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A UTD Solution for the Scattering by a Wedge with
Anisotropic Impedance Faces: Skew Incidence Case

Giuseppe Pelosi,Senior Member, IEEE, Giuliano Manara,Senior Member, IEEE, and Paolo Nepa,Member, IEEE

Abstract—Asymptotic expressions for the fields scattered by
an anisotropic impedance wedge at oblique incidence are derived
in the context of the uniform geometrical theory of diffraction
(UTD). They are obtained by resorting to a perturbative ap-
proach, considering the normal incidence case as the imperturbed
configuration. We observe that the limits of applicability of
this approximate analytical solution extend far beyond those of
standard perturbative approaches, allowing us to account for
deviations from the normal incidence case of 20� to 30�.

Index Terms—Electromagnetic scattering, geometrical theory
of diffraction, tropic surfaces.

I. INTRODUCTION

I N THE DESIGN of high-frequency antennas and in radar
cross section (RCS) predictions, an important canonical

problem is constituted by plane wave scattering from wedge-
type configurations with arbitrary anisotropic impedance
boundary conditions (IBC’s) on their faces. At oblique
incidence, with the exception of some specific configurations,
this electromagnetic scattering problem has not yet been
solved analytically. Solutions presented in the literature are
based either on numerical approaches [1]–[3] or on analytical
techniques, but in this latter case, they are limited to specific
configurations [4]–[11].

The main purpose of this paper is to provide suitable
diffraction coefficients in the format of the uniform geomet-
rical theory of diffraction (UTD) [12] for describing plane
wave scattering from an anisotropic impedance wedge with
an arbitrary exterior angle at oblique incidence when the
impedance tensor on the two faces of the wedge has its
principal axes parallel and perpendicular to the edge of the
wedge. We note that more general impedance tensors have
been taken into account only in [4], [7], and [8] for the normal
incidence case and in [1] for oblique incidence.

First, Sommerfeld-type approximate integral representations
for the longitudinal components of the total field are deter-
mined. This is accomplished by resorting to a perturbative
expansion with respect to the cosine of the incidence skewness
angle, taking into account all terms up to the second order. The
procedure followed, which is an extension of that suggested
in [4], [7], [8], [13], is based on the Maliuzhinets method
[14]. Then, these integral representations are asymptotically
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evaluated in the framework of the UTD, taking also into
account the presence of complex poles (surface wave poles).

The paper has been organized as follows. The problem is
formulated in Section II, and suitable approximate integral
representations for the longitudinal components of the fields
are provided in Section III. Then, analytical expressions for
the residue contributions related to the geometrical optics
(GO) field and the surface waves are given in Section IV,
where the asymptotic evaluation of the diffraction integral is
also performed in the context of UTD to provide a matrix
diffraction coefficient. Finally, samples of numerical results
are presented in Section V and compared with those obtained
by resorting to numerical [2] and rigorous analytical solutions
[9], [10], [15] available in the literature, in order to test the
accuracy of this perturbative technique and define its limits of
applicability.

Finally, it is worth observing that this solution can be
applied to the case of the isotropic impedance wedge as
well, extending the class of available analytical solutions for
three-dimensional (3-D) electromagnetic scattering (see, for
example, [15]) to more general configurations with arbitrary
impedance faces and arbitrary exterior wedge angles, although
in the limits of accuracy of this perturbative approach.

II. FORMULATION OF THE PROBLEM

The 3-D geometry for the scattering problem is depicted in
Fig. 1. The wedge has its edge along thez axis of a cylindrical
reference frame—a harmonic plane wave with an arbitrary
polarization impinges on the edge from a direction determined
by the two angles�0 and�0. �0 is a measure of the incidence
direction skewness with respect to the edge of the wedge:
�0 = �=2 corresponds to normal incidence. Anexp(j!t) time
dependence is assumed and suppressed.

In particular, the longitudinal components of the incident
field can be expressed as

[Ei
z; �0H

i
z] = [ez; hz]e

�jkz cos �0

ejk� sin �0 cos(���0) (1)

where �0 and k are the free-space intrinsic impedance and
wavenumber, respectively. The observation point is atP and
the exterior wedge angle isn�. Two different anisotropic
IBC’s hold on the two faces and are represented by the tensors
Z0; n = (Z0; n)z ẑẑ + (Z0; n)��̂�̂. Consequently, the IBC’s are
expressed as [5]

E� =(Z0)�Hz; Ez = �(Z0)zH� � = 0 (2a)

E� =�(Zn)�Hz; Ez = (Zn)zH� � = n� (2b)

with <[(Z0; n)z; �] � 0.
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Fig. 1. Geometry for the diffraction at a wedge with anisotropic impedance faces.

The electric properties of the wedge are supposed to
be independent ofz, consequently, all field components
contain a commonz-dependence factorexp(�jkz cos �0)
that will be suppressed in the following. Moreover, all field
components transverse to thez axis can be represented in
terms of [Ez; �0Hz]. The total field longitudinal components
[Ez; �0Hz] are solutions of the Helmholtz equation(r2

t +
k2t )[Ez; �0Hz] = 0, with kt = k sin �0, and must satisfy the
radiation and edge conditions. By expressing the IBC’s in (2)
in terms of [Ez; �0Hz], we obtain

1

�

@Ez

@�
+ jkt�0; n sin �0 sin �e0; nEz

� cos �0
@(�0Hz)

@�
= 0; � = 0; n� (3a)

1

�

@(�0Hz)

@�
+ jkt�0; n sin �0 sin �h0; n(�0Hz)

+ cos �0
@Ez

@�
= 0; � = 0; n� (3b)

where�0 = �1 and �n = +1. In (3), sin �e0; n = �0=(Z0; n)z
and sin �h0; n = (Z0; n)�=�0 define the Brewster angles�e0; n
and �h0; n of the � = 0 and � = n� face of the wedge
for perpendicular and parallel polarizations [14], respectively.
The longitudinal components of the total electric and mag-
netic fields can be expressed [14] by the following integral
representations:

Ez(�; �) =
1

2�j

Z



f(�+ �� n�=2)ejkt� cos � d� (4a)

�0Hz(�; �) =
1

2�j

Z



s(� + �� n�=2)ejkt� cos � d� (4b)

Fig. 2. Integration paths in the complex plane.

where
 is the Sommerfeld integration path (Fig. 2) and the
spectral functions[f; s] verify the inequalitiesj[f(�); s(�)]�
[f(�j1); s(�j1)]j < exp[�cj=(�)j], c > 0, in the limit for
=(�) ! �1 inside the stripj<(�)j � n�=2, in agreement
with the edge condition [16]. In the same strip,[f; s] must
be regular, except for first-order pole singularities at� =
�0 � n�=2, which account for the incident field.

III. D ERIVATION OF THE SPECTRAL FUNCTIONS

After substituting the integral representations in (4) into the
IBC’s in (3), two integral equations are obtained for each face.
Taking into account that the IBC’s considered here are of the
first order and applying the Maliuzhinets theorem [16], the
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following set of functional equations is obtained:

(sin �+ �0;n sin �0 sin �e0; n)f(� + �0; nn�=2)

+ (sin �� �0; n sin �0 sin �e0; n)f(��+ �0; nn�=2)

= cos � cos �0fs(�+ �0; nn�=2)g

� s(��+ �0; nn�=2)] (5a)

(sin �+ �0;n sin �0 sin �h0; n)s(�+ �0; nn�=2)

+ (sin �� �0; n sin �0 sin �h0; n)s(��+ �0; nn�=2)

= � cos � cos �0ff(� + �0; nn�=2)

� f(��+ �0;nn�=2)g: (5b)

In the framework of a perturbative technique and for small
deviations from the normal incidence condition(j cos �0j �
1), we seek an expression for the unknown spectral functions
in the following form considering only terms up to second
order (see Appendix A):

f(�) ' ezf0(�) + hzf1(�) cos �
0

+ ezf2(�) cos
2 �0 (6a)

s(�) 'hzs0(�) + ezs1(�) cos �
0

+ hzs2(�) cos
2 �0: (6b)

Substituting (6) into (5) and equating the coefficients of the
various powers ofcos �0 individually, a system of functional
equations is obtained for[fi; si] and i = 0; 1; 2. In par-
ticular, f0 and s0 are the spectral functions corresponding
to the diffraction of a unit amplitude plane wave impinging
on the edge at normal incidence with TMz(e) and TEz(h)
polarizations, respectively [14]

[f0(�); s0(�)] = [	e(�)=	e(�0 � n�=2);

	h(�)=	h(�0 � n�=2)]�(�): (7)

	e(�) = 	(�; �e0; �
e
n) and 	h(�) = 	(�; �h0 ; �

h
n) contain

the Maliuzhinets special function and are defined in [14] (see
also [17, Appendix B.4]).	e(�) and	h(�) are meromorphic
functions which are regular in the stripjRe(�)j � n�=2 and
exhibit first-order pole singularities at� = �0; n(�+ n�=2 +
�e0; n) and � = �0; n(� + n�=2 + �h0; n), respectively. The
corresponding residues provide the contributions to the field
due to the surface waves supported by the wedge faces, when
they exist. Moreover

�(�) =
1

n

sin(�0=n)

sin(�=n) + cos(�0=n)
(8)

shows first-order pole singularities accounting for the GO field.
[f1; s1] satisfy inhomogeneous functional equations of the
Maliuzhinets type

f1(�
+

0; n) + Re
0; n(�)f1(�

�

0; n) =L0; n(�; �
e
0; n; s0) (9a)

s1(�
+

0;n) + Rh
0;n(�)s1(�

�

0; n) =�L0; n(�; �
h
0; n; f0) (9b)

where�+0; n = �0; n(�+n�=2), ��0; n = �0; n(��+n�=2) and

Re
0;n(�) =

sin �� sin �e0; n
sin �+ sin �e0; n

(10a)

Rh
0;n(�) =

sin �� sin �h0; n

sin �+ sin �h0; n
(10b)

are the generalized reflection coefficients for the� = 0 and
� = n� face, respectively. Moreover, in (9a) and (9b)

L0; n(�; �0; n; t) = �0; n
cos �

sin �+ sin �0; n

� [t(�+
0; n) � t(��

0; n)]: (11)

Similar inhomogeneous functional equations hold for[f2; s2]

f2(�
+

0; n) +Re
0; n(�)f2(�

�

0;n)

= L0; n(�; �
e
0; n; s1) + �0; n

sin �e0; n
2 cos �

L0; n(�; �
e
0; n; f0)

(12a)

s2(�
+

0; n) + Rh
0;n(�)s2(�

�

0; n)

= �L0; n(�; �
h
0; n; f1) + �0; n

sin �h0; n
2 cos �

L0; n(�; �
h
0; n; s0)

(12b)

where the second member is again known, once the functional
equations in (9) have been solved.

The solution of inhomogeneous functional equations of the
Maliuzhinets type as those in (9) and (12) has been given by
Tuzhilin in [18] (see also [7] and [8]) in a form involving
special integral functions defined along an integration path
coinciding with the imaginary axis of the complex plane.
[f1; s1] and [f2; s2] are expressed as

[f1(�); s1(�)] = [	e(�)�1(�); 	
h(�)�1(�)] (13a)

[f2(�); s2(�)] = [	e(�)�2(�); 	
h(�)�2(�)] (13b)

where	e(�) and	h(�) have been defined above. Explicit in-
tegral expressions for the meromorphic functions�1;2 and�1;2
are given in Appendix B. It is worth noting that[�1;2; �1;2]
are regular in the stripjRe(�)j � n�=2, since the pole
singularities providing the contribution of the incident field
have been already accounted for in[f0; s0].

IV. UTD SOLUTION

Introducing (6) into (4), the longitudinal components of the
total field[Ez; �0Hz] are expressed in the form of a summation
of Sommerfeld integrals as

[Ez; �0Hz] '
2X

m=0

[Ez; �0Hz]m

=
1

2�j

Z



[ezf0; hzs0]e
jkt� cos � d�

+ cos �0
1

2�j

Z



[hzf1; ezs1]e
jkt� cos � d�

+ cos2 �0
1

2�j

Z



[ezf2; hzs2]e
jkt� cos � da:

(14)

By applying the residue theorem, all the above integral repre-
sentations defined along the Sommerfeld integration contour

 are reduced to the contribution of: 1) two integrals, defined
along the steepest descent paths (SDP)�� through the saddle
points at�� (see Fig. 2) and 2) the residues of the poles of
[fm; sm], m = 0; 1; 2, internal to the closed contour formed
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by 
 and the SDP��. The integrals along the SDP�� provide
the contribution to the total field due to the diffraction by the
edge. A uniform high-frequency approximation for the zeroth-
order field contribution[Ez; �0Hz]0 has been performed in
[19] in the context of the UTD [12]. As apparent from the
first integral term in (14), the large parameterk� in the
asymptotic evaluation in [19] must be replaced bykt�. The
asymptotic evaluation of the higher order contributions to
the field, namely, the second and third term in (14), will be
discussed in detail in this section.

A. Residue Contributions

The spectral functions [fm(�); sm(�)] =
[	e(�)�m(�); 	h(�)�m(�)] (m = 1; 2) exhibit two
different kinds of poles, which will be classified in the
following as: 1) geometrical poles (their residues provide
the correction to the reflected field contribution) and 2)
electric poles (their residues provide the correction to
the surface wave contribution). In particular, the electric
poles in 2) give a contribution only when the two faces
of the wedge can support surface wave propagation. The
conditions for which the residues of the poles in 2) must
be included in the asymptotic solution coincide with the
corresponding conditions for the poles related to the surface
wave contributions in[Ez; �0Hz]0.

Explicit expressions for the residues are given next.
1) Geometrical Poles:The locations of the geometrical

poles on the complex� plane are

� = �1 = �go0; n = ��+ n�=2 + �0; n(n�=2 + �0; n) (15)

where

�0; n = n�=2 + �0; n(��
0 + n�=2): (16)

Explicit expressions for the residue contributions are

Resff1(� + �� n�=2)ejkt� cos �; � = �go
0;ng

= �0; n cos �0; nf1 +Re
0; n(�0; n)g

ejkt� cos �
go

0; n

sin �0; n + sin �h0; n
(17)

Resfs1(�+ �� n�=2)ejkt� cos �;�=�go

0;ng

= ��0;n cos �0; nf1 +Rh
0; n(�0; n)g

ejkt� cos �go

0;n

sin �0; n + sin �e0; n
:

(18)

They must be included in the asymptotic solution only when
0 < (�0; n + 1)n�=2 � �0; n� < � � �0; n. It is important to
note that the residue expressions in (17) and (18) coincide with
the first derivative with respect tocos �0 of the off-diagonal
terms in the reflection matrix of the corresponding face of
the anisotropic wedge, evaluated at�0 = �=2. This reflection
matrix can be easily derived by referring to an infinite planar
surface with the same tensor impedance of the pertinent face
of the wedge. As far as the second-order correction to the
field is concerned, the residue contributions associated with

geometrical poles are

Resff2(�+ �� n�=2)ejkt� cos �; � = �go0; ng

=

 
� 2 cos �0; n
sin �0; n + sin �h0; n

+ sin �e0; n

!

� sin �0; ne
jkt� cos ago

0; n

(sin �0; n + sin �e0; n)
2

(19)

Resfs2(�+ �� n�=2)ejkt� cos �; � = �go0; ng

=

 
� 2 cos �0; n
sin �0; n + sin �e0; n

+ sin �h0; n

!

� sin �0; ne
jkt� cos �go

0;n

(sin �0; n + sin �h0; n)
2
: (20)

It is worth observing that the locations of these latter geometri-
cal poles are the same as those of the first-order corrections in
(17) and (18); again, their residue contributions must be taken
into account when0 < (�0; n + 1)n�=2 � �0; n� < � � �0; n.
We note that the residue expressions in (19) and (20) coincide
with one half of the second-order derivative with respect to
cos �0 of the diagonal terms in the reflection matrix of the
corresponding anisotropic wedge face, evaluated at�0 = �=2.

2) Electric Poles: Electric poles are identified with the
poles of the Maliuzhinets special function	e; h(�) and, in
part, with the poles of the function[�m(�); �m(�)],m = 1; 2.
Their locations on the complex� plane are

� =�2 = �e0; n = ��+ n�=2 + �0; n(� + �e0; n + n�=2)

(21)

� =�3 = �h0; n = ��+ n�=2 + �0; n(� + �h0; n + n�=2):

(22)

The corresponding expressions for the residue contributions
are as shown in (23)–(26), given at the bottom of the next
page. They must be included in the solution when0 <
(�0; n + 1)n�=2 � �0; n� < gdf=(�e0; n)g � <(�e0; n) and
0 < (�0; n + 1)n�=2 � �0; n� < gdf=(�h0; n)g � <(�h0; n). As
far as [f2; s2] are concerned, they exhibit second-order pole
singularities at� = �2; �3. For the sake of simplicity, their
residues have not been taken into account in the asymptotic
evaluation. However, we note that their contribution is of order
cos2 �0 in our perturbative solution and provide corrections to
the surface wave contributions (when they exist) so that their
influence is confined to the neighborhoods of the faces of the
wedge.

B. Contributions of the SDP Integrals

In order to obtain suitable high-frequency expressions, the
integrals along the SDP’s are asymptotically evaluated by
retaining all terms of order(kt�)�1=2 as suggested in [20],
so that the crossing of a pole through the SDP’s is properly
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accounted for, also when this crossing takes place away from
saddle points, as for instance in the case of the surface wave
poles. This yields a uniform high-frequency solution for the
diffracted field contribution, which is given next in a compact
matrix form �

Ed
z

�0H
d
z

�
=

�
Dee Deh

Dhe Dhh

��
ez
hz

�
(27)

where

Dee =D(0)
ee + cos2 �0D(2)

ee (28a)

Dhh =D
(0)
hh + cos2 �0D

(2)
hh (28b)

Deh = cos �0D(1)
eh (28c)

Dhe = cos �0D
(1)
he : (28d)

In particular

D
(1)
eh =�e�j�=4e�jkt�p

2�kt�

�
8<
:f1(� + �� n�=2)� f1(�� + �� n�=2)

�
3X

i=1

Resff1(�+ �� n�=2); � = �ig

�
1� F

hp
kt�(1 + cos �i)

i
2 cos(�i=2)

9=
; (29)

D
(1)
he =�e�j�=4e�jkt�p

2�kt�

�
8<
:s1(� + �� n�=2)� s1(�� + �� n�=2)

�
3X

i=1

Resfs1(�+ �� n�=2); � = �ig

�
1� F

hp
kt�(1 + cos �i)

i
2 cos(�i=2)

9=
; (30)

D(2)
ee =�e�j�=4e�jkt�p

2�kt�

�
8<
:f2(� + �� n�=2)� f2(�� + �� n�=2)

� Res
�
f2(�+ �� n�=2); � = �1

	
�
1� F

hp
kt�(1 + cos �1)

i
2 cos(�1=2)

9=
; (31)

D
(2)
hh =�e�j�=4e�jkt�p

2�kt�

�
8<
:s2(� + �� n�=2)� s2(�� + �� n�=2)

� Resfs2(�+ �� n�=2); � = �1g

�
1� F

hp
kt�(1 + cos �1)

i
2 cos(�1=2)

9=
;: (32)

In the previous equations,F(z) is the UTD transition function
generalized to complex arguments as in [20]. Suitable uniform
asymptotic expressions forD(0)

ee andD(0)
hh are given in [19],

with k� substituted bykt�.
Finally, we observe that the copolar components in (27)

depend only on even powers ofcos �0, while the cross-polar
components depend on odd powers. This remains true also
including other higher order terms, as directly follows from
the considerations done in Appendix A. This also implies that
including terms up to the second order incos �0 in (6) leads
to errors of ordercos4 �0 and cos3 �0 for the copolar and
cross-polar components of the fields, respectively.

V. NUMERICAL RESULTS

Samples of numerical results are presented in this section
in order to validate the technique proposed and to discuss its
limits of applicability. The results have been compared with
those obtained by reference solutions presented in the literature
both for isotropic and anisotropic impedance wedges at skew
incidence. In all the examples presented, we refer to the case

Resff1(�+ �� n�=2)ejkt� cos �; � = �e
0; ng

= Resf	e(�+ �� n�=2); � = �e
0; ng�1(�

e
0;n + �� n�=2)ejkt� cos �

e
0; n (23)

Resfs1(�+ �� n�=2)ejkt� cos �; � = �h
0; ng

= Resf	h(� + �� n�=2); � = �h
0;ng�1(�

h
0; n + �� n�=2)ejkt� cos �h

0;n (24)

Resff1(�+ �� n�=2)ejkt� cos �; � = �h
0; ng

= �0; ne
jkt� cos �h

0;n

cos �h
0; n Resf	h(�+ �� n�=2); � = �h

0;ng�(�
h
0; n + �� n�=2)

(sin �h
0; n � sin �e

0; n)	
h(�0 � n�=2)

(25)

Resfs1(�+ �� n�=2)ejkt� cos �; � = �e
0; ng

= ��0; ne
jkt� cos �

e
0;n

cos �e
0; n Resf	e(�+ �� n�=2); � = �e

0; ng�(�
e
0;n + �� n�=2)

(sin �e
0; n � sin �h

0; n)	
e(�0 � n�=2)

(26)
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(a)

(b)

Fig. 3. Amplitude of the (a) copolar and (b) cross-polar longitudinal com-
ponents of the total field in the presence of a right-angled isotropic impedance
wedge with(Z0)z=�0 = (Z0)�=�0 = j=2, (Zn)z = (Zn)� = 0. Geomet-
rical and electrical parameters:n = 3=2, �0 = 45�, �0 = 50; 70; 90�,
kt� = 10, Ei

�0
= 0, Ei

�0
= 1. This solution: zeroth- and first-order

contributions for copolar and cross-polar components, respectively (dashed
lines); asymptotic evaluation of the analytical solution in [15] (solid lines).

of a right-angled wedge (n = 3=2)—this choice is motivated
by the fact that for this configuration the Maliuzhinets special
function is known in a simple closed form [14], [17].

Comparisons between data relevant to the amplitude of
copolar and cross-polar components of the total field, obtained
by this approximated method (dashed lines) and calculated by
the uniform asymptotic expressions in [15] (continuous lines),
are shown in Fig. 3(a) and (b), respectively, for a right-angled
isotropic impedance wedge with(Z0)z=�0 = (Z0)�=�0 = j=2
and (Zn)z = (Zn)� = 0 (the face� = 3�=2 is perfectly
conducting). In the example shown,�0 = 45�, kt� = 10, and
�0 is assumed as a parameter, with�0 = 50; 70�. The incident
plane wave is linearly polarized withEi

�0 = 0, Ei
�0 = 1

in the standard ray-fixed ray coordinate system [12] (TEz

polarization). A reference curve, obtained by evaluating the
asymptotic approximation of the Maliuzhinets solution [19],

(a)

(b)

Fig. 4. Amplitude of the (a) copolar and (b) cross-polar longitudinal compo-
nents of the total field in the presence of a right-angled anisotropic impedance
wedge with(Z0; n)z=�0 = 1, (Z0; n)�=�0 = 2. Geometrical and electrical
parameters:n = 3=2, �0 = 45�, �0 = 50; 70; 90�, kt� = 10, Ei

�0 = 1,

Ei
�0 = 0. This solution: zeroth- and first-order contributions for copolar

and cross-polar components, respectively (dashed lines); parabolic equation
method [2] (solid lines); Maliuzhinets solution (solid line,�0 = 90�); this
solution augmented by second-order term (dashed–dotted line,�0 = 50�).

valid at normal incidence�0 = 90�, is also plotted in Fig. 3(a)
to highlight the effects introduced by the variation of the
incidence skewness angle�0. It is important to note that the
data in Fig. 3(a), both for�0 = 70� and�0 = 50�, have been
calculated by including just the zeroth-order term, obtaining a
good agreement with the reference solution up to�0 = 50�. A
good agreement is also observed for the cross-polar component
in Fig. 3(b) up to�0 = 70�.

A further example is shown in Fig. 4. Here, the right-
angled wedge is characterized by two anisotropic impedance
faces, with(Z0; n)z=�0 = 1, (Z0; n)�=�0 = 2. The incident
plane wave is TMz polarized (Ei

�0 = 1, Ei
�0 = 0) and

impinges from�0 = 45�, �0 = 50; 70; 90�—the field is
evaluated atkt� = 10. In particular, curves for the amplitude
of both the copolar (Ez) and cross-polar (�0Hz) longitudinal
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components of the total field are plotted in Fig. 4(a) and (b),
respectively. They have been calculated by this approximate
solution (dashed lines), including only the zeroth- and the
first-order term, respectively, and compared with the results
obtained by the parabolic equation method (solid lines) [2].
Again, the reference curve corresponding to�0 = 90� in
Fig. 4(a), has been determined by means of the asymptotic
evaluation of the Maliuzhinets two-dimensional (2-D) solution.
To demonstrate the convergence of the approximate solution,
a further curve which includes the contribution of the second-
order correction to the field (dashed–dotted line) has been
plotted in Fig. 4(a) for the case�0 = 50�—as apparent, the
accuracy of the approximate predictions is augmented by the
introduction of the second-order contribution.

Curves for both the copolar (Ez) and cross-polar (�0Hz)
longitudinal components of the total field in the presence
of an impedance right-angled wedge, with the zero-face
anisotropic(Z0)z=�0 = 1, (Z0)� = 0, and then-face isotropic
(Zn)z=�0 = (Zn)�=�0 = j=2, are plotted in Fig. 5(a) and (b),
respectively. The wedge is illuminated by a TMz polarized
plane wave (Ei

�0 = 1, Ei
�0 = 0), impinging on the edge

from �0 = 30� and�0 = 50; 70; 90�. The field is evaluated at
kt� = 10. Curves calculated through this approximate solution
(dashed line), evaluated by including just the zeroth-order term
in Fig. 5(a) and the first-order term in Fig. 5(b), are compared
with those obtained by the UTD asymptotic evaluation of
the exact solution given in [10] (solid line). A further curve
(dashed–dotted line), obtained by adding the second-order
contribution to the copolar longitudinal component, is plotted
in Fig. 5(a) for �0 = 50�—as apparent, the accuracy of the
results is improved. Moreover, Fig. 5(b) shows that the first-
order correction to the field properly fits the rapidly varying
behavior of the total field in the neighborhoods of the isotropic
impedance� = 3�=2 face, which is due to the excitation of
surface waves on the same face.

The case of a right-angled wedge with anisotropic
impedance faces, characterized by a vanishing impedance
in the direction of the edge(Z0)z = 0, (Z0)�=�0 = (1+ j)=2,
(Zn)z = 0, (Zn)�=�0 = (1 � j)=2, is analyzed next. The
incident plane wave is TEz polarized (Ei

�0 = 0, Ei
�0 = 1)

and impinges from a set of directions identified by�0 = 30�

and �0 = 50; 70; 90�. In particular, plots for the amplitude
of the copolar component (�0Hz) of the total field, evaluated
at kt� = 10, are shown in Fig. 6, where data obtained by
the zeroth-order approximation of this solution (dashed lines)
are compared with those calculated by a uniform asymptotic
approximation of the exact solution in [9] (solid lines). Again,
to check the convergence of the procedure also a curve
obtained by improving this approximate solution with the
second-order contribution (dashed–dotted line) is plotted—as
apparent, a better agreement is obtained in this latter case also
at �0 = 50�. Finally, it is worth noting that, in the specific
case(Z0; n)z = 0, the boundary conditions at both faces of
the wedge are decoupled when expressed in terms of the
longitudinal components of the fields [9], so that the cross-
polar longitudinal component is identically zero. Moreover,
for TMz plane wave illumination (Ei

�0 = 1, Ei
�0 = 0) theEz

component of the total field reduces to the solution for the

(a)

(b)

Fig. 5. Amplitude of the (a) copolar and (b) cross-polar longitudi-
nal components of the total field in the presence of a right-angled
anisotropic impedance wedge with(Z0)z=�0 = 1, (Z0)�=�0 = 0,
(Zn)z=�0 = (Zn)�=�0 = j=2. Geometrical and electrical parameters:
n = 3=2, �0 = 30�, �0 = 50; 70; 90�, kt� = 10, Ei

�0 = 1, Ei
�0 = 0.

This solution: zeroth- and first-order contributions for copolar and cross-polar
components, respectively (dashed lines); UTD solution [10] (solid lines); this
solution augmented by the second-order term (dashed–dotted line,�0 = 50�).

perfectly conducting wedge, which is recovered by the only
zeroth-order term in this approximate representation.

Extended numerical tests have shown that this approximate
high-frequency solution provides accurate results far beyond
the standard limits of applicability of perturbative methods
(cos �0 < 0:1). As demonstrated also by the numerical
examples shown here, errors of a few percents are obtained for
the copolar components up to�0 = 70� when just the zeroth-
order term is taken into account. This limit can be extended to
�0 = 50� when also the second term is included in the calcu-
lations—this implies neglectingO(cos4 �0). As far as cross-
polar components are concerned, accounting for the only first-
order term—this implies neglectingO(cos3 �0)—guarantees
an error less then 10% up to�0 = 70�. This higher percent
error is due to the fact that the amplitude of the cross-
polar component close to normal incidence is approximately
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Fig. 6. Amplitude of the copolar longitudinal component of the total field in
the presence of a right-angled anisotropic impedance wedge with(Z0)z = 0,
(Z0)�=�0 = (1 + j)=2, (Zn)z = 0, (Zn)�=�0 = (1� j)=2. Geometrical
and electrical parameters:n = 3=2, �0 = 30�, �0 = 50; 70; 90�, kt� = 10,
Ei
�0 = 0, Ei

�0 = 1. This solution zeroth-order (dashed lines); UTD
solution [9] (solid lines); this solution augmented by the second-order term
(dashed–dotted line,�0 = 50�).

an order of magnitude lower than that of the corresponding
copolar component.

VI. CONCLUSIONS

Uniform approximate asymptotic expressions for the fields
scattered from an anisotropic impedance wedge, illuminated by
an arbitrarily polarized plane wave impinging on the edge at
oblique incidence, have been provided in the UTD format. The
specific surface impedance tensors defined on the two faces of
the wedge have their principal axes parallel and perpendicular
to the edge. The asymptotic formulas are obtained by resorting
to a perturbative approach and are valid for deviations from
the normal incidence case which in general are of the order
of 20� to 30� (�0 = 70� to 60�). The limits of applicability of
the expressions derived have been determined by performing
extended numerical tests and comparing the results with those
derived from reference solutions available in the literature.
Finally, it is worth noting that the isotropic impedance wedge
case is contained as a limit in the analysis proposed.

APPENDIX A

The main purpose of this Appendix is to justify the specific
form given in (6) for the spectral functions. For obtaining a
solution of the functional equations in (5), we can assume the
following series expansions forf(�) and s(�):

f(�) =
1X

m=0

Fm(�) cosm �0 (A.1a)

s(�) =
1X

m=0

Sm(�) cosm �0: (A.1b)

On substituting the above expressions into (5) and equating
the coefficients of like powers ofcos �0, a recursive system

is obtained

(sin �+ �0; n sin �0 sin �e0; n)Fm(�+ �0; nn�=2)

+ (sin �� �0; n sin �0 sin �e0; n)Fm(��+ �0; nn�=2)

= cos �fSm�1(�+ �0; nn�=2)

� Sm�1(��+ �0; nn�=2)g (A.2a)

(sin �+ �0; n sin �0 sin �h0; n)Sm(�+ �0; nn�=2)

+ (sin �� �0; n sin �0 sin �h0; n)Sm(��+ �0; nn�=2)

= cos �fFm�1(�+ �0; nn�=2)

� Fm�1(��+ �0; nn�=2)g (A.2b)

where S�1(�) = F�1(�) = 0. It is apparent that the
functional equations forF0(�) and S0(�) are decoupled so
that the same functions are proportional to the amplitude of the
incident electric and magnetic field longitudinal components,
respectively

F0(�) = ezf0(�) (A.3a)

S0(�) =hzs0(�): A.3b)

Consequently, the structure of the recursive system implies that
Fm(�) andSm(�), form even, are proportional to the incident
electric(ez) and magnetic(hz) field longitudinal components,
respectively. On the contrary,Fm(�) andSm(�), for m odd,
are proportional tohz andez , respectively. As a consequence
the total electric field longitudinal component consists of two
contributions. The first one is proportional toez (copolar
contribution) and results to be an even function ofcos �0;
the second is proportional tohz (cross-polar contribution)
and results to be an odd function ofcos �0. By duality,
similar considerations are valid for the total magnetic field
longitudinal component.

APPENDIX B

In order to evaluate[f1;2(�); s1; 2(�)] suitable expres-
sions for[�1; 2(�); �1;2(�)] are needed. By substituting (13a)
and (13b) into (9) and (12), respectively, it is found that
[�1;2(�); �1;2(�)] must satisfy the following inhomogeneous
functional equations:

[�1(�
+

0;n); �1(�
+

0; n)]� [�1(�
�

0; n); �1(�
�

0; n)]

[Ke
0; n(�); K

h
0; n(�)] (B.1)

[�2(�
+

0;n); �2(�
+

0; n)]� [�2(�
�

0; n); �2(�
�

0; n)]

[He
0; n(�); H

h
0;n(�)]: (B.2)

In (B.1)

Ke
0; n(�) =

L0; n(�; �
e
0; n; s0)

	e(�+0; n)
(B.3a)

Kh
0; n(�) =

�L0; n(�; �h0; n; f0)

	h(�+0; n)
(B.3b)
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and in (B.2)

He
0; n(�) =

1

	e(�+0; n)

�
L0; n(�; �

e
0; n; s1) + �0; n

sin �e0; n
2 cos �

� L0; n(�; �
e
0; n; f0)

�
(B.4a)

Hh
0; n(�) =

1

	h(�+0;n)

(
�L0; n(�; �

h
0; n; f1) + �0; n

sin �h0; n
2 cos �

� L0; n(�; �
h
0; n; s0)

)
: (B.4b)

The solution of (B.1) and (B.2) has been given by Tuzhilin in
[18], in the form of special integral functions, with the integrals
defined along the imaginary axis of the complex plane. We
can write

�1;2(�) = �01;2(�) + �n1;2(�) (B.5)

�1;2(�) = �01;2(�) + �n1;2(�) (B.6)

with

[�0;n1 ; �0; n1 ] =�
j

4n�

Z +j1

�j1

[Ke
0; n(�); K

h
0; n(�)]

� tg

�
�+ �0; nn�=2� �

2n

�
d� (B.7)

[�0;n2 ; �0; n2 ] =�
j

4n�

Z +j1

�j1

[He
0;n(�); H

h
0; n(�)]

� tg

�
�+ �0; nn�=2� �

2n

�
d�: (B.8)

The previous definitions for [�01;2(�); �
0
1;2(�)] and

[�n1;2(�); �
n
1;2(�)] are valid in the strips�n�=2 < <(�) <

3n�=2 and�3n�=2 < <(�) < n�=2, respectively. Outside
these regions, an analytic continuation is required [18], which
is based on the functional equations in (B.1) and (B.2).

It can be shown that [Ke
0; n(�); K

h
0; n(�)] and

[He
0;n(�); H

h
0;n(�)] are odd functions; their amplitude tends

to zero exponentially whenIm(�) ! �1. This renders the
integrals in (B.7) and (B.8) rapidly convergent. However, it is
worth noting that the computational complexity significantly
increases when the evaluation of second-order contribution
is required. Indeed, the integrand in (B.8) implicitly contains
the integral in (B.7), so that a double integration is involved.
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