to qualitatively explain the radiation by actual large array
antennas, as well as the scattering by finite periodic structures
of practical interest such as dichroics, polarizers, artificially
hard, and soft surfaces.
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This paper is organized as follows. In Section II, the prob-
lem is formulated by superimposing the near-field contri-
butions of each source, which radiates with the Green’s
function of the PEC half-plane. By using a suitable spectral
representation of this Green’s function, the global radiation
of the structure is represented in terms of a single spectral
integral. In Section III, the asymptotic evaluation of this
integral is carried out, leading to a uniform solution in terms
of FW’s and their pertinent singly and doubly diffracted rays.
These latter are expressed in terms of the multiple-argument
transition function derived in [6] and [7] for the double
diffraction at a couple of wedges and used in [8] for describing
the diffraction at a vertex of a plane angular sector. In the
present case, this transition function is extended to complex
values of its argument. In Section IV, the behavior of the
physical mechanisms described by our solution is discussed,
with particular emphasis given to the case when a transition
from a propagating to an evanescent FW occurs. Numerical
results are presented in Section V and compared with reference
solutions.

II. FORMULATION

The geometry of the problem is shown in Fig. 1(a). A semi-
infinite periodic distribution of magnetic current line sources
with impressed amplitudes and with interelement periodd are
placed on a semi-infinite ground-plane. The first source is
placed at a distanceL from the edge of the ground plane.
Two rectangular reference systems (x; y) and (x0; y) are
introduced with they axis perpendicular to the plane of the
array; their origins are located at the edge of the half-plane
(x = 0) and at the first source (x0 = 0), respectively.
The relevant cylindrical reference systems are denoted by
(�; �) and (�0; �0), respectively. For the sake of simplicity,
but without loss of generality, a traveling wave excitation
exp(�jknd cos �0), (n = 0; 1; 2; � � �) is assumed, which has
a unit amplitude and linear phase in order to provide beam
in direction �0.

By superposing the field radiated by each line current, the
magneticz field is obtained as

Hz =
1X
n=0

f(nd + L; P )e�jk cos �0nd (1)

wheref(x0; P ) is the Green’s function of a perfectly conduct-
ing half-plane at the observation point P when it is illuminated
by a source placed atx0. A convenient exact representation of
f(x0; P ) in terms of its Fourier transformF (kx; P ) [9], is

f(x0; P ) =
1

2�

Z
1

�1

F (kx; P )ejkxx
0

dkx (2)

where
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cos �+ cos �
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andC� � (�j1; � + j1). The termF go(kx; P ), which is
the Fourier transform of a Hankel function, is associated to
the geometrical optics (GO) field from the line source and
its image, while the contributionF d(kx; P ) represents the
diffracted field. A clockwise indentation of the contour around
the pole� = ��� is assumed. The branch-cut in (3) is chosen

in such a way that Im
�p

k2 � k2x

�
< 0 in the top Rieman

sheet of thekx complex plane.
Now, (2) is used in (1) to yield, after interchanging the

order of integration and summation

Hz = lim
�!0+

1

2�

Z j�+1

j��1

F (kx; P )ejkxL
1X
n=0

� ej(kx�k cos �0)nd dkx: (7)

In doing that, a vanishing, small positive shift(�) of the
integration contour is assumed; as a consequence,j exp[j(kx�
k cos �0)d]j is strictly less than unity, so that the sum of the
series inside the integral can be evaluated in a closed form

Hz = lim
�!0+

1

2�

Z j�+1

j��1

F (kx)
ejkxL

1� ej(kx�k cos �0)d
dkx:

(8)
It is apparent that the integrand in (8) exhibits poles in the
kx complex plane that are located atkxp = k cos �0 + 2�p=d
[see Fig. 2(a)]. For vanishing�, a clockwise indentation of
the integration contour around these poles is required. The
residues at these poles describe the FW’s of the infinite
grounded array. In particular, the poles located either in-
side or outside the interval(�k; k) are associated to either
propagating (PFW) or evanescent FW’s (EFW), respectively.
Other improper poles are located on the bottom Rieman sheeth
Im
�p

k2 � k2x

�
< 0

i
; although these latter poles have no

physical meaning since they would describe waves that grow
along the positivey axis, their presence affects the integration
and need to be accounted for in the asymptotic evaluation of
(8).

By using (3) in (5), and introducing the change of variable
cos �0 = �kx=k, we obtain

Hz = HFW+d
z +Hdd

z (9)

in which

HFW+d
z =

�k
4��

Z
C
�

0

2 ejk�0 cos(�0+�0)B(�0; �0) d�0 (10)
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Fig. 2. (a) Complexkz plane. (b) Complex�0 plane; the shadowed region
denotes the one where the poles are extracted in the asymptotic procedure
(P = 3). (c) Complex� plane.

Hdd
z =

�k

8j�2�

Z
C�

Z
C
�0

e�jkR(�
0
; �)B(�0; �0)

�Gh(�; �) d�d�0 (11)

where

R(�0; �) = L cos �0 + � cos(�� �0) (12)

and

B(�0; �0) =
1

1� e�jkd(cos �0+cos �0)
: (13)

The contourC�0 � (�j1; � + j1) detours the poles at
� � �0p counterclockwise [see Fig. 2(b)], while the contour
C� � (�j1; � + j1) detours the pole at� � � clockwise
[see Fig. 2(c)]. Also in (10), the identity

�0 cos(�0+�0) = (� cos ��L) cos �0�� sin � sin �0 (14)

has been used. The integral representations forHFW+d
z and

Hdd
z arise fromF go(kx; P ) andF d(kx; P ), respectively. As

a consequence, the contributionHFW+d
z asymptotically leads

to the sum of the FW contributions and their diffraction at the
end of the array andHdd

z to the double diffraction contribution.
Expressions (10) and (11) are well suited for their asymptotic
evaluation, which will be discussed in the next section.

III. H IGH-FREQUENCY REPRESENTATION

The integrand in (11) exhibits separated poles in the two
variables of integration. In particular, one pole occurs at
� � � in the � complex plane, while an infinite number
of poles occur in the�0 complex plane at� � �0p, being
�0p = cos�1(cos �0 + 2�p=kd). As shown in Fig. 2(b), they
are located along theC�0 path and correspond to the poles
located on the top Rieman sheet of the complexkx plane.
The poles on the real and imaginary portions ofC�0 are
associated to PFW and EFW, respectively. Other improper
(nonphysical) poles are distributed along loci that are equal
to C�0 except for a translation ofm�(m = �1; �2; � � �);
these poles correspond to those on the improper Rieman sheet
of the kx plane. The asymptotic evaluations ofHFW+d

z and
Hdd
z are presented in Appendexes A and B, respectively. In

particular,HFW+d
z is asymptotically evaluated by using the

Van der Waerden method of the steepest descent [10]. To this
end a convenient singularity extraction procedure is used in
(10). The same procedure is adopted for the integral in (11),
and a stationary phase approximation at(�0; �) = (0; 0) is
applied to its resulting expression.

Eventually, the desired uniform, high-frequency representa-
tion is obtained as

Hz = HFW
z +Hd

z +Hdd
z (15)

where

HFW
z =

�1

d�

1X
p=�1

e�jk�0 cos(�0��
0

p
)

sin �0p
U (�sbp � �0) (16)

where we have (17) and (18), as shown at the bottom of the
next page,�p = sgn[cos(�0p)]; U (x) is the Heavyside unit
step function, and

�sbp =Re(�0p)� tg�1fsinh[Im(�0p)]g (19)

F (y) = 2j
p
y ejy

Z 1

p
y

e�jt
2

dt; �3�

2
< arg(y) � �

2
:

(20)

Equation (20) is the transition function of UTD [1], and
~T (a; bw) is the transition function introduced in [6] and [7];
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for the sake of convenience its definition is given in Appendix
B. The arguments of the transition functions are

�p� =
p

2k�0 sin

�
�0p � �0

2

�
(21)

a =

s
2k

�L

� + L
cos

�

2
; bp =

p
2kL cos

�0p
2

(22)

w =
p
�=(� + L): (23)

The integerP is determined by the number of poles that
are extracted in the asymptotic procedure, and its value in
practical applications is suggested in Appendix A. It is worth
noting that each EFW is attenuated in they direction so
that only few modes significantly contribute to the field for
y > 0. However, when approaching grazing(� = 0), all
the FW’s are captured in the steepest descent path (SDP)
deformation; thus, an infinite number of nonattenuated FW’s
should be considered in (16). Nevertheless, even in this case
it is seen that few modes need to be retained in (16), unless
the observation point is very close to a line source.

Both the singly and the doubly diffracted fields obtained
from the above formulation are found accurate also under
critical circumstances, as will be discussed in the next section.

IV. BEHAVIOR OF THE SOLUTION

A ray picture of the contributions of FW’s and singly
and doubly diffracted fields is shown in Fig. 3 for different
locations of the observation point P. In particular, the PFW-
ray arises from a pointxp of the array and propagates along
the direction�0p. It corresponds to the stationary phase point
contribution of the FW-type aperture radiation integral. The
above radiation integral can rigorously be obtained by applying
to (1) the Poisson summation formula as shown in [2] and
[3]. In this type of description, the end-point of the same
radiation integral provides the singly diffracted raysHd

z , which
arise from the line source at the boundary of the array. These
rays provide the continuity for both PFW’s and EFW’s at
the shadow boundaries (SB’s), which occur at�0 = �sbp
(19). The SB’s occur at�0 = �0p for PFW [see Fig. 3].
Doubly diffracted rays arise from the edge of the half-plane
and provide a uniform description of the field across�0 = �,
where the single diffracted field exhibits a discontinuity due
to its GO shadowing. In the following, the behavior of the
SB’s and their transition regions is discussed as the phase
velocity of the feeding wave changes (i.e., changing the beam

Fig. 3. High-frequency ray contributions for observation point in different
regions.

pointing—Section IV-A). Some considerations are also carried
out on the transition from PFW to EFW and its relationship
with scan blindness phenomenon (Section IV-B).

A. SB’s and Spatial Transition Regions

For the sake of simplicity, let us consider only one PFW.
Its SB occurs at� = �0p and corresponds to the case when
the stationary phase point merges with the end-point of the
array [see Fig. 3]. Close to this SB, the diffracted fieldHd

z

exhibits a parabolic-shaped transition region [see Fig. 4(a)]
in which its ray behavior changes from cylindrical to plane
wave to compensate for the discontinuity of the PFW. Next,
let us consider the case when the phase velocity of the feeding
wave becomes slower. Actually, this occurs when scanning the
beam of the array. As a consequence, the pointing angle�0p
of the PFW, as well as its SB, moves toward grazing aspects
and precisely reaches� = � when the PFW phase velocity
equals the speed of light. At this point, a further change of
the scan conditions causes a transition from PFW to EFW;
this corresponds to a FW pole that moves around the knee at
�0 = 0 of the contour depicted in Fig. 2(b) and turns from real
to imaginary. Furthermore, the transition region of the singly
diffracted field degenerates from a parabola into an ellipse [see
Fig. 4(b)], which is the typical shape of the transition region of
the diffracted field excited by an evanescent wave [11]. This
condition is referred to as the cutoff transition of the PFW and
will be discussed in the next subsection.

As the phase velocity of the EFW further decreases, its SB
moves from grazing aspects toward a direction perpendicular
to the plane of the array, according to (19). In this direction,
the traveling wave phase of the EFW matches that of the
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(a) (b)

(c)

Fig. 4. Behavior of the FW shadow boundary and of the spatial transition regions of the diffracted rays during the evolution from PFW to EFW due to
a beam scanning. (a) PFW close to cutoff, (b) EFW close to cutoff, and (c) EFW far from cutoff.

singly diffracted ray; i.e., the speed of light. As the speed
of the feeding wave further decreases, the eccentricity of the
elliptical transition region decreases too.

The SB of the singly diffracted ray (SBd) always occurs
at grazing, and the relevant transition region of the doubly
diffracted field always exhibits a parabolic shape. During the
cutoff transition shown in Fig. 4(a) and (b), the transition
regions of the singly and doubly diffracted fields overlap. In
these conditions, the transition function~T (a; bp; w) provides
a uniform description of the field by changing its parameter
bp from real to complex. When the FW is deeply evanescent
so that its elliptical transition region has a small eccentricity
[see Fig. 4(c)], the edge of the ground plane is practically
illuminated by a ray-optical field. From a mathematical point
of view, this means thatjbpj becomes so large that~T (a; bp; w)
tends toF (a2) [see (40) in Appendix B]; consequently, the
first term in (18), which does not contain any transition
function, is asymptotically dominant. This same circumstance
also occurs when the FW is propagating and SB is very
far from the grazing aspect. Actually, the second term in
(18) is important only during the cutoff transition of a FW.
This transition and its relationship with the scan-blindness
phenomenon is examined in the next subsection.

B. Cutoff Transition and Scan Blindness Phenomenon

As mentioned above, the cutoff condition of a FW cor-
responds to its transition from propagating to evanescent
wave and may occur while changing�0 as well as the
operating frequency. This terminology resembles the familiar
cutoff condition occurring in modal waveguide propagation.
Indeed, an infinite array may be modeled by a waveguide
perpendicular to the plane of the array. This waveguide

includes one element of the array, and the field contributions
from the other elements arise from multiple reflections on its
walls.

At the cutoff condition, the phase velocity of the FW
matches the speed of light; consequently, the fields radiated
by all the sources coherently superimpose at grazing aspect.
In this case, the total radiated field tends to coherently refeed
the elements, thus establishing a sort of resonance of the
entire array. For an infinite number of sources that are fed by
enforced currents, the field at the cutoff condition diverges, as
it happens in a cavity which is fed at a resonant frequency by
a time-harmonic ideal generator. In practice, at that pointing-
angle where a Floquet mode meets the cutoff condition,
the input impedance becomes strongly reactive so that an
abrupt mismatch of the active input impedance occurs. This
phenomenon is typically known as scan-blindness. When the
array is semi-infinite, again the field close to the cutoff
condition of the FW tends to diverge. Also, its relevant singly
diffracted field becomes infinite at grazing aspect. For a finite
size array at cutoff (scan-blindness), two singly diffracted
fields with infinite amplitude at grazing arise from the two
end points; however, their summation provides a finite, well-
behaved field everywhere, as will be shown by the numerical
examples in the next section.

V. NUMERICAL EXAMPLES

Numerical calculations have been carried out to test the
accuracy of the asymptotic solution, as well as to highlight
the effects of the cutoff transitions. A reference solution is
constructed by summing GO and UTD contributions from the
sources.
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Fig. 5. Amplitude ofHz at � = 0:5� for an array of 100 lines sources
(�0 = 150�; d = 0:7�; L = 0:4�).

Fig. 6. Amplitude ofHz at �0 = 3:7� for an array of 100 line sources
(d = 0:5�; �0 = 90�), for various values ofL; HFW

z
+ Hd

z + Hdd
z

(continuous line); reference solution (dashed line).

A near field scan at� = 0:5� is shown in Fig. 5 for an array
of 100 elements withd = 0:7�, over a semi-infinite ground
plane withL = 0:2�. The geometry is shown in the inset. The
FW-approach also includes the single diffraction contribution
arising from the far-out end-point of the array. Dashed and
continuous lines are used to plotHFW

z + Hd
z and HFW

z +

Hd
z+Hdd

z , respectively. Reference solutions are also presented
in this figure; these latter are obtained by superimposing
either the GO fields from each source (squares) or the GO+

UTD diffracted fields from each source (triangles). An angle
�0 = 64:6� has been chosen for the traveling wave excitation
so that thep = �1 FW is precisely at its cutoff condition. As
mentioned in the previous section, this condition is the most
critical to be described in terms of FW’s since it involves a
transition function with complex argument. In spite of this cir-
cumstance and of the small distance between the observation
point and the edge, an excellent agreement is obtained with the
reference solution, which is of course not affected by the same
difficulty. It is worth noting that the computer time required
by our solution is independent of the number of sources of the
array; thus, it is found particularly convenient, with respect to
the spatial summation, for large arrays.

In Fig. 6 the amplitude ofHz field is plotted for an array
of 100 elements withd = 0:5� and �0 = 90�. The field is

(a)

(b)

Fig. 7. Amplitude ofHz for an array of ten line sources at 100� from the
center of the array(d = 0:5�; L = 0:8�): (a) total field for�0 = 72�

(continuous line), and�0 = 58� (dashed line) and (b)HFW
z + Hd

z (dashed
line) HFW

z + Hd
z + Hdd

z (solid line) for �0 = 64:6�.

observed at�0 = 3:7� from the edge of the array. Calculations
are presented for different spacingsL between the edge of the
array and that of the ground, such as�; 0:5�; 0:25�; 0:01�. An
excellent agreement is found between ours (continuous line)
and the reference solution (dashed line), even forL = 0:01�,
thus emphasizing the robustness of our asymptotic evaluation.

Fig. 7(a) shows theHz field from an array of 10 sources
(d = 0:7�, observation scan at 100� from the center of
array) over a semi-infinite ground plane withL = 0:4�. Two
different phasings are considered, namely either�0 = 58� or
�0 = 72�, for which the same FW is either propagating or
evanescent, respectively; however, in both cases it is close
to the cutoff condition. It is seen that even a small change
in the phase angle may cause significant differences in the
radiation pattern close to grazing aspects, as expected. Results
just at the cutoff condition�0 = 64:6� are shown in Fig. 7(b),
where bothHFW

z +Hd
z (dashed line) andHFW

z +Hd
z +Hdd

z

(continuous line) are presented. In comparing Fig. 7(b) with
Fig. 7(a), a more pronounced lobe at grazing is noted; also, a
higher level is found for the field in the shadow region (lower
half-space) and for the lobes between the two peaks. It is worth
pointing out that the various results are obtained by assuming
the same amplitude of the magnetic line sources. In a practical
experiment, a strong impedance mismatch would occur at the
cutoff condition (scan-blindness). In any case, assuming that
the array is somehow fed, it is seen that a relevant part of the
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Fig. 8. Amplitude of Hz versus �0 and � at a distance of 100� from the center an array of six sources placed on a truncated ground plane
(d = 0:7�; L = 0:4�).

power is subtracted from the main lobe and radiated in the
grazing lobe. In comparing the total field (continuous line)
with the field without doubly diffracted contribution, it is
seen that the doubly diffracted contribution, while eliminating
the discontinuity, provides a redistribution of energy that is
noticeable not only in the lower half-space, but also in a wide
angular range of the upper half-space.

Fig. 8 shows the fieldHz radiated by an array of six sources
(d = 0:7�; � = 100� from the center of array) over a semi-
infinite ground plane (L = 0:4�) as a function of both�
and�0. Each plane-cut perpendicular to the�0 axis provides a
pattern similar to those in Fig. 7; the maximum value of each
cut corresponds to the radiation peak of a Floquet mode that
is shifted depending on�0. Plane-cuts perpendicular to the�-
axis show the behavior of the field at each observation aspect
when changing the array phasing. As expected, at aspects
below the array plane, these plane-cuts exhibit a maximum
for �0 = 64:6�, where the cutoff condition of thep = �1

FW occurs.

VI. CONCLUDING REMARKS

A uniform high-frequency solution is presented for a semi-
infinite beam-scanning array of magnetic line sources located
on a perfectly conducting half-plane. The field is represented in
terms of FW’s and their relevant singly and doubly diffracted
fields. This representation is uniformly valid even when the
cutoff condition from propagating to evanescent FW’s oc-
curs so that it provides a neat physical description of the
scan-blindness phenomenon. In order to describe this cutoff
transition, an appropriate transition function is introduced by
extending to complex arguments the same transition function
which was previously obtained in problems involving dou-
ble diffraction at a couple of perfectly conducting wedges.
Although the model presented here is two-dimensional, the
physical picture provided by this solution can be applied to
qualitatively explain the radiation by more complex antenna
arrays in a finite ground plane (e.g., slotted waveguide arrays).
Furthermore, our formulation can be directly applied to find

an integral representation of the electromagnetic field in the
three-dimensional case; regardless, this latter situation requires
a more involved asymptotic evaluation, which is presently
under investigation [12]. Finally, it should be noted that the
active Green’s function of an array of sources is the basic
block to construct the numerical Method of Moment (MoM)
solution of large array antennas that may overcome problems
of large matrix inversion associated to an element-by-element
approach. In this regard, it should be mentioned that the field
representation in terms of Floquet-wave diffracted rays can
be usefully employed to expand the unknown currents of the
integral equation pertinent to the array problem. This leads to
the hybrid asymptotic-MoM method for large arrays described
in [13].

APPENDIX A

In order to asymptotically evaluate the integral representa-
tion (10) ofHFW+d

z ; the path of integration is deformed into
the SDP through the saddle point�0 = � � �0, as shown in
Fig. 2(b). The residues of the poles that are captured in this
deformation represent PFW’s and EFW’s. This yields

HFW+d
z = HFW

z +Hd
z (24)

whereHFW
z is the same as that defined in (15) and

Hd
z =

�k

2��

Z
SDP (���0)

ejk�0 cos(�0+�0)B(�0; �0) d�0:

(25)
Next, the integral on the SDP is evaluated by the Van der Waer-
den method, by adding and subtracting an appropriate spectral
functionW (�0; �0). A convenient expression ofW (�0; �0) is

W (�0; �0) =
1

jk2d sin �0p

PX
p=�P

(1 + �p)G
s(�0; �0p)

+ (1� �p)G
h(�0; �0p) (26)

in which�p = sgn(cos �0p), whereGh(�; �) is the spectrum of
the half-plane Green’s function with hard boundary conditions,
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which is defined in (6), and

Gs(�; �) = �

2 sin
��
2

�
sin

�
�

2

�
cos�+ cos �

(27)

is the spectrum for the same half-plane with soft boundary
conditions. This function is constructed in such a way as to
have the same residues ofB(�0; �0) in the regionIm(�0

�P ) <
Im�0 < Im(�0P ), and�(�=2) < Re�0 < (3=2)�, which is
shadowed in Fig. 2(b) for the caseP = 3. Increasing the
numberP of the poles that are extracted broadens the region
in which the functionB�W is free of pole and improves the
accuracy of the asymptotic evaluation.

The numberP is chosen according to

P =
�

d

2
4 �

2k�0
+ 1 +

s�
�

2k�0

�2

+ 1

3
5: (28)

This choice ensures that the jump discontinuity of the first
EFW which is nonuniformly compensated by the diffracted
field is proportional toexp(��) when crossing its SB. In the
numerical calculation, we have chosen� = 10. It is worth
noting that one needs to extract not only those poles associated
to physical PFW’s and EFW’s, but also those relevant to
improper waves.

Adding and subtracting the functionW in the integral yields

Hd
z =

�k

2��

Z
SDP (���0)

ejk�0 cos(�0+�0)

� [B(�0; �0) �W (�0; �0)] d�0

+
�k
2��

Z
SDP (���0)

ejk�0(�
0+�0)W (�0; �0) d�0: (29)

In the first integrand of (29), no pole occurs close to the saddle
point, thus its slowly varying part is replaced by its value at
the saddle point. The second integral in (29) is evaluated in
an exact closed form in terms of Fresnel integral. This leads
to (17).

APPENDIX B

Integral representation (11) ofHdd
z has a stationary phase

point at (�0; �) = (0; 0) and exhibits separated poles in
the two variables. Its asymptotic evaluation is performed by
adding and subtracting to the integrand the same functionW .
This yields

Hdd
z =

�k
8j�2�

(I1 + I2) (30)

where

I1 = [B(0; �0) �W (0; �0)]

Z
C�

Z
C
�

0

Gh(�; �)

� e�jkR(�0; �) d�0 d� (31)

and

I2 =

Z
C�

Z
C
�

0

W (�0; �0)Gh(�; �)e�jkR(�
0; �) d�0 d�:

(32)

In (31) the slowly varying part of the integrand which depends
on�0 has been evaluated at�0 = 0, since no pole occurs close
to zero. According to (27), an explicit expression for (32) is

I2 =
1

jk2d sin �0p

PX
p=�P

(1 + �p)I
s
p + (1� �p)I

h
p (33)

in which

Ih;sp =

Z
C�

Z
C
�

0

Gh;s(�0; �0p)G
h(�; �)e�jkR(�

0; �) d�0 d�:

(34)

It is seen thatIsp = 0, while Ihp has the same form as
that of the integral treated in [6]. Thus, the same asymptotic
evaluation as that in [6] is applied to yield

Ihp � 2�Gh(0; �0)Gh(0; �)
e�jk(L+�)

jk
p
�L

~T (a; bp; w) (35)

where the transition function

~T (a; b; w) =
a2b2

j�(1 �w2)3=2

Z
1

�1

Z
1

�1

� ej(�
2+2w��+�2)�

�2 �
a2

1�w2

��
�2 �

b2

1� w2

� d� d� (36)

is the same as that introduced in [6] and [7]. A convenient
expression for (36) which is suitable for numerical calculations
is

~T (a; b; w)

=
2�jabp
1� w2

�
G
�
a;

b+wap
1� w2

+ G
�
b;

a+wbp
1� w2

��

+G
�
a;

b� wap
1�w2

�
+ G

�
b;

a� wbp
1� w2

��

(37)

whereG is the generalized Fresnel integral [14]

G(x; y) = y

2�
ejx

2

Z
1

x

e�j�
2

�2 + y2
d� (38)

which may efficiently be calculated as suggested in [15].
The integrand in (31) exhibits poles in only one variable

and may be treated as a special case of (34). A convenient
asymptotic expression for (31) can be obtained by (37) in the
limit for b ! 1; i.e.,

I1 � 2�
e�jk(L+�)

jk
p
�L

[B(0; �0)�W (0; �0)]

� Gh(0; �) ~T (a; 1; w) (39)

in which

~T (a; 1; w) = lim
b!1

~T (a; bw)

=
�a2

�j
p
1� w2

Z
1

�1

Z
1

�1

ej(�
2+2w��+�2)

�2 � a2

1� w2

d� d�

=F (a2) (40)

whereF is the UTD transition function in (20).
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