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Blindness Removal in Arrays of Rectangular
Waveguides Using Dielectrically Loaded Hard Walls

Sergei P. Skobelev,Member, IEEE, and Per-Simon Kildal,Fellow, IEEE

Abstract—We analyze an infinite planar array of open-ended
rectangular waveguides in which the E-plane walls are loaded
with dielectric slabs in order to create a hard boundary condition.
The analysis is done by using the mode-matching method with
Floquet modes in the exterior region. The results show that
the hard walls remove the blind spots otherwise present in the
element patterns of wide-angle scanning arrays. This occurs both
for rectangular and for triangular lattices. In addition, the array
becomes better matched to free-space in a rectangular lattice.
In limited-scan arrays of large square waveguides, the use of
the hard walls increases the array gain by 0.9 dB, it reduces
the grating lobe level in the H plane by 11 dB and considerably
decreases the difference between the array characteristics in the
E and H planes.

Index Terms—Antenna arrays.

I. INTRODUCTION

ONE of the most convenient elements for phased antenna
arrays is the empty open-ended rectangular waveguide.

However, it is well known that these elements have very
different scan characteristics in the E and H planes, and
that scan blindness occurs for wide-angle scanning [1]. These
features are not improved if the waveguides are completely
filled with dielectric material.

A simple method, which can be used to improve the array
scanning properties, is to partially load the waveguides with
dielectric plates. This loading is simple and provides an
additional degree of freedom relative to the complete dielectric
filling. The formulation of this problem and a method of
solution were given in [2]. Some important numerical results
and corresponding conclusions can be found in [3]. The work
[4] considers application of the partially filled waveguides in
arrays for dual-frequency operation.

An important case of partial filling the rectangular waveg-
uides is to load the E-plane walls with dielectric slabs of
thicknesst and relative permittivity" so that

t = 0:25�=
p
"� 1 (1)

where� is the wavelength. This corresponds to the so-called
hard-wall boundary condition [5]. When (1) is satisfied, the
propagation constant of the dominant waveguide mode is equal
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Fig. 1. Geometry of aperture of dielectrically loaded waveguide array. (a)
Rectangular lattice. (b) Triangular lattice.

to that of free-space and the amplitude distribution of this
mode over the waveguide cross section is uniform in the
central empty part of the waveguide. These features allow to
expect better matching of the array to free-space, more similar
scanning properties in the E and H planes, and increased
aperture efficiency and gain [6]–[8].

The hard-wall waveguide array has only been indirectly
treated in [3] without any quantitative evaluation. Some nu-
merical results characterizing have been presented in [9], but
only for a simplified two-dimensional (2-D) case. The purpose
of the present paper is to perform the analysis based on a
three-dimensional statement of the problem, making the results
directly applicable to the design of practical planar antenna
arrays.

II. STATEMENT OF PROBLEM AND MAIN FORMULAS

The geometry of the open waveguide array in the plane of its
aperture is shown in Fig. 1. Semi-infinite perfectly conducting
waveguides of rectangular cross sectiona � b are arranged
in an infinite rectangular or triangular lattice with element
spacingsa0 and b0 in the directions ofx andy, respectively.
All waveguide openings have a common perfectly conducting
flange and their walls in one plane are loaded with dielectric
slabs of thicknesst and relative permittivity".
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We represent the field in the waveguide in terms of longitu-
dinal section electric (LSE) and longitudinal section magnetic
(LSM) modes and assume that the waveguides are excited by
LSE10 modes with unit amplitudes and linearly progressing
phases. The phase progression inx- and y-directions deter-
mines the direction of the main beam.

The reflected field can be represented as a superposition of
the LSEmn and LSMmn modes and the radiated field can be
represented as a superposition of vector Floquet harmonics.
The coefficients of the two expansions are determined by
matching the tangential E and H fields at the waveguide
opening. This is commonly referred to as the mode-matching
method [10]. The procedure is well known so we omit inter-
mediate expressions and give only the main formulas.

The transverse components of the total electric and magnetic
fields in the central waveguide are given by the infinite sums

EEE� (x; y; �0) =
X

m;n

[(�m;1�n;0 + R1mn)
1mnfff1mn

+R2mnkfff2mn] (2)

HHH� (x; y; �0) =
p
"0=�0

X
m;n

[(�m;1�n;0 � R1mn)kggg1mn

� R2mn
2mnggg2mn] (3)

where
jmn andRjmn are propagation constants and reflection
coefficients of the LSEmn (j = 1) and LSMmn (j = 2) modes;
�mn is the Kronecker symbol

fff
1mn(x; y) = eeey�1m(x)

r
2� �n0

b
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b
;

ggg
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b

are transverse vector-functions for LSEmn modes, and
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2mn(x; y) = eeex�2mn�2m(x)
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b

are those for the LSMmn modes;eeex and eeey are unit vectors
of the corresponding coordinate axes,�jmn = (
jmn=k)2 +
(n�=kb)2, k = 2�=�, "(x) = " for the dielectric part and
"(x) = 1 for the empty part of the waveguide,"0 and �0
are dielectric and magnetic constants of free-space. The or-
thonormalized functions�jm(x), as well as the corresponding
dispersion equations for calculation the propagation constants,
are determined from the boundary conditions for the layered
waveguide as described in details in [11].

The transverse components of the radiated electric and
magnetic fields on the array aperture are represented as infinite

sums of the vector Floquet harmonics

EEE� (x; y; +0)

=
X
p;q

[T1pqk 1pq(x; y) + T2pq�pq 2pq(x; y)]; (4)

�eeez �HHH(x; y; +0)

=
p
"0=�0

X
p;q

[T1pq�pq 1pq(x; y) + T2pqk 2pq(x; y)]

(5)

where Tjpq are amplitudes of the TE (j = 1) and TM
(j = 2) harmonics;�pq and jpq are propagation constants
and orthonormalized transverse vector functions, respectively,
defined in [1].

Further, the vector product of the magnetic field (3) and the
unit vectoreeez must be equal to (5) in the waveguide aperture
and the electric field (4) must be equal to the electric field (2)
in the waveguide aperture and to zero on the flange. Using
the orthogonality property defined in [11] for the waveguide
modes in the indicated continuity condition for the magnetic
fields, as well as the orthogonality property of the Floquet
harmonics on the array cell [1] in the indicated boundary
condition for the electric fields, we obtain the following infinite
system of linear algebraic equations:

R1m0n0�1m0n0 +
X
p;q

(T1pqS
11

m0n0pq�pq=k + T2pqS
12

m0n0pq)

= �m01�n00�1m0n0
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X
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(T1pqS
21

m0n0pq�pq=k

+ T2pqS
22

m0n0pq) = 0;X
m;n

(R1mnS
11�

mnp0q0
1mn=k+ R2mnS
21�

mnp0q0) � T1p0q0

= �S11
10p0q0
110=kX

m;n

(R1mnS
12�

mnp0q0
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22�
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� T2p0q0�p0q0=k = �S12�
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110=k (6)

for the unknown coefficientsR1mn, R2mn, T1pq, and T2pq,
where

Sijmnpq =

ZZ
A

(fff imn �  jpq) dx dy (7)

andA is the waveguide aperture. Sign� in (6) denotes complex
conjugation. The matrix elements (7) are expressed by explicit
formulas, which are not given here for the sake of brevity.

After proper truncation, (6) is easily solved by any known
numerical method, e.g., the Gauss elimination method. Then,
the complex amplitudes of the TE and TM Floquet harmonics
of the zeroth orderT100 and T200 are used for calculation
of the components of the vector-array element pattern in the
spherical coordinates. This characterizes the behavior of the
array gain when the main beam is scanned. The magnitudes
of these components when normalized for unit power of the
incident LSE10 mode are expressed by

F�(�; ') = (k=
110)
3jT200(u; v)j cos � (8)

F'(�; ') = (k=
110)
3jT100(u; v)j cos � (9)
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whereu = ka0 sin � cos ', v = kb0 sin � sin '.
The incident, reflected, and radiated powers must satisfy

the energy balance relationship


100�110 �

2X
j=1

 X
m;n


jmn�jmnjRjmnj
2 +

X
p;q

�pqjTjpqj
2

!

= 0 (10)

where the sums include only propagating waveguide and
Floquet modes.

III. N UMERICAL RESULTS AND DISCUSSION

The technique described above has been implemented in
a FORTRAN program to calculate the array characteristics.
The program has been verified by comparing the results with
the numerical and experimental data available in [1] for empty
and completely filled waveguides in [3] for layered rectangular
waveguides as well as in [9] for the corresponding 2-D case.
The latter case corresponds to a planar array of rectangular
waveguides arranged in a rectangular lattice and scanning in
the H plane, provided that the perfectly conducting waveguide
walls which are parallel to the indicated plane have zero
thickness. The comparison showed good agreement of the
results. Moreover, all the calculations were accompanied by
verification of the energy balance relationship (10) and the
disbalance was not greater than 2� 10�6. After testing the
program, different hard-wall waveguide arrays were calculated
and the results were compared with those obtained for the
corresponding cases of empty waveguides. Some of these
results are presented below.

A. Wide-Angle Scanning, Rectangular Lattice

It is well known that the element patterns of arrays of
both empty and completely filled rectangular waveguides can
have deep dips causing blindness. The blindness effect is most
considerable when scanning in the E plane of the array where
its elements are located in a rectangular (and, in particular,
square) lattice. The influence of the hard walls on the array
performance is demonstrated by using an array of square
waveguides witha = b = 0:6305� arranged in a square
lattice with a0 = b0 = 0:6729�. The results for the array
element patternF� (F' = 0 in the E plane) are presented in
Fig. 2. The dotted curve in Fig. 2 is the element pattern for the
empty waveguide array, which is in a good agreement with the
theoretical and experimental data presented in [1]. The element
pattern has a deep dip at the angle, which is slightly smaller
than that of the main lobe position at which the grating lobe
starts to radiate at�90�. The for hard wall waveguides with
" = 2 and5 are presented in Fig. 2 by solid and dashed curves,
respectively. The results show that the use of the hard walls
completely removes the dip and the pattern becomes similar
to that of an array of empty parallel-plate waveguides excited
by TEM waves considered in [9].

Calculations have been also performed in a frequency band.
The results show that a reduction of the frequency does not

Fig. 2. Element patternF� in E plane of array with rectangular lattice and
a = b = 0:6305�, a0

= b
0
= 0:6729�.

remove the dip in the element pattern of the empty waveguide
array, but shifts it to a new angle. Moreover, the reflection
coefficient at broadside increases because the dominant TE10

mode becomes closer to cutoff. In the case of the hard-wall
waveguides, reduction of the frequency also makes the array
characteristics worse because the amplitude distribution of the
LSE10 mode approaches that of the TE10 mode of the empty
waveguide. However, since the LSE10 mode still remains
sufficiently far from cutoff, the changes are less considerable
than those for the empty waveguides. Note also that the greater
slab permittivity is the more frequency-sensitive the array
becomes.

When increasing the frequency, the dip in the element
pattern of the empty waveguide array decreases and then
disappears. In the element pattern of the hard waveguide array,
the dip does not appear at all.

Thus, if the hard-wall condition is exactly provided for the
array with a rectangular lattice at the lower edge of a specified
frequency band, this can guarantee the absence of blindness
over the whole band. The behavior of the array characteristics
in the H plane is similar to that for the parallel-plate waveguide
arrays considered in [9]. The array characteristics in the
intermediate planes of scan also do not have considerable
anomalies.

B. Wide-Angle Scanning Triangular Lattice

When empty rectangular waveguides are arranged in a
triangular lattice, anomalies in the array characteristics can
take place both in E and in H planes, but in the latter they
are most essential. We consider an array witha = 0:905�,
b = 0:4�, a0 = 1:008�, andb0 = 0:504�, which is the same as
the examples considered in [1]. The calculated element pattern
in H plane is shown in Fig. 3 by a curves with smaller dashes.
This result is in a good agreement with the corresponding
experimental data presented in [1]. The array-element pattern
has a deep dip, which occur much before the main lobe
position (atsin � � 0:866) corresponding to the case when the
grating lobe is at the boundary of real space. This significantly
reduces the sector of scan.
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Fig. 3. Element patternF' in H plane of array with triangular lattice and
a = 0:905�, b = 0:4�, a0

= 1:008�, b0 = 0:504�.

The results for the hard-wall waveguides with" = 2 and
5 (t = 0:25 and 0:125, respectively) are shown in Fig. 3 by
a solid curve and a curve with larger dashes, respectively.
We see, the use of the hard walls have removed the dip
from the element pattern. However, the reflection coefficient
considerably increases when the main beam is scanned from
broadside (from 0.2 or 0.24 atsin � = 0 up to 0.45 for
sin � = 0:4 and up to 0.65 forsin � = 0:6).

Thus, in the whole, the use of the hard walls in the
rectangular waveguide arrays with a triangular lattice is not
so effective as in the arrays with a rectangular lattice, and do
not provide such good wide-angle matching as in the arrays
using nonsymmetrical irises [12].

C. Array of Large-Aperture Elements

Fig. 4 presents the results of calculation of the element
pattern for an array of square waveguides witha = b =

2:4� arranged in a square lattice witha0 = b0 = 2:45�.
Arrays with such large elements are common in limited-scan
applications and sometimes as feeds in reflector antennas. As
we can see, the H-plane element pattern for the case of the
empty waveguides considerably differs from that in the E
plane. This is as well known and caused by the difference
in the dominant mode-field distributions in the two planes.
The cosine distribution in H plane makes the pattern in this
plane wider than in E plane and shifts the pattern nulls that
results in a higher level of the first grating lobes and, as a
consequence, in decreased array gain. The hard walls provide
the uniform amplitude distribution in the central empty part
of the waveguide cross section that makes the grating lobe
level in the H plane by about 11 dB lower than for the empty
waveguides and increases the gain by 0.9 dB. Moreover, the
width of the element pattern in H plane becomes much closer
to that in E plane.

Note, that the H plane results obtained in the present study
are very close to those presented in [9] for the corresponding
array of parallel-plate waveguides because the thin waveguide
walls in H plane is negligible when the array is scanned in H

Fig. 4. Element patternsF� (E plane) andF' (H plane) of array with
a = b = 2:4� and a

0
= b

0
= 2:45�.

plane. For this reason, all the conclusions in [9] for the parallel-
plate waveguides in connection with the frequency behavior of
the array characteristics are valid for the present rectangular
waveguides as well.

IV. CONCLUSION

The infinite planar arrays of open-ended rectangular waveg-
uides with E plane walls loaded with dielectric slabs satisfying
the hard wall boundary condition have been numerically
analyzed by using the mode matching method. The results
of the calculations have been compared with those obtained
for the corresponding arrays of empty waveguides.

When the array is designed for wide-angle scanning, the
most attention has been concentrated on the influence of
the hard walls on the effects of blindness present in empty
waveguide arrays. Blindness is associated with the presence
of deep dips in the array element pattern. The obtained results
show that the hard walls completely remove the dips from
the element pattern when the waveguides are arranged in
a rectangular or square lattice. Moreover, if the hard wall
condition is satisfied exactly at the lower edge of a specified
frequency band, the effects of blindness may be removed over
the whole band providing relatively good matching of the array
to free-space.

The hard walls also remove the effects of blindness when
the waveguides are located in a triangular lattice. However,
the reflection coefficient in the H plane considerably increases
when the main beam is scanned from broadside.

We have also calculated arrays of square waveguides with
large aperture dimension. These results confirmed the results
obtained earlier for the corresponding parallel-plate waveguide
array, and have shown that the use of the hard walls reduces
the grating lobe level in the H plane by about 11 dB and cor-
respondingly increases the array gain by 0.9 dB in comparison
with the array of empty waveguides. In addition, the hard walls
make the element pattern in H plane much more similar to that
in the E plane than what is in the case for empty waveguides.
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