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Abstract—A uniform high-frequency solution is presented for A P
the field radiated at finite distance by a semi-infinite beam- Y .
scanning array of magnetic line sources located on a perfectly P ;pagnetlc
0 ine sources

conducting half-plane. The field is represented in terms of Floquet
waves plus their relevant singly and doubly diffracted rays,
which arise from both the end of the array and the edge of
the half-plane. This representation is uniformly valid also when -
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transition conditions from propagating to evanescent Floquet B pec half-plane
waves occur. Furthermore, it provides a simple and attractive L d
physical interpretation and is found numerically very effective, @
due to the fast convergence of the Floquet wave expansion for
the field. =0
DD rays pP= -1 p PFW‘S

Index Terms—Antenna arrays, electromagnetic radiation, geo-
metrical theory of diffraction.

I. INTRODUCTION

UNIFORM high-frequency solution for a semi-infinite
array of impressed magnetic line sources located on a -
perfectly electric conducting (PEC) half plane is presented iy i-gat(i?]g ?:fé’qmugi%ge;hipg\zy on 2 OS’ef‘l")"”fs'?r:tgelygé‘i’f;‘r’;%tepéa?g)- ()
this paper. The sources have equal amplitudes, and a Imgﬁfdoumy diffracted (DD) rays.
phase tapering is introduced to provide beam scanning [see
Fig. 1(a)]. By invoking the localization principle of high- o _
frequency phenomena, the uniform asymptotic solution §Pntribution can be interpreted as the sum of the FW's
this canonical problem can be used to describe large finfftemselves and their relevant diffraction at the edge of the
arrays of slots on a finite ground plane, i.e., this result c@&perture. Since the array is supported by a ground plane, the
be interpreted in terms of the uniform theory of diffractioringly diffracted rays undergo a subsequent diffraction at its
(UTD) [1] description of scattering and radiation phenomeng&dge. In summary, as depicted in Fig. 1(b), the high-frequency
In order to provide a physical insight and an efficient solutioflescription of the total radiation mechanism is given in terms
a Floquet wave (FW) approach is used, which is an extensi8hFW's, singly diffracted rays excited at the edge of the array
of that proposed in [2]-[5]. In particular, the field of thedy the incident FW's, and doubly diffracted rays excited at
corresponding infinite periodic array is expanded in terniBe edge of the half-plane by the singly diffracted grazing ray.
of FW, and the radiation of the actual semi-infinite array i§hese latter ray contributions provide an estimate of the field
interpreted as the superposition of traveling wave-type currefitsthe optical shadow region and ensure the continuity of the
that are distributed on the semi-infinite aperture plane forméetal field at those grazing aspects, where the singly diffracted
by the array sources. Each aperture distribution radiatesfigld exhibits a discontinuity.
presence of the perfectly conducting half-plane. Since theThe high-frequency solution presented here provides a basic
FW series exhibits excellent convergence properties when gample for studying other problems involving double diffrac-
observation point is located away from the local surfacdpn of FW’s, which may occur whenever an array is located
this representation is found more efficient than the direoh a finite supporting structure; consequently, it provides an
summation of the spatial contributions from each elemeaktension of the solutions derived in [2]-[5], which refer to
of the array, particularly when the radiation from each FWarrays of line source in free-space [2]-[4] and on an infinite
type aperture is treated asymptotically. In this case, eadielectric slab [5]. Although the model is two-dimensional,
Manuscript received January 21, 1997; revised November 24, 1997. the phy.SIC?I picture PrOV'dEd bY Olur solution can be applied
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This paper is organized as follows. In Section I, the prob-go ke~ ipks cos d—jp/kZ—kE sin ¢
lem is formulated by superimposing the near-field contr " (kz, P) :_E \/m (4)
butions of each source, which radiates with the Green’'s —k *
function of the PEC half-plane. By using a suitable spectral’*(k,, P) = ——————
representation of this Green’s function, the global radiation 2mj Nk — k3 2C Je,
of the structure is represented in terms of a single spectral G (@, @)el e cos amipRE=EEsin o g (5)

integral. In Section lll, the asymptotic evaluation of this
integral is carried out, leading to a uniform solution in terms
of FW's and their pertinent singly and doubly diffracted rayé!1
These latter are expressed in terms of the multiple-argument

which

transition function derived in [6] and [7] for the double 9 cos (3) cos <?>
diffraction at a couple of wedges and used in [8] for describing G, ¢) = — : - (6)
the diffraction at a vertex of a plane angular sector. In the cos o+ cos ¢

present case, this transition function is extended to complex

values of its argument. In Section IV, the behavior of thandC, = (—joo, 7 + joo). The termF?°(k,, P), which is
physical mechanisms described by our solution is discuss#tk Fourier transform of a Hankel function, is associated to
with particular emphasis given to the case when a transititthe geometrical optics (GO) field from the line source and
from a propagating to an evanescent FW occurs. Numeridal image, while the contributio?(k,, P) represents the
results are presented in Section V and compared with refereniffracted field. A clockwise indentation of the contour around
solutions. the polea = m—¢ is assumed. The branch-cut in (3) is chosen

in such a way that Iré«/k2 — k,%) < 0 in the top Rieman

sheet of thek, complex plane.
Now, (2) is used in (1) to yield, after interchanging the

IIl. FORMULATION order of integration and summation
The geometry of the problem is shown in Fig. 1(a). A semi- 1 piekoo ' 00
infinite periodic distribution of magnetic current line sources H, = lim o / F(ky, P)e'*=" Z
with impressed amplitudes and with interelement pericte 0T T Jjemeo n=0

placed on a semi-infinite ground-plane. The first source is - ef (ke cos ¢'nd g (7)
placed at a distancé from the edge of the ground plane.
Two rectangular reference systems, ) and ¢, y) are

introduced with they axis perpendicular to the plane of th
array; their origins are located at the edge of the half-pla

In doing that, a vanishing, small positive shift) of the
dntegration contour is assumed; as a consequéngg|;j(k, —
fiecos ¢')d]| is strictly less than unity, so that the sum of the
series inside the integral can be evaluated in a closed form

(x = 0) and at the first sourcex{ = 0), respectively.

The relevant cylindrical reference systems are denoted by . 1 fictee Pk el =l dk

(p, @) and o, ¢o), respectively. For the sake of simplicity, = 0% or /].F_m (k) 1 — eflke—k cos ¢')d ~7 7"
but without loss of generality, a traveling wave excitation (8)

exp(—jknd cos ¢'), (n =0, 1, 2, - --) is assumed, which haslt is apparent that the integrand in (8) exhibits poles in the
a unit amplitude and linear phase in order to provide beatm complex plane that are located/at, = k cos ¢’ + 27p/d

in direction ¢’. [see Fig. 2(a)]. For vanishing, a clockwise indentation of
By superposing the field radiated by each line current, thige integration contour around these poles is required. The
magneticz field is obtained as residues at these poles describe the FW's of the infinite

grounded array. In particular, the poles located either in-
0o , ) side or outside the intervd#%, k) are associated to either
H, = Z f(nd + L, P)emi% cos ond (1) propagating (PFW) or evanescent FW’s (EFW), respectively.
n=0 Other improper poles are located on the bottom Rieman sheet

) _ ) Im{ /&2 — k;) < O]; although these latter poles have no
where f(z', P} is the Green's function of a perfectly COnOIUCt'physical meaning since they would describe waves that grow

ing half-plane at the observation point P when it is |IIum|nateg|0ng the positivey axis, their presence affects the integration

by a source placed af. A convenient exact representation of, \eed to be accounted for in the asymptotic evaluation of
f(&’, P) in terms of its Fourier transform'(k,., P) [9], is @)

By using (3) in (5), and introducing the change of variable

f(l‘/, P) — i /OO }7(’67‘J P)e]kz'rl dkT (2) COS OZ/ = _kx/k, we obtain
27 J_ o H, = H§W+d _|_de (9)
where in which
A 2 hro cose’H0) B(o/ ¢y da!  (10)

F(ky, P) = F7(ky, P)+ F'(k,, P) 3) T4 Je,
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The contourC,: = (—joo, m + joo) detours the poles at
™ — ¢, counterclockwise [see Fig. 2(b)], while the contour
C, = (—joo, 7 + joo) detours the pole at — ¢ clockwise
[see Fig. 2(c)]. Also in (10), the identity

po cos(a +¢g) = (p cos ¢—L) cos o/ —p sin ¢ sin o’ (14)

has been used. The integral representationsHbt’'+<¢ and
H24 arise fromF¢°(k,, P) and F¢(k,, P), respectively. As

a consequence, the contributiah W+ asymptotically leads

to the sum of the FW contributions and their diffraction at the
end of the array ané ¢¢ to the double diffraction contribution.
Expressions (10) and (11) are well suited for their asymptotic
evaluation, which will be discussed in the next section.

I1l. HIGH-FREQUENCY REPRESENTATION

The integrand in (11) exhibits separated poles in the two
variables of integration. In particular, one pole occurs at
T — ¢ in the « complex plane, while an infinite number
of poles occur in thex’ complex plane atr — ¢/, being
¢, = cos™!(cos ¢/ 4 2mp/kd). As shown in Fig. 2(b), they
are located along th€’,. path and correspond to the poles
located on the top Rieman sheet of the compigxplane.
The poles on the real and imaginary portions @f. are
associated to PFW and EFW, respectively. Other improper
(nonphysical) poles are distributed along loci that are equal
to C, except for a translation ofnw(m = +1, £2, ---);
these poles correspond to those on the improper Rieman sheet
of the k, plane. The asymptotic evaluations &V +¢ and
H? are presented in Appendexes A and B, respectively. In

(b)

Im{a . ) ) .
{o} Co particular, H¥W+4 is asymptotically evaluated by using the
Van der Waerden method of the steepest descent [10]. To this
end a convenient singularity extraction procedure is used in
(10). The same procedure is adopted for the integral in (11),
n optical pole and a stationary phase approximation(at, «) = (0, 0) is
) 0~ T R applied to its resulting expression.
o i P Refal Eventually, the desired uniform, high-frequency representa-
i tion is obtained as
. H =H™ + H! 4+ H (15)
; where
(c) o e—dkro COS(</>D—<7>;,)
sb
Fig. 2. (a) Complex. plane. (b) Complex:’ plane; the shadowed region H; Z sin ¢/ U(¢P - ¢0) (16)
denotes the one where the poles are extracted in the asymptotic procedure p=—00 P

(P = 3). (c) Complexe plane.
where we have (17) and (18), as shown at the bottom of the

= JER(e!, ) next page,,, = sgn[cos(¢y,)], U(x) is the Heavyside unit
H SWQC/ /p B(a’, ¢') step function, and

dad 11 sh _ —1fg
G*(a, ¢) dadof (1) 43" =Re(g;) — tg~'{sinh[Im(g},)]} (19)
where Fy) =2j/ye” / e—it? dt; —37 < arg(y) < 2
R(¢/, ) = L cos o 4 p cos(a — &) (12) NG
(20)
and
B(o', ¢') = 1 (13) Equation (20) is the transition function of UTD [1], and

T 1 — e—ikd(cos a'tcos @) T(a, bw) is the transition function introduced in [6] and [7];
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for the sake of convenience its definition is given in Appendix P
B. The arguments of the transition functions are

8pt =+/2kpy sin (W;J) (22)

L /
a=/2k pi— 7 cos g; b, = V2kL cos Q%p (22)

w=+/p/(p+L). (23) pec half-plane

The integer P is determined by the number of poles that P

are extracted in the asymptotic procedure, and its value in ) o ) o
practical applications is suggested in Appendix A. It is Wortﬂg‘io?{s High-frequency ray contributions for observation point in different
noting that each EFW is attenuated in thedirection so '

that only few modes significantly contribute to the field for

y > 0. However, when approaching graziig = 0), all pointing—Section IV-A). Some considerations are also carried
the FW’'s are Captured in the Steepest descent path (S[@ps on the transition from PFW to EFW and its relationship
deformation; thus, an infinite number of nonattenuated FWvgth scan blindness phenomenon (Section IV-B).

should be considered in (16). Nevertheless, even in this case

it is seen that few modes need to be retained in (16), unle§ssp's and Spatial Transition Regions

the observation point is very close to a line source.

: . ' . For the sake of simplicity, let us consider only one PFW.
Both the singly and the doubly diffracted fields obtame% SB occurs a® = ¢!, and corresponds to the case when

from the above formulation are found accurate also und : _ : .
critical circumstances, as will be discussed in the next sectiof® stat|0nar_y phase point merges with th_e end-p0|_nt of the
array [see Fig. 3]. Close to this SB, the diffracted figld
exhibits a parabolic-shaped transition region [see Fig. 4(a)]
in which its ray behavior changes from cylindrical to plane
A ray picture of the contributions of FW’'s and singlywave to compensate for the discontinuity of the PFW. Next,
and doubly diffracted fields is shown in Fig. 3 for differentet us consider the case when the phase velocity of the feeding
locations of the observation point P. In particular, the PFWvave becomes slower. Actually, this occurs when scanning the
ray arises from a point, of the array and propagates alongeam of the array. As a consequence, the pointing apgle
the directiong;,. It corresponds to the stationary phase poirdf the PFW, as well as its SB, moves toward grazing aspects
contribution of the FW-type aperture radiation integral. Thand precisely reaches = = when the PFW phase velocity
above radiation integral can rigorously be obtained by applyirgjuals the speed of light. At this point, a further change of
to (1) the Poisson summation formula as shown in [2] artle scan conditions causes a transition from PFW to EFW;
[3]. In this type of description, the end-point of the samthis corresponds to a FW pole that moves around the knee at
radiation integral provides the singly diffracted rayg, which o' = 0 of the contour depicted in Fig. 2(b) and turns from real
arise from the line source at the boundary of the array. Theseimaginary. Furthermore, the transition region of the singly
rays provide the continuity for both PFW’s and EFW’s atliffracted field degenerates from a parabola into an ellipse [see
the shadow boundaries (SB’s), which occur ¢at = ¢>;’7 Fig. 4(b)], which is the typical shape of the transition region of
(19). The SB's occur at, = ¢, for PFW [see Fig. 3]. the diffracted field excited by an evanescent wave [11]. This
Doubly diffracted rays arise from the edge of the half-planeondition is referred to as the cutoff transition of the PFW and
and provide a uniform description of the field acr@gs= =, will be discussed in the next subsection.
where the single diffracted field exhibits a discontinuity due As the phase velocity of the EFW further decreases, its SB
to its GO shadowing. In the following, the behavior of thenoves from grazing aspects toward a direction perpendicular
SB’s and their transition regions is discussed as the phaeehe plane of the array, according to (19). In this direction,
velocity of the feeding wave changes (i.e., changing the bedhe traveling wave phase of the EFW matches that of the

IV. BEHAVIOR OF THE SOLUTION

Vi emikro = 1 F(62_)—1 F(82,)—1
d ~ T— Q) —FV—— T — @, n— B B P/ 6[) p/
H~ U ¢ )]C\/W B( o0 p:Z_:P 2jkd sin (lj);, sin <¢—p _ ¢0) ' sin <¢P . ¢0) v
2 2
e ikt 1) , ) P T(a, by, w) — F(a?)
HI ~ ———— | B0, ¢)F(a") + 3 (1—¢) (18)

/
4mC/pL cos B} p==P 2jkd sin ¢}, cos (%)
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Fig. 4. Behavior of the FW shadow boundary and of the spatial transition regions of the diffracted rays during the evolution from PFW to EFW due to
a beam scanning. (a) PFW close to cutoff, (b) EFW close to cutoff, and (c) EFW far from cutoff.

singly diffracted ray; i.e., the speed of light. As the speeddcludes one element of the array, and the field contributions
of the feeding wave further decreases, the eccentricity of tirem the other elements arise from multiple reflections on its
elliptical transition region decreases too. walls.

The SB of the singly diffracted ray (SB always occurs At the cutoff condition, the phase velocity of the FW
at grazing, and the relevant transition region of the doubigatches the speed of light; consequently, the fields radiated
diffracted field always exhibits a parabolic shape. During tH®y all the sources coherently superimpose at grazing aspect.
cutoff transition shown in Fig. 4(a) and (b), the transitiomn this case, the total radiated field tends to coherently refeed
regions of the singly and doubly diffracted fields overlap. Ithe elements, thus establishing a sort of resonance of the
these conditions, the transition functitfhja, b,, w) provides entire array. For an infinite number of sources that are fed by
a uniform description of the field by changing its paramet@nforced currents, the field at the cutoff condition diverges, as
b, from real to complex. When the FW is deeply evanescemthappens in a cavity which is fed at a resonant frequency by
so that its elliptical transition region has a small eccentricity time-harmonic ideal generator. In practice, at that pointing-
[see Fig. 4(c)], the edge of the ground plane is practicalgngle where a Floquet mode meets the cutoff condition,
illuminated by a ray-optical field. From a mathematical poirthe input impedance becomes strongly reactive so that an
of view, this means thgb, | becomes so large thﬁl(a,, b,, w) abrupt mismatch of the active input impedance occurs. This
tends toF'(a”) [see (40) in Appendix B]; consequently, thephenomenon is typically known as scan-blindness. When the
first term in (18), which does not contain any transitioarray is semi-infinite, again the field close to the cutoff
function, is asymptotically dominant. This same circumstanc®ndition of the FW tends to diverge. Also, its relevant singly
also occurs when the FW is propagating and SB is vedjffracted field becomes infinite at grazing aspect. For a finite
far from the grazing aspect. Actually, the second term Bize array at cutoff (scan-blindness), two singly diffracted
(18) is important only during the cutoff transition of a FWfields with infinite amplitude at grazing arise from the two
This transition and its relationship with the scan-blindnegnd points; however, their summation provides a finite, well-
phenomenon is examined in the next subsection. behaved field everywhere, as will be shown by the numerical

examples in the next section.

B. Cutoff Transition and Scan Blindness Phenomenon

As mentioned above, the cutoff condition of a FW cor-
responds to its transition from propagating to evanescent
wave and may occur while changing’ as well as the Numerical calculations have been carried out to test the
operating frequency. This terminology resembles the familiaccuracy of the asymptotic solution, as well as to highlight
cutoff condition occurring in modal waveguide propagatiorihe effects of the cutoff transitions. A reference solution is
Indeed, an infinite array may be modeled by a waveguidenstructed by summing GO and UTD contributions from the
perpendicular to the plane of the array. This waveguidmurces.

V. NUMERICAL EXAMPLES
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0 60 120 180 240 300 360 center of the arrafd = 0.5M, L = 0.8)): (a) total field for¢’ = 72°

(continuous line), ang’ = 58° (dashed line) and (bFEW + HZ (dashed

obs. angle ¢,
' line) HFW 4+ H4 4+ H4 (solid line) for ¢’ = 64.6°.

Fig. 6. Amplitude of H, at po = 3.7 for an array of 100 line sources
(d = 0.5\, ¢/ = 90°), for various values ofL; HTW + HZ 4 HI
(continuous line); reference solution (dashed line). observed ap; = 3.7 from the edge of the array. Calculations

are presented for different spacingdetween the edge of the

A near field scan at = 0.5 is shown in Fig. 5 for an array amay and that of the ground, such)a$).5A,0.25A,0.01A. An
of 100 elements with! = 0.7), over a semi-infinite ground excellent agreement is found between ours (continuous line)
plane withZ = 0.2). The geometry is shown in the inset. Thénd the reference solution (dashed line), evenifer 0.012,
FW-approach also includes the single diffraction contributidfius emphasizing the robustness of our asymptotic evaluation.
arising from the far-out end-point of the array. Dashed and Fig- 7(a) shows thef. field from an array of 10 sources
continuous lines are used to pl&f™™ + H? and H'W + (d = 0.7x, observation scan at 1@80from the center of
H?+H%, respectively. Reference solutions are also preseni@iay) over a semi-infinite ground plane with= 0.4. Two
in this figure; these latter are obtained by superimposislfferent phasings are considered, namely eitfer= 58° or
either the GO fields from each source (squares) or the4GO¢" = 72°, for which the same FW is either propagating or
UTD diffracted fields from each source (triangles). An anglévanescent, respectively; however, in both cases it is close
¢’ = 64.6° has been chosen for the traveling wave excitatid® the cutoff condition. It is seen that even a small change
so that thep = —1 FW is precisely at its cutoff condition. As in the phase angle may cause significant differences in the
mentioned in the previous section, this condition is the mo&diation pattern close to grazing aspects, as expected. Results
critical to be described in terms of FW’s since it involves #st at the cutoff conditiom’ = 64.6° are shown in Fig. 7(b),
transition function with complex argument. In spite of this ciwhere both#" + H? (dashed line) andit™ + H? + H*
cumstance and of the small distance between the observafigentinuous line) are presented. In comparing Fig. 7(b) with
point and the edge, an excellent agreement is obtained with ffg. 7(a), a more pronounced lobe at grazing is noted; also, a
reference solution, which is of course not affected by the sarhigher level is found for the field in the shadow region (lower
difficulty. It is worth noting that the computer time requirechalf-space) and for the lobes between the two peaks. It is worth
by our solution is independent of the number of sources of theinting out that the various results are obtained by assuming
array; thus, it is found particularly convenient, with respect tihe same amplitude of the magnetic line sources. In a practical
the spatial summation, for large arrays. experiment, a strong impedance mismatch would occur at the

In Fig. 6 the amplitude of{, field is plotted for an array cutoff condition (scan-blindness). In any case, assuming that
of 100 elements withd = 0.5A and ¢’ = 90°. The field is the array is somehow fed, it is seen that a relevant part of the
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Fig. 8. Amplitude of H. versus¢’ and ¢ at a distance of 100 from the center an array of six sources placed on a truncated ground plane
(d = 0.7\, L = 0.4)).

power is subtracted from the main lobe and radiated in tla@ integral representation of the electromagnetic field in the
grazing lobe. In comparing the total field (continuous linghree-dimensional case; regardless, this latter situation requires
with the field without doubly diffracted contribution, it isa more involved asymptotic evaluation, which is presently
seen that the doubly diffracted contribution, while eliminatingnder investigation [12]. Finally, it should be noted that the
the discontinuity, provides a redistribution of energy that iactive Green’s function of an array of sources is the basic
noticeable not only in the lower half-space, but also in a widdock to construct the numerical Method of Moment (MoM)
angular range of the upper half-space. solution of large array antennas that may overcome problems
Fig. 8 shows the field, radiated by an array of six sourcesf large matrix inversion associated to an element-by-element
(d =0.7A, p = 100X from the center of array) over a semi-approach. In this regard, it should be mentioned that the field
infinite ground plane §f = 0.4X) as a function of bothy representation in terms of Floquet-wave diffracted rays can
and¢’. Each plane-cut perpendicular to theaxis provides a be usefully employed to expand the unknown currents of the
pattern similar to those in Fig. 7; the maximum value of eadhtegral equation pertinent to the array problem. This leads to
cut corresponds to the radiation peak of a Floquet mode tlila¢ hybrid asymptotic-MoM method for large arrays described
is shifted depending ort’. Plane-cuts perpendicular to the in [13].
axis show the behavior of the field at each observation aspect
when changing the array phasing. As expected, at aspects APPENDIX A
below the array plane, these plane-cuts exhibit a maximum

for ¢/ = 64.6°, where the cutoff condition of the = —1 In order to asymptotically evaluate the integral representa-

tion (10) of H¥'W+? the path of integration is deformed into

FW occurs. . )
the SDP through the saddle poimt = = — ¢o, as shown in
Fig. 2(b). The residues of the poles that are captured in this
VI. CONCLUDING REMARKS deformation represent PFW’s and EFW’s. This yields
A uniform high-frequency solution is presented for a semi- HIWHd — g pd (24)

infinite beam-scanning array of magnetic line sources located
on a perfectly conducting half-plane. The field is representedihere H'W is the same as that defined in (15) and

terms of FW’s and their relevant singly and doubly diffracted —k ' ,
fields. This representation is uniformly valid even when the H? = 5 el bpo costa’+ba) p(a! | ¢') da.
cutoff condition from propagating to evanescent FW’s oc- ¢ Jsnpin-po)

curs so that it provides a neat physical description of trha . : (25)
scan-blindness phenomenon. In order to describe this cut ﬁXt’ the integral on the SDP is evaluated by the Van der Waer-
P ) den method, by adding and subtracting an appropriate spectral

transition, an appropriate transition function is introduced : . : .
o7 pprop y %ncnon W(«', ¢'). A convenient expression 6V («', ¢') is
extending to complex arguments the same transition function

which was previously obtained in problems involving dou- 1 P

ble diffraction at a couple of perfectly conducting wedges. W(«', ¢') = Tod s Z (1+6)G"(, ¢,)
Although the model presented here is two-dimensional, the J sin 9 p=—P

physical picture provided by this solution can be applied to + (1 — )G (o, o) (26)

gualitatively explain the radiation by more complex antenna
arrays in a finite ground plane (e.g., slotted waveguide arrays)whiche, = sgn(cos ¢/, ), whereG" («, ¢) is the spectrum of
Furthermore, our formulation can be directly applied to finthe half-plane Green'’s function with hard boundary conditions,
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which is defined in (6), and

2 sin (%) sin <g>

cos a + cos @

Gs(a: qj)) =

(27)

is the spectrum for the same half-plane with soft boundary
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In (31) the slowly varying part of the integrand which depends
on«’ has been evaluated at = 0, since no pole occurs close
to zero. According to (27), an explicit expression for (32) is

1 P
S (I46)D +(1-¢)I)

Jk2d sin ¢y, ey

L= (33)

conditions. This function is constructed in such a way as IR which

have the same residuesBf«/, ¢’) in the regionlm(¢’ .
Imo’ < Im(¢p), and—(7/2) < Reo’ < (3/2)7, WhICh is

shadowed in Fig. 2(b) for the case = 3. Increasing the
numberP of the poles that are extracted broadens the region
in which the functionB — W is free of pole and improves the

accuracy of the asymptotic evaluation.
The numberP is chosen according to

A n 2
RN (xR

This choice ensures that the jump discontinuity of the first
EFW which is nonuniformly compensated by the diffracted!(a, b, w) =
field is proportional to=xp(—7) when crossing its SB. In the

numerical calculation, we have chosen= 10. It is worth

noting that one needs to extract not only those poles associated

to physical PFW’'s and EFW'’s, but also those relevant
improper waves.
Adding and subtracting the functiddl in the integral yields

80)G" (o, @)e IR doy' da

e e

It is seen that/; = 0, while ij' has the same form as
that of the integral treated in [6]. Thus, the same asymptotic
evaluation as that in [6] is applied to yield

(34)

. o N e—Ik(L+p) | ;
" ~2 (0 (0 — T 35
P ﬂ- ()¢) ()QS) jk\/P_L (Cl, p)w) ( )
where the transition function
2b2
e L)
e (€2 +2wen+n?)
. " P dé dn (36)
2 _ 2 _
to (6 1—w2)<77 1—w2)

is the same as that introduced in [6] and [7]. A convenient
expression for (36) which is suitable for numerical calculations

a_ =k ¢ikpo cos(a’+ o) s
T 27C JspP(r—spa) T(a, b, w)
x [B(d/, ¢") = W(d', ¢")] da’ _ 2mjab b+ wa b a -+ wb
i G (o Sy dol. (29) I (o e 90 )
27C JspP(r—é0) —|—Q<a b — wa )—1—9(() a — wb >]
In the first integrand of (29), no pole occurs close to the saddle C VT w? P VT —w?

point, thus its slowly varying part is replaced by its value at (37)
the saddle point. The second integral in (29) is evaluated \m'lereg is the generalized Fresnel integral [14]

an exact closed form in terms of Fresnel integral. This leads o

to (17). Y e [T T

APPENDIX B which may efficiently be calculated as suggested in [15].
Integral representation (11) df?? has a stationary phase The integrand in (31) exhibits poles in only one variable
point at (¢/, @) = (0, 0) and exhibits separated poles iraind may be treated as a special case of (34). A convenient
the two variables. Its asymptotic evaluation is performed Bsymptotic expression for (31) can be obtained by (37) in the
adding and subtracting to the integrand the same funéfion limit for b — oo; i.e.,

This yields o= ib(L4p) / /
Iy ~27 ——— [ B(0 — W0
Hdd —k (I _|_I) (30) 1 Tjk\/p_L~[ (,¢) (,¢)]
? gjm2¢ T x G"(0, ¢)1(a, co, w) (39)
where in which
=[B(0, ¢') —W(0, ¢') / / GM (o T(a, co, w) = lim T(a, bw)
C ot
i J(E2+2wén+n?)
Le=IRR(, ) gt doy (31) / / —6 d¢ dn
and RV iVl —w?
; ! C1l-w?
I, = / W(O/, qf)/)Gh(Oé, q/))e—JkR,(a , ) do’ dov. :F(a ) (40)
Cao JC 1

(32) where F' is the UTD transition function in (20).
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