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A UTD Solution for the Scattering by a Wedge with
Anisotropic Impedance Faces: Skew Incidence Case

Giuseppe Pelostenior Member, IEEEGiuliano ManaraSenior Member, IEEEand Paolo Nepaylember, IEEE

Abstract—Asymptotic expressions for the fields scattered by evaluated in the framework of the UTD, taking also into
an anisotropic impedance Wedge at oblique incidence are derived account the presence of Comp|ex po|es (Surface wave po|es)_
in the context of the uniform geometrical theory of diffraction The paper has been organized as follows. The problem is
(UTD). They are obtained by resorting to a perturbative ap- : . . . .
proach, considering the normal incidence case as the imperturbed formulated _'n Section I, an_d S_u'table approximate Integral
configuration. We observe that the limits of applicability of representations for the longitudinal components of the fields
this approximate analytical solution extend far beyond those of are provided in Section Ill. Then, analytical expressions for
standard perturbative approaches, allowing us to account for the residue contributions related to the geometrical optics
deviations from the normal incidence case of Z0to 30°. (GO) field and the surface waves are given in Section IV,

Index Terms—Electromagnetic scattering, geometrical theory where the asymptotic evaluation of the diffraction integral is

of diffraction, tropic surfaces. also performed in the context of UTD to provide a matrix
diffraction coefficient. Finally, samples of numerical results
| INTRODUCTION are presented in Section V and compared with those obtained

. . by resorting to numerical [2] and rigorous analytical solutions
N THE DESIGN of high-frequency antennas and in radgg) [10], [15] available in the literature, in order to test the

cross section (RCS) predictions, an important canonicgle racy of this perturbative technique and define its limits of
problem is constituted by plane wave scattering from Wedg&f)plicability.

type configurations with arbitrary anisotropic impedance Finally, it is worth observing that this solution can be

boundary conditions (IBC's) on their faces. At obliquéysjieq to the case of the isotropic impedance wedge as
incidence, with the exception of some specific configurationge|| extending the class of available analytical solutions for
this electromagnetic scattering problem has not yet begfee-dimensional (3-D) electromagnetic scattering (see, for
solved a_malytlcally. So_lutlons presented in the literature af&ample, [15]) to more general configurations with arbitrary
based either on numerical approaches [1]-[3] or on analytiGal,eqance faces and arbitrary exterior wedge angles, although

techniques, but in this latter case, they are limited to specifi¢ ihe |imits of accuracy of this perturbative approach.
configurations [4]-[11].

The main purpose of this paper is to provide suitable I
diffraction coefficients in the format of the uniform geomet- ) _ ) )
rical theory of diffraction (UTD) [12] for describing plane _The 3-D geometry for the scattering problem is depicted in
wave scattering from an anisotropic impedance wedge wfttg- 1- The wedge has its edge along thexis of a cylindrical
an arbitrary exterior angle at oblique incidence when tHgférence frame—a harmonic plane wave with an arbitrary
impedance tensor on the two faces of the wedge has pRlarization impinges on the edge from a direction _deFermlned
principal axes parallel and perpendicular to the edge of tH¥ the two angless’ and¢’. (' is a measure of the incidence
wedge. We note that more general impedance tensors h&{fgction skewness with respect to the edge of the wedge:
been taken into account only in [4], [7], and [8] for the normaf’ = 7/2 corresponds to normal incidence. Axp(jwt) time
incidence case and in [1] for oblique incidence. dependence is assumed and suppressed. o

First, Sommerfeld-type approximate integral representations'n particular, the longitudinal components of the incident
for the longitudinal components of the total field are detefl€!d can be expressed as
mined. This is accomplished by resorting to a perturbative [EL, CoH!] = [e., h,]edk7 cos B’ giko sin 5’ cos(6—¢") (1)
expansion with respect to the cosine of the incidence skewness
angle, taking into account all terms up to the second order. TWEere ¢, and k are the free-space intrinsic impedance and
procedure followed, which is an extension of that suggestégvenumber, respectively. The observation point i$’and
in [4], [7], [8], [13], is based on the Maliuzhinets methodhe exterior wedge angle isx. Two different anisotropic
[14]. Then, these integral representations are asymptoticd§C's hold on the two faces and are represented by the tensors

Zyn =(Zo,n)s22+ (Zo n),pp. Consequently, the IBC's are
expressed as [5]

. FORMULATION OF THE PROBLEM
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Fig. 1. Geometry for the diffraction at a wedge with anisotropic impedance faces.

The electric properties of the wedge are supposed to A Im{a)
be independent of:, consequently, all field components
contain a commorz-dependence factoexp(—jkz cos )
that will be suppressed in the following. Moreover, all field
components transverse to theaxis can be represented in
terms of[F,, (o H.]. The total field longitudinal components
[E., (o H.] are solutions of the Helmholtz equatidi’? +
k)[E., ¢oH.] = 0, with k;, = k sin 8, and must satisfy the - —m/2 +ni/2 +T
radiation and edge conditions. By expressing the IBC’s in (2)
in terms of[E., (o H.], we obtain

SDP o

Re{o

1
10E, . . .
+ jkico,n sin ' sin 05, E. !

108, SDP _,_
p 09
— cos 6/M:0J ¢>:0J n (3a) f\
dp

0 H, ) . .
(CO ) +]kt€0,n s 6/ sin 937 n(COHz) Fig. 2.

1
p 09
£,
teos B O 20, =0, (30) . o |
dp where~ is the Sommerfeld integration path (Fig. 2) and the
. spectral functionsf, s] verify the inequalitied[f(«), s(«)] —
Whergeo = —1ande¢, = +1. Ir_1 (3),sin 05 ,, = Co/(Zo,n)- [f(£joc), s(£jo0)]| < exp[—c|S(a)]], ¢ > 0, in the limit for
andsin 05 ,, = (Zo,n),/¢o define the Brewster angle ,, J(a) — oo inside the stripR(«)| < nw/2, in agreement
and 6, of the ¢ = 0 and ¢ = nn face of the wedge with the edge condition [16]. In the same strif, s] must

for perpendicular and parallel polarizations [14], respectivelige regular, except for first-order pole singularities cat=
The longitudinal components of the total electric and mag¥ — nw /2, which account for the incident field.

netic fields can be expressed [14] by the following integral
representations:

Integration paths in the complex plane.

I1l. DERIVATION OF THE SPECTRAL FUNCTIONS

1 .
E.(p, ¢) = 7 / fla+ ¢ —nm/2)e’" > “da (48)  After substituting the integral representations in (4) into the
1 T IBC'’s in (3), two integral equations are obtained for each face.
CGH.(p, ¢) = =— / s(a+ ¢ — mr/Q)eiktﬂ cos @ do (4b) Taking into account that the IBC's considered here are of the
215 Jy first order and applying the Maliuzhinets theorem [16], the
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following set of functional equations is obtained: are the generalized reflection coefficients for the= 0 and

(sin & + €, sin & sin 65 ) f( + €0, nn7/2) ¢ = n7 face, respectively. Moreover, in (9a) and (9b)

+ (sin  — €g ,, sin F' sin 05 o) f(—a 4 €o nnm/2) Ly n(e, 0o nit) =€0n ﬁ

—_ / 0,n

=cos « cos F{s(a + €y, nn7/2)} ~[t(%+n)—t(a5n)]. (11)
— s(—a + €, nn7/2)] (5a) ’ ’

: c Al ph Similar inhomogeneous functional equations hold[ffr; s
(sin & + €0, sin @ sin 07 ,)s(a + €0 nn7/2)

+ (sin o — €, sin 3 sin 0] | )s(—a + €n, ,n7/2) fz(a;n) + Rg, (@) f2(eg )

_ / in f¢

= —cos & cos § {f(a + 6077,,77,71'/2) = L(),n(aa 96 no 91 ) + € n 72 on L(),n(aa 96 no fO)
— f(—a+ € nnm/2)}. (5b) ’ 2 cos o ;

(12a)
In the framework of a perturbative technique and for smay2(a+ )+ RE(@)sa(ag )
deviations from the normal incidence conditigjtos 7| < o on 0
_1), we seek an expression _for Fhe unknown spectral functions _ —Lon(e, 68 . f1) +e€on Lo o(a, 68 ¢ s0)
in the following form considering only terms up to second ’ 2 cos o ’
order (see Appendix A): (12b)

fla) =e, fo(a) + h, fi(a) cos § where the second member is again known, once the functional
+ e, fo(a) cos? @ (6a) equations in (9) have been solved.
, The solution of inhomogeneous functional equations of the
s(a) = hsso(@) + €251 (@) cos Maliuzhinets type as those in (9) and (12) has been given by
+ h.sy(a) cos® . (6b)  Tuzhilin in [18] (see also [7] and [8]) in a form involving
hSéoecial integral functions defined along an integration path
coinciding with the imaginary axis of the complex plane.
[f1, s1] and[fs, s2] are expressed as

sin 0

Substituting (6) into (5) and equating the coefficients of t
various powers ofos ' individually, a system of functional
equations is obtained foff;, s;] andi = 0,1, 2. In par-
ticular, f, and s, are the spectral functions corresponding [fi(a), s1(a)] = [¥°(a)ri (o), ¥"(a)o (a)]  (13a)
to the diffraction of a unit amplitude plane wave impinging — [y uh 13b
on the edge at normal incidence with TM) and TE (h) (@), safe)] = [¥(@)ms(a), ¥i(a)oz(a)] - (13b)
polarizations, respectively [14] where¥“(«) and¥” () have been defined above. Explicit in-
- e( tegral expressions for the meromorphic functions ando; -
fo@), sa(e)) = [\Ijh(a)/qjh((ﬁs/ n/2), are given in Appendix B. It is worth noting thét; », oy 5]
UHa)/¥ (¢ —n7/2)lo(e). ()  are regular in the strigRe(«a)] < nw/2, since the pole
e () = U(a, 65, 67) and ¥ (a) = ¥(a, 6], 6") contain singularities providing the contribution of the incident field
the Maliuzhinets special function and are defined in [14] (sé&ve been already accounted for[fa, so].
also [17, Appendix B.4])¥¢(«) and¥" (o) are meromorphic
functions which are regular in the str|jRe(«)| < nx/2 and IV. UTD SoLUTION

exhibit first-order pole singularities at = ¢, , (o« + n7/2 + Introducing (6) into (4), the longitudinal components of the

05,,) and o = ¢ n(a + nr/2 + 05 ), respectively. The total field[E., ¢, H.] are expressed in the form of a summation
corresponding residues provide the contributions to the figd Sommerfeld integrals as

due to the surface waves supported by the wedge faces, when

they exist. Moreover 2

[Ez; COHz] =~ Z [Ez; COHz]m

1 1 / _
U(a) . ( /SII;(jj /n)(¢)// ) (8) m=0
n simmlia/n COS n = [esz; hzso]ejktp cos « da
shows first-order pole singularities accounting for the GO field. 275 Jy
[f:, s1] satisfy inhomogeneous functional equations of the , 1 / b jhip cos o g
Maliuzhinets type +cos 3 21§/, [h: fry €z s1]e “
e — e 1 .
fi (a;n) + Ro,n(a)ﬁ (Ofoyn) =Ly, n(a, 05, n; 50) (%99) +cos? g — / le. fo, h252]e]k”’ o8 ¥ da.
+ h -y _ ho. 275 Jy
81 (QO,n) + RO,TL(O[)“;1 (QO,n) - _L(),”(O[J HO,nJ fO) (gb)

(14)

herea | =€n 2), a5, = € n(— 2) and _ : :
Whereas, » =<, (a+nr/2) Yo,n = 0, (—atn/2)an By applying the residue theorem, all the above integral repre-

_ sin v —sin 65 , sentations defined along the Sommerfeld integration contour

RG (@) = sin o + sin 65 (102) v are reduced to the contribution of: 1) two integrals, defined
sin o — sin 6’7'7 along the steepest descent paths (SRRhrough the saddle
R’g’n(a) = 0,n (10b) points at+7 (see Fig. 2) and 2) the residues of the poles of

- . . h’
sin a + sin 0y, [fm, sm], m =0, 1, 2, internal to the closed contour formed
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by v and the SDR... The integrals along the SQR provide geometrical poles are
the contribution to the total field due to the diffraction by the
edge. A uniform high-frequency approximation for the zeroth-

order field contribution[Z.,, {; H.], has been performed in Res{fo(a+¢ —nm/2)e! " % a = af’,}
[19] in the context of the UTD [12]. As apparent from the 9 cos &
first integral term in (14), the large parametep in the = _sinf +si;1n6h +sin 65 ,
asymptotic evaluation in [19] must be replaced hy. The 0’"' 070”
asymptotic evaluation of the higher order contributions to sin & e Ftr e a5
th_e field, ngmely, _th_e se_cond z?md third term in (14), will be ) (sin & , +sin 6 )? (19)
discussed in detail in this section. Res{ss(c+ ¢ — n/2)ed o cos 0o — Ofgf’n}
A. Residue Contributions — (_ . 2 cos 50@ +sin 6" )
The  spectral  functions [fi, (@), sm ()] = Sin Co, o +sin 65,
[e(a)T (), U (a)o,, ()] (m = 1,2) exhibit tw sin 50777’@7’“”’ cos af?,
different kinds of poles, which will be classified in the i &y, Tl ) (20)

following as: 1) geometrical poles (their residues provide

the correction to the reflected field contribution) and 2)

electric poles (their residues provide the correction tois worth observing that the locations of these latter geometri-
the surface wave contribution). In particular, the electrical poles are the same as those of the first-order corrections in
poles in 2) give a contribution only when the two face§l7) and (18); again, their residue contributions must be taken
of the wedge can support surface wave propagation. Timeo account when) < (¢p ,, + 1)n7/2 — € ¢ < T — & .
conditions for which the residues of the poles in 2) must/e note that the residue expressions in (19) and (20) coincide
be included in the asymptotic solution coincide with thevith one half of the second-order derivative with respect to
corresponding conditions for the poles related to the surfaess 3 of the diagonal terms in the reflection matrix of the

wave contributions inE,, (s H,]o. corresponding anisotropic wedge face, evaluatedl at /2.
Explicit expressions for the residues are given next. 2) Electric Poles: Electric poles are identified with the
1) Geometrical Poles:The locations of the geometricalpoles of the Maliuzhinets special functioh®”(«) and, in

poles on the complex plane are part, with the poles of the functida,, (@), 7 (a)], m =1, 2.

Their locations on the complex plane are
o= = ag?n =—o0+nr/24 € n(n7/24+ & ) (15)

a=ay=a5, =—¢ +nr/24 €0 n(m+ 5. n +nw/2)

where
(21)
Son=n7/2 4 ¢ n(—¢" +nm/2). (16) o =g :ozg’my = —¢+n7r/2—|—€07n(7r—|—93’7n +nw/2).
(22)
Explicit expressions for the residue contributions are
Req fi(a 4 ¢ —nw/2)elFr o5 o o = a2 3 The corresponding expressions for the residue contributions
].’w s 09° are as shown in (23)—(26), given at the bottom of the next
=€pn €08 & {1+ RS (&0 0)} = © .D’"h (17) page. They must be included in the solution whén<
’ sin &y, +sin 0y, (€0,n + Vnm/2 — €5 ¢ < g{S(05 )} — R(05 ,,) and
Ress| (o + ¢ — nw[2)elkr cos o 0=agl,y 0 < (co,n + D)nm/2 — €0, 0 < GHS(O] )} — RO} ). As
ikep cos al’, far as[f2, s2] are concerned, they exhibit second-order pole
= —¢€p,p €08 &g n i1+ RE (&0 n)} = c _ —. singularities atv = a3, as. For the sake of simplicity, their
sin §o, 5 + sin 65 , residues have not been taken into account in the asymptotic

(18) evaluation. However, we note that their contribution is of order
cos? 3 in our perturbative solution and provide corrections to

They must be included in the asymptotic solution only whethe surface wave contributions (when they exist) so that their
0 < (0,n +1)nm/2 — €y n¢ < m— &y ,. It is important to influence is confined to the neighborhoods of the faces of the
note that the residue expressions in (17) and (18) coincide witledge.
the first derivative with respect taos 3’ of the off-diagonal
terms in the reflection matrix of the corresponding face of o
the anisotropic wedge, evaluated@t= /2. This reflection B- Contributions of the SDP Integrals
matrix can be easily derived by referring to an infinite planar In order to obtain suitable high-frequency expressions, the
surface with the same tensor impedance of the pertinent faotegrals along the SDP’s are asymptotically evaluated by
of the wedge. As far as the second-order correction to thetaining all terms of ordetk;p)~'/* as suggested in [20],
field is concerned, the residue contributions associated wih that the crossing of a pole through the SDP’s is properly
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accounted for, also when this crossing takes place away from ) _ _6_”/46_”””
saddle points, as for instance in the case of the surface wave "*° V2rkip
poles. This yields a uniform high-frequency solution for the
g;f;:ﬁit?gr&eld contribution, which is given next in a compact . {fz(7T +¢—nr/2) = fo( =7+ ¢ —n7/2)
Eg — Dee Deh €z (27) —RGS{fQ(OZ+¢>—TL7T/2), O[IOZ]}
CoH? Dy Dpp | h:
1-F [\/ktp(l + cos om)]
where ' 2 cos(an /2) (31)
D.. =D 4 cos® g'D? (28a) (o) emimlAemikw
D= -
Dyy, = D;L(;L) + cos? B'Dﬁ) (28h) hh V2rk:p
D.p = cos 3 D'}/ (28c)
Dy, = cos & D;LL)- (28d) c S so(mH ¢ —nw/2) — so(—7 + ¢ — nw/2)
In particular —Res{so(a+ ¢ —n7/2), a = a1}
a)  emimlAemike 1-F [\//W(l + cos al)] @2)
Dy = : .
eh N 2 cos(a /2)
L fim+é—nn/2)— fi(—7 + ¢ —n1/2) In the previous equation,(z) is the UTD transition function
generalized to complex arguments as in [20]. Suitable uniform
3 asymptotic expressions fapl? and Déoh) are given in [19],
_ Z Res{fi(a 4 ¢ — n7/2), o = o } with kp substituted byk:p.
— Finally, we observe that the copolar components in (27)
depend only on even powers afs ', while the cross-polar
. 1- ":[\/ ke p(1 + cos ai)] (29) components depend on odd powers. This remains true also
2 cos(wy; /2) including other higher order terms, as directly follows from
injd ik the considerations done in Appendix A. This also implies that
DS) _ e em including terms up to the second orderdss 3 in (6) leads

. {51 (m+ ¢ —nn/2)—si(—7+ ¢ — nw/2)

2k p to errors of ordercos* 3 and cos® 3 for the copolar and
cross-polar components of the fields, respectively.

V. NUMERICAL RESULTS

_ i: Res{s: (o + 6 — n7/2), @ = a;} Samples of numerical results are presented in this section
, ! e in order to validate the technique proposed and to discuss its
= limits of applicability. The results have been compared with
1-F [\/ ki p(1 4 cos O‘i)] those obtained by reference solutions presented in the literature

' 2 cos(a;/2) (30)  poth for isotropic and anisotropic impedance wedges at skew

incidence. In all the examples presented, we refer to the case

Req fi(a+ ¢ — nﬂ'/?)eﬂ“”’ Y a=ag )

=ReqU°(a+¢ —nmw/2), o = ozgyn}ﬁ (agyn + ¢ — nﬂ'/?)ejktp co8 g, n (23)
Res(si (0 + ¢ — n7/2)el 5 ™7 o=l )
= Rei\IJh’(a +¢—nw/2), a = ozg’mr}m (ozg’7 T o— nﬂ'/?)eﬂ“”’ cos g, (24)

Red fi(a+ ¢ — nﬂ'/?)eﬂ“”’ S o= ozg’7 )
n o COS Hg'm ReqU" (o + ¢ — nw/2), a = ag'yn}a(ozg'yn +¢ —nw/2)

— jkip cos ag . 25
0 (sin 6 ,, —sin 05 )W (¢ —n7/2) (25)
Regs (¢ + ¢ — nﬂ'/?)eﬂ“”’ cos @y = ag,n}
1 € COSGP’“RE \Ijea—'— _nﬂ-?;a:aenaaen‘i‘ —nm/2
— _Eomeyktn cos ag ., 0,n q ( ¢ / ) 0, } ( 0, ¢ / ) (26)

(sin 05, —sin 9{} ¥ (@ —nw/2)



584 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 4, APRIL 1998

2.5 T T
E pe
isotropic
~ 2 + impedance
:I:O " face .
jy 4]
) 58]
8 15 o
) o]
E =
3 =
Ay o
P 1 P
< < 04
A B i
& .
M ' = A anisotropic
impedance
faces
0 | | | I | | i | 4] : | | I i | ] |
0 30 60 90 120 150 180 210 240 270 0 30 60 90 120 150 180 210 240 270
¢ (degrees) ¢ (degrees)
(a) (@)
0.2
Ei, B
‘ E[li'
" ] . 015
-~ 3 s
A \ 1
) a
= =
— i i 4 = anisotropic
D—] \ }SOU%PIC 3 0.1 A impedance 7
= L e impedance [am) faces
< p.e.c. face — =
A <
- A
[ = 0.05
= &
o
0 ! | I ~ e 0

0 30 60 90 120 150 180 210 240 270 0 30 60 90 120 150

¢ (degrees) ¢ (degrees)

® ®)

Fig. Slt Afnt]ﬁ"t:“:el (f).f ltg(? (tah) copolar andf (b)_crr]?ss-plolgr_ Io?gngd[nal Cém]fi . 4. Amplitude of the (a) copolar and (b) cross-polar longitudinal compo-
por(ljen S ch Ze ota |e_ mZ e pres_en{ceQ 0 ;rlg _—ang e |s_o(;o%c |mpet alifnts of the total field in the presence of a right-angled anisotropic impedance
wedge with( %) /o = ( O)P/_CO =i/ (, n)= = ( ’})P = 0. LEOMEL  \adge With(Zo, ) =/Co = 1, (%o, n)p/Co = 2. Geometrical and electrical
rical and electrical parameters: = 3/2, ¢/ = 15°, 8’ = 50, 70, 90°, arameterss, — 3/2, 6! = d5° b' L 0. 70. 900 Eup — 10. Ei — 1

kip = 10, EY, = 0, E;, = 1. This solution: zeroth- and first-order P2 B T R e = AU B =
contributions for copolar and cross-polar components, respectively (das = 0. This solution: zeroth- and first-order contributions for copolar
lines); asymptotic evaluation of the analytical solution in [15] (solid lines). rannedth%rgs[z—]pz)slglridcﬂwgs(;h?\;I];Ti’u;?]?r?eegI\éﬁllﬁti(gr?sgg(ljidlIlri]r?,g);Bas;%tz())-“(t:hiesquatlon

solution augmented by second-order term (dashed-dottedsline,50°).

of a right-angled wedgen(= 3/2)—this choice is motivated o , o -
by the fact that for this configuration the Maliuzhinets specié(f"l'd_ at normal mmdencé_ = 90°, is also plotted n _F'g' 3(@)
function is known in a simple closed form [14], [17]. to highlight the effects introduced by the variation of the

Comparisons between data relevant to the amplitude Bfidence skewness angie. It is important to note that the
copolar and cross-polar components of the total field, obtaind@t@ in Fig. 3(a), both fop” = 70° and & = 50°, have been
by this approximated method (dashed lines) and calculated @#jculated by including just the zeroth-order term, obtaining a
the uniform asymptotic expressions in [15] (continuous linesy0od agreement with the reference solution up'te= 50°. A
are shown in Fig. 3(a) and (b), respectively, for a right-anglélPOd agreement is also observed for the cross-polar component
isotropic impedance wedge Wity ). /¢o = (%), /¢ = 7/2 i Fig. 3(b) up to" = 70°.
and (Z,)., = (Z,), = 0 (the face¢ = 3w/2 is perfectly A further example is shown in Fig. 4. Here, the right-
conducting). In the example shows, = 45°, k;p = 10, and angled wedge is characterized by two anisotropic impedance
@' is assumed as a parameter, with= 50, 70°. The incident faces, with(Zo ). /¢ = 1, (Zo,n),/¢0 = 2. The incident
plane wave is linearly polarized witlh, = 0, £, = 1 plane wave is TM polarized ¢, = 1, £}, = 0) and
in the standard ray-fixed ray coordinate system [12] (THmpinges from¢’ = 45°, 8/ = 50, 70, 90°—the field is
polarization). A reference curve, obtained by evaluating ttevaluated ak;p = 10. In particular, curves for the amplitude
asymptotic approximation of the Maliuzhinets solution [19]of both the copolar .) and cross-polar(f /) longitudinal
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components of the total field are plotted in Fig. 4(a) and (b), T T T
respectively. They have been calculated by this approximate
solution (dashed lines), including only the zeroth- and the
first-order term, respectively, and compared with the resultg: TSN
obtained by the parabolic equation method (solid lines) [2]s | B=70°
Again, the reference curve corresponding #o = 90° in 8 os bl W ’
Fig. 4(a), has been determined by means of the asymptoﬁ '
evaluation of the Maliuzhinets two-dimensional (2-D) solution%
To demonstrate the convergence of the approximate solutiof,
a further curve which includes the contribution of the second= 0.4 ¢
order correction to the field (dashed—dotted line) has been
plotted in Fig. 4(a) for the casg = 50°—as apparent, the
accuracy of the approximate predictions is augmented by the
introduction of the second-order contribution.

Curves for both the copolarE) and cross-polar((H.)
longitudinal components of the total field in the presence

12 |

anisotropic

impedance

isotropic face

AN impedance
face

| 1 | 1

0 1 L
0 30 60 90 120 150 180 210 240 270

¢ (degrees)

of an impedance right-angled wedge, with the zero-face @)

anisotropic(Zy ). /¢o = 1, (Za), = 0, and then-face isotropic 0.7 [ ‘ [

(Z0): /G0 = (Z,),/¢ = j/2, are plotted in Fig. 5(a) and (b), B=50° 5

respectively. The wedge is illuminated by a TNpolarized 0.6 g S
plane wave £}, = 1, E}, = 0), impinging on the edge _~ g R impodares
from ¢’ = 30° and3 = 50, 70, 90°. The field is evaluated at «¢ 93} 7 facc
k:+p = 10. Curves calculated through this approximate solutiog" oal

(dashed line), evaluated by including just the zeroth-order terg T %i?;%'fﬁce

in Fig. 5(a) and the first-order term in Fig. 5(b), are compareé 0.3 - - . : face
with those obtained by the UTD asymptotic evaluation OE \

the exact solution given in [10] (solid line). A further curven  ¢.2|
(dashed—dotted line), obtained by adding the second-ordgr
contribution to the copolar longitudinal component, is plotte@ 0.11 Ry
in Fig. 5(a) for@ = 50°—as apparent, the accuracy of the T
results is improved. Moreover, Fig. 5(b) shows that the first- 0 ‘ ‘ : ‘ : ‘ ‘
order correction to the field properly fits the rapidly varying 0 30 60 % 1200 150 180 210 240 270
behavior of the total field in the neighborhoods of the isotropic ¢ (degrees)

impedancep = 37/2 face, which is due to the excitation of (b)

surface waves on the_same face. . . Fig. 5. Amplitude of the (a) copolar and (b) cross-polar longitudi-
The case of a right-angled wedge with anisotropi€al components of the total field in the presence of a right-angled

impedance faces, characterized by a vanishing impedalzig@)o"/%pic imf;d)aﬂ/cge Wed9/62 Wci;t(Vo)z{_Co - d1' I(Zt;)p/lﬁo = 0{
. . . . n)z = n = . eometrical and electrical parameters:
in the direction of the edgeZ). =0, (Z0),/C0 = (1+5)/2, , U755 4 = a0 57 = 50, 70, 90°, kep = 10, By =1, Ep", = 0.

(Zn)z = 0, (Zn)n/CO = (1 - j)/2. is analyzed neXt- The This solution: zeroth- and first-order contributions for copolar and cross-polar
incident plane wave is TEpolarized Eé, =0, E;, = 1) components, respectively (dashed lines); UTD solution [10] (solid lines); this

and impinges from a set of directions identified dy= 30° solution augmented by the second-order term (dashed—dottedlire 50°).

and /' = 50, 70, 90°. In particular, plots for the amplitude

of the copolar component{/.) of the total field, evaluated perfectly conducting wedge, which is recovered by the only
at k.p = 10, are shown in Fig. 6, where data obtained byeroth-order term in this approximate representation.

the zeroth-order approximation of this solution (dashed lines) Extended numerical tests have shown that this approximate
are compared with those calculated by a uniform asymptohigh-frequency solution provides accurate results far beyond
approximation of the exact solution in [9] (solid lines). Againthe standard limits of applicability of perturbative methods
to check the convergence of the procedure also a curfees 3 < 0.1). As demonstrated also by the numerical
obtained by improving this approximate solution with thexamples shown here, errors of a few percents are obtained for
second-order contribution (dashed-dotted line) is plotted—#® copolar components up % = 70° when just the zeroth-
apparent, a better agreement is obtained in this latter case alsfer term is taken into account. This limit can be extended to
at # = 50°. Finally, it is worth noting that, in the specific 3 = 50° when also the second term is included in the calcu-
case(Z; ). = 0, the boundary conditions at both faces ofations—this implies neglectin@(cos* #'). As far as cross-
the wedge are decoupled when expressed in terms of fi@dar components are concerned, accounting for the only first-
longitudinal components of the fields [9], so that the crossrder term—this implies neglectin@(cos® 3’ )—guarantees
polar longitudinal component is identically zero. Moreovemrn error less then 10% up & = 70°. This higher percent

for TM, plane wave iIIuminationl@;;, =1, E;, =0)the £, error is due to the fact that the amplitude of the cross-
component of the total field reduces to the solution for theolar component close to normal incidence is approximately
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is obtained

(sin a + €, sin 3 sin 05 )y (o 4 €9, nn7/2)

Z + (sin & — o, sin G sin 05 ,, ) Fp (= 4 €0, nn7/2)
A =cos a{Sp-1(a+ € ,n7/2)
=
E — Smo1(—a+ ¢ ,n1/2)} (A.2a)
S anisotropic (sin o+ €, , sin B sin 07, )Spm (@ + €0, nn7/2)
< impedance ) . ’ . n
A faces h + (sin v — €g p, sin F sin Hoyn)Sm (—a+ € ,n/2)
g =cos a{ly,_1(a+ ¢ ,n7/2)
| — Foi(—a+ e onm/2)} (A.2b)
0 | | | | H \“\\
0 3 60 9 120 150 180 210 240 270 where S_;(a) = F_;(a) = 0. It is apparent that the

functional equations fo;(«) and Sy(«) are decoupled so
that the same functions are proportional to the amplitude of the

Fig. 6. Amplitude of the copolar longitudinal component of the total field in__ .. . P . .
the presence of a right-angled anisotropic impedance wedge it = 0, |nC|dent_ electric and magnetic field longitudinal components,
(Zo)p/Co = (14 3)/2, (Zn)= = 0, (Zn)p/Co = (1 — j)/2. Geometrical respectively

and electrical parameters:= 3/2, ¢’ = 30°, 8’ = 50, 70, 90°, ks p = 10,

¢ (degrees)

E, = 0, EY, = 1. This solution zeroth-order (dashed lines); UTD

solution [9] (solid lines); this solution augmented by the second-order term Iy (Oz) =e, fy (a) (A.3a)
— i ! = 50°).

(dashed—dotted ling3 ) S, (a) = h. s (a). A.3b)

an order of magnitude lower than that of the correspondi

n . I
copolar component. qunsequently, the structure of the recursive system implies that

F., () andS,, («), for m even, are proportional to the incident
electric(e. ) and magneti¢h. ) field longitudinal components,
) ] ) _ ~respectively. On the contrary,,, (o) and S, («), for m odd,
Uniform approximate asymptotic expressions for the fieldge proportional td:, ande. , respectively. As a consequence
scattered from an anisotropic impedance wedge, illuminated i total electric field longitudinal component consists of two
an arbitrarily polarized plane wave impinging on the edge ghnriputions. The first one is proportional to (copolar
oblique incidence, have been provided in the UTD format. T%ntribution) and results to be an even functioncof 5
specific surface impedance tensors defined on the two facegf second is proportional tb, (cross-polar contribution)
the wedge have their principal axes parallel and perpendiculgfy results to be an odd function obs #. By duality,
to the edge. The asymptotic formulas are obtained by resortigighilar considerations are valid for the total magnetic field
to a perturbative approach and are valid for deviations frogngitudinal component.
the normal incidence case which in general are of the order
of 20° to 3¢ (3’ = 70° to 60°). The limits of applicability of
the expressions derived have been determined by performing
extended numerical tests and comparing the results with thosén order to evaluate[f; »(a), s »(«)] suitable expres-
derived from reference solutions available in the literatursions for[r »(«), oy »(«r)] are needed. By substituting (13a)
Finally, it is worth noting that the isotropic impedance wedgand (13b) into (9) and (12), respectively, it is found that
case is contained as a limit in the analysis proposed. [11,2(ev), 01 2(a)] must satisfy the following inhomogeneous
functional equations:

VI. CONCLUSIONS

APPENDIX B

APPENDIX A
The main purpose of this Appendix is to justify the specific [ri(at ), on(ad D] = [n(ag ), o1 (ag )]
form given in (6) for the spectral functions. For obtaining a [KE (o), KD, (a)] (B.1)
solution of the functional equations in (5), we can assume the +’n ’ jrn _ _
following series expansions fgf(«) and s(«): [ra(ag ), 2(ag )] = [r2(g ), o2 )]
[H5 o (a0), Hg ()], (B.2)
fla) = Z Fo () cos™ f' (Ala) |, (B.1)
m=0
s(a) =Y Sp(a) cos™ 3. (A.1b) K (o) = Lo, n(ct, 05,5 50) (B.3a)
m=0 o \Ije(a(_;n)
. . ] . -, _ —L()’n(Oé, ggr,n; fO)
On substituting the above expressions into (5) and equating Ky ()= W (at ) (B.3b)
o ) aO,n

the coefficients of like powers afos ', a recursive system
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