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Abstract—Calibrated radar images are often quantified as
radar cross section. This interpretation, which is not strictly
correct, can lead to misunderstanding of test target scattering
properties. To avoid confusion, we recommend that a term such as
“scattering brightness” (defined below) be adopted as a standard
label for image-domain data.

Index Terms—Radar imaging.

I. INTRODUCTION

RADAR IMAGE data have often been represented as
“ radar cross section (RCS) indBsm.” Although images

may properly have the units dB (re 1 m2) (commonly abbre-
viated dBsm), the interpretation of image levels as RCS is
incorrect except under special circumstances. Unfortunately,
even legitimate labeling of image levels with dBsm can induce
an unintentional connection between images and RCS data [1].

Images cannot, in general, be directly associated with RCS.
Consider the effects of shadowing, for example. Here, the
prominence of a scattering center depends on the influence
of other parts of the target. A definition of RCS based on
image data obviously cannot describe an intrinsic property of
the component scatterer. The interpretation of image level as
RCS can be justified only for targets consisting of isolated,
independent1, isotropic, nondispersive scattering centers. Such
targets exist only in an approximate sense, at best.

Images are formed from weighted sums of scattering data
over a range of frequencies and/or angles. If the weights
are dimensionless, the image-domain function will have the
same dimension as the original data. The problem arises in
the interpretation of these weighted averages as RCS, a term
reserved to describe target scattering for a specific frequency
and geometry. Analysts familiar with the imaging process
will most likely appreciate the distinction between RCS and
images; other users of images, however, may interpret the units
to imply a strict equivalence to RCS. To avoid confusion,
we recommend that a term such as “scattering brightness” be
adopted as a standard label for image magnitude. The defini-
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1That is, the target scatting matrix is the sum of the scattering matrices of

the component scatterers.

tion and interpretation of scattering brightness are discussed
below.

II. RADAR CROSSSECTION AND SCATTERING MATRIX

Radar cross section (RCS) is defined as

�(kkks; kkki) = lim
r!1

4�r2
jEs(kkks)j2

jEi(kkki)j2
(1)

whereEi is the amplitude [V/m] of the incident plane wave
field andEs is the amplitude of the scattered field component
received at a distancer from the target. RCS depends on the
directions of incidence(k̂kki) and scattering(k̂kks) and on the
frequency(! = 2�f = kc; k = jkkksj = jkkkij). Polarization
dependence is suppressed in this discussion. In the monostatic
case,kkks = �kkki.

Calibrated coherent radars usually measure (components
of) the scattering matrix, which can be defined through the
far-field relation

S(kkks; kkki) = lim
r!1

r exp(jkr)
Es(kkks)

Ei(kkki)
: (2)

As normalized here,S has the dimensions of length [m]. From
(1) and (2)

�(kkks; kkki) = 4�jS(kkks; kkki)j
2: (3)

The target scattering matrixS is often determined from
measurements using

S(kkks; kkki) =
F target(kkks; kkki)� F bkgd(kkks; kkki)

F ref(kkks; kkki) � F bkgd(kkks; kkki)
Sref (kkks; kkki)

� [F target(kkks; kkki)� F bkgd(kkks; kkki)]�(k): (4)

(This calibration scheme requires measurement of the ref-
erence target at the test target location. Other schemes are
possible.) We assume thatSref (kkks; kkki) is known from a previ-
ous measurement or computation. TheF terms symbolize the
complex response of the radar receiver, which is proportional
to the scattered field in a linear system. Equation (4) uses
background subtraction to remove clutter effects. Nominally,
the calibration factor�(k) does not depend on the angles of
incidence or scattering; it is commonly measured as a function
of frequency in some advantageous fixed geometry.

III. I MAGE FORMATION

A set of scattering data can produce a variety of images
depending on the processing scheme. For example a “complex
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Fig. 1. Scattering data for an 8-in-diameter sphere: RCS versus frequency.

image function”G(rrr) can be defined as

G(rrr)�
p
4�
X
kkks;kkki

w(kkks; kkki)S(kkks; kkki) exp[�j(kkks�kkki) � rrr]

(5)

where both the magnitude (which is proportional to frequency)
and the directions ofkkks and kkki are allowed to vary. Images
are basically averages (over frequency and/or direction) of
coherent scattering data weighted by a functionw(kkks; kkki)
usually selected to improve dynamic range at the expense of
resolution or vice versa. The choice of weighting function can
profoundly affect the resulting image.

To see how an image is formed, consider the case of
isotropic nondispersive objects, which we call elementary
targets (ET’s) for convenience. By isotropic and nondispersive,
we mean that there is a natural coordinate system in which the
scattering matrix is independent of angle and frequency (over
the parameter range of interest)

S0(kkks; kkki) = S0 = constant: (6)

The origin of this coordinate system defines the mathematical
location of the ET. If an ET is placed at position��� in the test
target coordinate system, the scattering matrix is

S(kkks; kkki) = S0 exp[j(kkks � kkki) � ���] (7)

where, as before,S0 is independent ofkkks andkkki. In the test-
target coordinate system, the scattering matrix has aposition-
dependentphase factor that is neither isotropic nor nondis-
persive. According to (3), (5), and (7), the image of an ET
is

jG(rrr)j2 =�

������
X
kkks;kkki

w(kkks; kkki) exp[�j(kkks�kkki) � (rrr����)]
������
2

=� PSF(rrr � ���): (8)

Fig. 2. Downrange image of a perfectly conducting 8-in sphere. Band 0.1–6
GHz (dashed). Band 0.1–18 GHz (solid). Normalized Kaiser–Bessel window
(� = 0).

Thus, the image is the point-spread function

PSF(rrr) �
������
X
kkks;kkki

w(kkks; kkkiii) exp[�j(kkks � kkki) � rrr]
������
2

(9)

scaled by the RCS and appropriately translated. (The weighting
function is generally selected so that the point-spread function
is sharply peaked atr = 0.)

More complex targets are often modeled as collections of
scattering centers. Interpretation of image levels to deduce
the RCS of scattering centers is questionable unless these
scattering centers approximate ET’s. Even for targets that may
be reasonably represented as assemblages of ET’s such an
interpretation is problematic. For example, intratarget inter-
actions can produce shadows and ghosts. Also, because the
point-spread function has nonzero width, the images of closely
spaced scattering centers may interfere strongly.In general,
there is no simple connection between image levels and RCS.

The prescription of images through (5) is actually quite
inclusive. Whenkkks and kkki are fixed in direction and only
frequency is varied, we obtain “downrange” images. When fre-
quency is fixed and directions are varied, we obtain synthetic
aperture radar (SAR) or inverse SAR (ISAR) images [2]. More
generally, any combination of frequency and angular diversity
is permitted.

IV. DEFINITION OF SCATTERING BRIGHTNESS

Let us require that weights be dimensionless and normalized
so that

max
rrr

jPSF(rrr)j = 1: (10)

We propose to define an image function by

I(rrr) � 10 log
10
jG(rrr)j2 (11)
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Fig. 3. Downrange image of a perfectly conducting 8-in sphere. Band 12–18
GHz (dashed). Band 0.1–18 GHz (solid). Normalized Kaiser–Bessel window
(� = 0).

and to label image levels as scattering brightness with units
dB (re 1 m2) or dBsm.

Calibration is such that the image of an ET (with RCS
�) is proportional to the point-spread function and peaks at
a scattering brightness of10 log10(�) dBsm. To completely
specify an image formed using the definition (5), the weighting
function and the polarizations of incident and scattered fields
must also be given.Scattering brightness is not RCS.

V. IMAGING EXAMPLE

As an illustration of the difference between RCS and
scattering brightness, consider monostatic scattering from a
perfectly electrically conducting sphere. The RCS of such a
sphere is given exactly by the well-known Mie series [3] and
the high-frequency limit is�hf = �a2, ka � 1, wherea is
the radius of the sphere. At high frequencies, the sphere is a
good approximation of an ET since its RCS is approximately
nondispersive. However, whenka is not much greater than
unity, the RCS of the sphere becomes a strong function of
frequency and it is this dispersive behavior that distinguishes
the sphere from an ET. In Fig. 1, the RCS of a 0.2032-m (8-in)
diameter sphere is plotted as a function of frequency over the
range 0.1–18 GHz. It is convenient to interpret the frequency
response of the sphere as an interference pattern between a
nondispersive specular signal and a “creeping wave” signal
whose amplitude decays with increasing frequency [4].

To form a one-dimensional downrange image, we letrrr =
xx̂xx; kkks = �kkki = kx̂xx and sample monostatic scattering data at
N +1 equally spaced frequencies. (Assume, for completeness,
that the incident plane wave isy polarized and that they
polarized component of the scattered field is received.) The
weighting functionw(kkks; kkki) = w(kn) is chosen to be a
normalized Kaiser–Bessel window ([5])

w(kn) =CI0

2
4�
s
1�

�
2kn � k0 � kN

k0 + kN

�235,I0(�)

(12)

Fig. 4. Downrange image of a perfectly conducting 8-in sphere. Band 0.1–6
GHz (dashed). Band 0.1–18 GHz (solid). Normalized Kaiser–Bessel window
(� = 4).

Fig. 5. Downrange image of a perfectly conducting 8-in sphere. Band 12–18
GHz (dashed). Band 0.1–18 GHz (solid). Normalized Kaiser–Bessel window
(� = 4).

where0 � n � N; I0 is a modified Bessel function,� is a
fixed parameter,k0(kN ) corresponds to the smallest (largest)
frequency used, andC is a constant chosen so that (10)
is satisfied. Then, according to (5) and (11), the scattering
brightnessI(x) � I(rrr) is given by

I(x) = 10 log
10

2
44�

�����
NX

n=0

w(kn)S(kn) exp(�j2knx)
�����
2
3
5:
(13)

The images (scattering brightness versus downrange posi-
tion) plotted in Figs. 2 and 3 are each formed from a different
frequency band and overlaid with the image formed from the
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full 0.1–18-GHz band(�k = 2��f=c;�f = 10 MHz). The
Kaiser–Bessel parameter� is set to zero, corresponding to
a rectangular window. The specular portion of the RCS is
evident at the same position in each image. Furthermore, the
amplitude of this specular peak is independent of bandwidth
and nearly equal to�hf . As such, the specular peak behaves
like the peak from an ET. The creeping wave portion of the
response produces a ghost image, which is evident at a position
(1+�=2)a = 0:26 m behind the specular peak and, which has
an amplitude that depends on the frequency band. The 0.1–6-
GHz image in Fig. 2 shows the creeping wave peak about 14
dB below the specular peak, while for the 12–18-GHz image in
Fig. 3, the creeping wave peak is hidden among the sidelobes
of the specular peak.

The images plotted in Figs. 4 and 5 are identical to those
in Fig.s 2 and 3, except that the Kaiser–Bessel parameter� is
set to four. Changing the window shape does not visibly affect
the specular peak position or amplitude, though it does affect
the amplitude of the creeping wave peak. (Because of lower
sidelobes of the� = 4 window, the specular and creeping
wave responses do not overlap as strongly as they do in the
� = 0 case. Viewed as a set, Figs. 2–5 show that the amplitude
of the specular peak is nearly independent of the bandwidth
and window shape function used to form the image, but these
factors do affect the amplitude of the creeping wave peak.
Clearly, it is not possible to assign a unique RCS value to the
creeping wave peak from a downrange image! The important
point to be made from this example is that the interpretation
of image data as RCS is a problem, even for such a “simple”
object as a sphere.

VI. CONCLUSIONS

The observations presented in this paper can be summarized
as follows.

• Radar images are formed from weighted averages of
coherent scattering data.

• Images can be properly represented with units of dBsm.
• However, image levels cannot be interpreted as RCS.
• The practice of labeling image levels as “scattering bright-

ness [dBsm]” is recommended to prevent direct associa-
tion with RCS.
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