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Perfectly Matched Layer Mesh Terminations
for Nodal-Based Finite-Element
Methods In Electromagnetic Scattering

Jingwu Tang, Keith D. Paulsen, and Shah A. Haider

Abstract—The perfectly matched layer (PML) concept intro- On the implementation/validation front, the majority of
duced by Berenger is implemented for nodal-based finite-element attention to date has been devoted to finite-difference time-
frequency-domain methods. Starting from a scalar/vector poten- domain (FDTD) considerations [3], [5], [8], [9] although

tial framework, anisotropic-media-equivalent gauge conditions th has b ignificant i in the devel t and
are developed for both coupled and uncoupled (i.e., direct field) €€ Nas been a signiticant increase in the development an

scalar/vector field formulations. The resulting discrete system of use of the PML in finite-element (FE) frequency-domain
equations are shown to be identical for both the anisotropic and scattering calculations as well [2], [6]. In this regard, edge-

stretched coordinate viewpoints of PML mesh termination on glement formulations have served as the primary focus and
node-based finite elements. Reaching this equivalency requireshave dominated the advances that have been reported in

that special attention be paid to the basis/weighting functions . -
used within the PML region, specifically, a material dependency the literature for finite elements. In both the FDTD and FE

is found to be essential. The alternative but identical stretched Cases, the results reported appear to be largely positive. Pa-
coordinate approach provides the perspective needed to realize rameters of interest (e.g., layer thickness, material properties,
a scheme for generalizing the PML to non-Cartesian mesh ter- and distance from the scatterers) have been studied and a
minations which are more natural in the finite-element context. ~artain amount of fine-tuning and selection guidelines for
Several benchmark problems and associated numerical results . : . .
are presented to demonstrate the performance of the PML on setting these pa_ra!met_ers has developed. Some |terat|_ve solution
node-based finite elements. convergence difficulties have been noted [6], which have
constrained property value choices; nonetheless, the success of
the PML to date along with its relative ease of implementation,
compared to alternatives, suggests that it may become the
method of choice for mesh truncation with differential equation
. INTRODUCTION approaches to electromagnetic (EM) scattering problems.

HERE has been considerable interest in the develop-In this paper, we report on the development of PML analogs

ment, implementation, and interpretation of the perfectfy)r node-based finite-element discretizations. We show that
matched layer (PML) concept, first introduced by Beringdhe PML concept can be efficiently and effectively incorpo-
[1] as an effective mesh-truncation scheme for differentigited into the node-based scalar/vector potential framework of
equation solutions in computational electromagnetics (e.g§oyseet al. [11], which is free of spurious solutions at least
[2]-[10]). Investigation has spawned two views of the PMIN the absence of perfectly conducting sharp corners, although
approach: 1) a coordinate stretching construct involving S®me progress on this front has been recently realized [12].
complex-valued coordinate transformation, which alters ti§goecifically, we demonstrate that the PML can be implemented
spatial derivative operators in Maxwell's equations [3], [4n both Lorentz gauge #2 and Lorentz gauge #1 from [11], the
and 2) an anisotropic material formulation where the Maxweprmer leading to a coupled set of continuous scalar/vector
equations retain their familiar forms, but with the insertiofotential equations [13], while the later produces an uncoupled
of complex material property tensors for the permittivity angair, which, under proper boundary condition specification,
permeability within the layer [2]. More recent analysis hakgsults in a direct field formulation [11], [14]. An interesting
shown the mathematical equivalence of these two approach&d important feature of our numerical approach is the fact that
[6], [9], although close scrutiny reveals that the continuitpoth the anisotropic media and stretched coordinate viewpoints
conditions on the normal field components will, in general, b&f mesh truncation in this context lead to the same discrete
different leading to different normal fields between the tw8ystem of equations and hence are numerically identical. This
schemes [6]. is accomplished through the careful selection of material

dependent basis/weighting functions that satisfy all jump con-
ditions while also preserving matrix symmetry. Further, these
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the imposition of any constraints on the already difficult task PMLy region PMLxy region
of three-dimensional (3-D) mesh generation when the PML is
employed.

In the following sections, we develop the node-based PML
construct in terms of the scalar/vector potential framework
by deriving the associated gauge conditions and weak forms. P
The importance of selecting material dependent basis functions
within the layer is illustrated. Results from several sample
benchmark problems, including examples with non-Cartesian air PMLx region
mesh terminations are highlighted to demonstrate the validity
and overall performance of the PML within the node-based
finite element computational framework.

Fig. 1. Point P connecting to multiple materials.
Il. ANISOTROPICSCALAR/VECTOR POTENTIAL WEAK FORMS g g P

Following the notation of Zhao and Cangellaris [9], we.

_ T i
begin with the Maxwell equations in anisotropic source-fre‘é - iAmLAULA'ZT} and @ are the true pgtenhals gnd
media A=1{4;, 4,, A, }" and® are their scaled versions provided

that the scaling factorg, , ¢-, g3 are chosen such that

VXE:iwﬁ~ﬁ 1)
Vx H=—iwe-F 2) g1 2_a2 g2 2_a3 93 2_a1 15
V.t E=0 3) w) “a\s) T \a) T @
V-m-H=0 (4)

This mapping when introduced into (10) and (11) produces
e coupled system of equations for the scaled potentials in
isotropic media

wherer and€ are the permeability and permittivity tensor§h
which have diagonal forms [2], [9]

E=cA (5)
_ 1 . . .
i =pA 6) Vo X ~Vox A—w?ed —iweV,d=0  (16)
H
h that . .
such tha Vo cliwA—V,8)=0  (17)
[A] = diag{a, a2, as}. ()
As shown in [2] and elsewhere; , a», anda; are complex where
constants that take on a special relationship in the absorbing det . 1 1 1
layer in order to preserve its perfect match with the interior Va= xg_1 O +y g0 Oy +2 g3 0. (18)

domain. Introducing the vector and scalar potentiéland ® . . .
g P Equations (16) and (17) are readily recognized as the vec-

defined as . ) . :

. . tor/scalar potential representations of the isotropic Maxwell

g-H=VxA (8) forms

E=iwA— Vo 9)
into (2) and (3) yields the coupled equations [whose solution Va X E :i“.“HA (19)
also satisfies (1) and (4) provided the appropriate gauge and Vo x H =—iwek (20)
boundary conditions are satisfied] V., eE=0 (21)

Vx LAV AW Ao iwe VB =0 (10) Vo pH =0 (22)

/1

V.E- (iwff— V®)=0 (11) which means that we can follow the development in [11] in

which are identical to those in [11] withand ;« replaced by order to identify two possible gauge conditions

their tensor counterparts and 7. N

Motivated by the generality of the approach in [9], we can Vo €A =iwe’u® (23)
identify a set of scaled potentials, which are simply related to VoA =iveud (24)
the true potentials as

A=G. A (12) corresponding to Lorentz gauge #1 and Lorentz gauge #2,
P (13) respectively. Transforming these relationships back in terms
of the true potentials in anisotropic medium leads to
where (' is a constant diagonal scaling matrix

—

[G] = diag{gy, 92, 93} (14) Ve A =ayayaziwe’ pd (25)
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Fig. 2. Geometry of the computational domain for benchmark problem 1—a plane wave normally incident on a PML.

V-A-A= ayasaztwend (26) Weighted residual treatment of (27) and (28) follows analo-
gously from that presented in Paulsenal. [13], which, in

which become the desired gauge conditions for implementi?"ﬂg'jS case, results in the weak forms

the PML within the scalar/vector potential framework. gqugi X lA—l .V X jf>_|_< V(A A’) (A V¢>7:)>
Realizing a node-based discrete system under Lorentz gauge K pardzds

#2 begins by substituting (26) into (10) and (11), which yields  — (iwe(A - V) (®4;)) — (w’eA ~ff¢>7;>

1 > > 1 R
Vx A" VxA—w?eA - A-A-V v :—]{ﬁx(lA_1~V><A>¢7;dg—|—j{(A~ﬁ)
B Haiasds H
(& A) +iwdh Ve=0 O v () - it s (29)
~V eA - VO 4 A -iwA - Ve—w?payaraz® = 0. (28) pajasas

<l< w09 09i 1 09; 09
p\araz du Oz az dy Oy <L( 99, 6¢>7+%6¢>7¢>>
—I-i%a@) —w2€a1¢i¢j> paz \ Or Jy ~ Qy O
as 0z Oz

< (1 6¢’] Ob; 4 as %3@

<L<_%8¢i %3¢>2>> as Ox Or ' asa; Oy Oy

paz \ dy dr ' dr dy +L%%) _w2€a2¢i¢j>
ay 0z 0z

< 1 ( 0¢; 0¢; | 0¢; 3¢7>> < 1 (_9% d¢; | 00, 3¢7:)>
pas 0z 3x+6x 0z pay 6—z§y+%8z

(ol o)) (o1

1 a¢] 6¢z 6¢>] a¢’z . a¢z 6¢] T
<u_( o0 0: T o a)> <‘““‘“ <¢’ M >>
1 Op; 0¢;  0d; 0¢; 0¢; 8¢>,
<E<‘@az *a—zay)> <‘(¢ oyt )>
< 1 9¢; 9¢i 4 1 9¢; 09
as Oz O  a; Oy Oy <_Man <¢ 3;5 + o 3¢,)> (30b)

n as %6¢7) _w2€as¢i¢j>

aray, Oz Oz

o a d¢i 0¢; o d¢i 0¢;
Or Ox dy Oy

—tweas | ¢;—=— —|—qb7
0z 0¢; 0¢; 2 9
+ a a ) —Ww € pa1a2a3¢>i¢j>J
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Fig. 3. Comparsion of the numerical (markers) and analytical (solidline) solution for benchmark problem 1.
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iwpearasas

V x —A— VXE—€A~V<
iwp

+ iweA - E = 0. (32)
With either of the two derived gauged conditions, the finite-
element matrix4;; not only remains symmetric, but also
preserves many of the desirable properties of the correspond-
ing matrices for isotropic media [13]. For example, if either
node: or nodej is not on a boundary or material interface,
the off-diagonal terms im;; will be zero which significantly
reduces the number of nonzero entries within the completely
assembled sparse matrix system.

V~€A~E)

I1l. M ATERIAL DEPENDENT BASES

To employ the PML technique in 3-D calculations, we
need six PML faces, 12 PML edges, and eight PML corners
as described by Zhao and Cangellaris [9] to enclose the

Fig. 4. Schematic of the geometry of benchmark problem 2—the cylindrickCtangular volume in which electromagnetic interactions are

radiator.

(=V; - eA - V) +(w” e’ paj ayaz®e; )+ {iweV - (¢, A - ff))

calculated. In order to make these PML regions reflectionless,
matrix A takes on a special form in each case. For example,
following the notation in [9], the matrid will be

= ]fn ce(iwh - A— A -V)gids (30a)
o : . 1

where(-) represents domain integration afidienotes integra- AP = diag{az, a,, —} (33)
tion over the enclosing boundary. Spatial expansion @fnd @
® in the nodal basis functiong; leads to a single symmetric AGT) — diag{a_ZJ a,ay, &} (34)
algebraic systemi;; F; = R; where as shown in (30b) at the G @z
bottom of the previous page. A = diag ay azj azamj Qg Aty (35)

Similarly, using anisotropic Lorentz gauge #1, i.e., (25), a, a, a,

we can obtain the correspondnfg and E formulations for
anisotropic medium

1 S
Vx —A"" ~V><H—A~V<

wWwe

vA.ﬁ)

weay asds

+iwpA - H =0 (31)

in the PML:, PMLzz, PMLzyz regions, respectively. Here,
PMLz corresponds to the PML region containing the face of
the rectangular volume whose normal is in thalirection.
PMLzz is the PML region corresponding to the volume
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containing the common edge which separates the Pllihd different values in the four different regions and they need to
PMLz faces. PMlzyz is the PML region corresponding tosatisfy the following relationships:
the corner cuboid which separates the PMLPMLzy, and

PMLyz edges. Aaw‘ _ "PMLy _ iA’PMLx _ iA’PMny (39)

In isotropic media, A is continuous across all material ap ay
interfaces when Lorentz gauge #2 is used. However, this is A""" — fPMLa _ iA*pMLy _ iA*PMny (40)
no longer the case when the Lorentz gauge #2 equivalent for Y ay Y ay "
anisotropic media [i.e., (26)] is employed. SpecificaIE/,is AW —A “‘PMN - /TEMM - /TEMW. (41)

discontinous across different PML materials and at the PML

interface with the interior (isotropic) domain. For example, However, we find that if we use material dependent basis

at a planar interface between air (i.e., the interior) and thgsctions we can overcome this problem. Specifically, the
PMLz region, the boundary conditions require a jump in thgasis functions become

xz component ofd (normal to the plane) and continuity in the

y and z components of4 (tangential to the plane) interior domain: - (¢;, ¢:, ¢:)
PMLz : (axqsza ¢z; z)
L gpvin _ o (36) PMLy: (¢:, ayé:, ¢i)
e , PMLz :  (¢:, ¢i, @ ¢s
APMLJ,‘ — APIT (37) . ( )
Y y. PMny . (ar¢ J¢7J ¢>7)
APMT‘J,' — AP (38) )
z z PMLyz : (¢s, aydi, t.pi)
) - _ PMLzz : (ay @i, ¢i, aspi)
This causes some difficulty for nodal FEM'’s using conven- PMLeyz © (andi, aysi, doos) (42)

tional basis functions because of the multiplicity of solution
values at nodes, which connect multiple materials. For examhere ¢, is the conventional linear basis function at nade
ple, at point P in Fig. 1, vector potential will have four which has value one at nodand zero at other nodes. Notation

19, 06i 0¢; 0¢i
<p<a oz 0z Jy dy <1<_%3¢7¢+%3¢i>>

St %ﬁ@@) _ WPeadi; p\ Oxr 9y ' Oy Ox
z Oz

< 1 (1 d¢; 0 d¢; 0
<EG%N@+%ﬁﬁ» i\ade 90 Ty By

a Oy Ox 0w Oy +a 6’8(1, 8(/:) —w2€a¢i¢j>
1 6@ 6¢>7 8¢>, 6¢)7 a 6@ 6¢>7 6¢>, 6¢)7
ﬁpﬁw+mw» @CW@+%w»
(loliradtl) oo rats)
1 6¢] 6¢z 6¢>] a¢’z a¢z 6¢] T

<,7< e 0z T 6z 8x>> <_W<¢’f 9 %% >>
a( 0J¢; 0¢;  0¢; 0¢; . e, 6(;5]
GlEma5a)) (Calogy+ofy))
0;

< (1 9%; 0¢ ta 9¢; 09i
i . 6@5]'
> <—zwea (qb, P + ¢7a—z)> (43b)

a Jx Oz dy Oy

+6—

8(;5, 09i ) — w2€a¢>'¢"

< (1 J¢; 0¢; 0, 8¢>]

, 96, 00, Nadz 92 Ty Oy
<—zwea<¢] Ep + ¢y —— >> P

0i 3¢,> —w?e? a¢'¢'>

ta 0z 0z Hai®i J |
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Fig. 5. Comparsion of the numerical (markers) and analytical (solid line) solution for benchmark problem 2.

In order to render a symmetric system, we keep the weight-
ing functions the same as the basis functions and to simplify
PMLy PMLxy the implementation, we set, = a, = a, = a. After using
(adi, ¢:, ¢;) as the basis and weighting function@,j in the
PML2z material becomes as shown in (43b), at the bottom of
air PMLx _the previou_s page. I_n contrast to t_he equivalent isot_ropic (i.e.,

interior region) matrix where off-diagonal terms vanish when
at least one of nodé andj is in a homogeneous subregion,
— | in the PML, the off-diagonal terms are zero for alland j
0.2 0.4 (except at the outer boundary of the PML itself).

Itis interesting to note that this numerical system is identical
to the one that we would have obtained if we stretched the
coordinatez using ' = a«, which is exactly the stretched
coordinate approach to the PML. Hence, for our formulation,
both the stretched coordinate and anisotropic medium imple-
mentations generate the exact same numerical system. They
will certainly produce the same fields in nonPML regions. In
_ _ o the PML region, the fields may be interpreted differently for
Fig. 6. Schematic of benchmark problem 3—the electric dipole. stretched coordinate and anisotropic media systems; however,

interpretation of the fields in PML region does not have great
significance since they are not part of the physical system.
(ag;, ¢;, ¢;) indicates that we use¢, as the basis function
for the = component ofA and ¢; as the basis function for V. BENCHMARK RESULTS
y and z components off, respectively. It can be shown that
under these sets of basis functions, all of the jump conditions
are satisfied. For example, at point P in Fig. 1, vector potent
A will have the following different values in the four different
regions:

In this section, we present results from three sample bench-
rk problems which have been used to verify our formu-
ations. The intent is to demonstrate that the computational
underpinnings of the proposed PML approach lead to valid
Maxwell equation solutions for nodal FEM’s rather than to

interior domain: (4, A,) explore a_nd optimize the pgrameter_ space associafced \_/vith
the PML itself (e.g., attenuation coefficient value/spatial dis-
PMLz - (454, A A tribution, layer thickness, etc.), which tends to be problem

PMLy: (4, aJAJJ A) dependent. As a result, we have opted to maintain a constant
PMLzy : (ar Ay, ay Ay, A,). (43a) coefficient PML region whose value can be estimated from

normal incidence reflection coefficient analysis [2] and is well
It is easy to see that these values satisfy (39)—(41). within the range considered by others (e.g., [6]). Further, the
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Fig. 7. Comparsion of the numerical (markers) and analytical (solidline) solution for benchmark problem 3.

layer thickness in terms of the numbers of elements, whickal, imaginary, and magnitude components. As can be seen,
span this distance, has been selected to be a representatigeagreement is excellent with the maximum error in any of
average of those used by others [5], [6], [9]. It is alsthe numerical curvers in Fig. 3 being less than 1.2%. Similar
worth noting that while there have been reports of poaalculations and results (not shown) have been obtained with
finite-element system matrix conditioning and concomitatihe A — ¢ formulation under Lorentz gauge #2 with nearly
poor iterative solver behavior associated with the PML whedentical computational precision.

implemented for edge-element solution strategies [6], we haveThe second more challenging benchmark problem is that of
not observed any degradation in iterative solver performanae infinite cylindrical radiator in free-space. Fig. 4 illustrates
in the examples presented herein. Clearly, our experienceaircross section of the computational domain and indicates the
this regard is anecdotal and more systematic study of this issekevant geometrical dimensions that have been used. In this
is warranted, although we have explored the PML parametase, a unit-magnitude tangential electric field polarized in
space in some depth in a specialty application and have tlo¢ azimuthal direction oscillating at a 200-Mhz excitation
observed degraded iterative solver convergence when the Pivikquency has been imposed on the cylinder surface. The
was employed in a node-based finite-element scheme in thiglytical solution to this problem is

case either [15]. !

The first benchmark example involves the simulation of a F= M(/g (45)
plane wave normally incident on the PML as illustrated in H}(kR)
Fig. 2. The interface between the interior domain and the PMV{ThICh is one-dimensional,
occurs at: = 0. The H formulation (31) was used in this case
on a tetrahrahedral finite-element mesh having dimensions
0.4 x 0.4 x 1.0 m in thez, y, andz directions, respectively,
with approximate sampling rates of 15 nodes/wavelength. T.
solution was driven at 200 Mhz by a unit-magnitude tangentl%
magnetic field polarized in theé direction atz = —0.5 m
Boundary conditions ay = +0.2 andz = +0.2 were PEC
(i.e.,7x E = 0) and PMC (i.e.ji x H = 0), respectively. The
PML, itself, was terminated with PEC conditions and utilize
complex number = 1 — 2¢ as its attenuation factor. The
analytical solution for this example is quite simple:

but the computations have been
ca]{rled out on a fully 3-D mesh (with similar sampling rates
in the first benchmark) and the results have been compared
long the midplane of the computational domain. The cylinder
s 1.6 m tall with PMC conditions imposed on its top and
ttom surfaces. As indicated in Fig. 4, the PML was Cartesian
in geometry, consisted of six layers, used= 1 — 2¢ as
its attenuation factor, and was terminated by PEC conditions
aimilar to those used in the previous example.

Comparison of the computed and analytical results are
shown in Fig. 5. Again the agreement is excellent with max-
imum errors being less 1% for the magnitude and the real
part of the F field and no worse than 5% for the imaginary
part of the solution. The numerical results in this figure were
generated with thel —® approach. Using th& formulation to

Fig. 3 provides a comparison of the numerical and analyticadmpute the corresponding dual problem generates an almost
results for thed field in this case. The solid lines indicateidentical numerical solution (the maximum difference between
the exact solutions whereas the markers depict the computieel two numerical computations was less than 0.01%).

5 [ eikz z2<0
H=">" 44
H, e ikze=hB2 z> 0. (44)
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V. ARBITRARILY SHAPED PML

The requirement of a Cartesian mesh termination imposed
by the usual PML treatment is somewhat cumbersome for
finite elements and serves to constrain the flexibility of the
method in terms of representing complex shapes. Three-
dimensional mesh generation is already difficult enough with-
out the additional insistence on a Cartesian termination with
predefined specifications for corner, edge, and face regions.
In this section, we provide and test an approach for extending
the conventional Cartesian PML formulation to one that can be
adapted to a more arbitrary shape. The key in realizing this ap-
proach is to recognize that in our formulations the anisotropic
and stretched coordinate frameworks lead to identical discrete
systems, as illustrated in Section Ill. In the arbitrarily shaped
PML context, it is much more natural to adopt the stretched
coordinate view. Specifically, instead of modifying the finite-
element equations based on material property changes with
predefined layer regions in order to eliminate all reflections, we
stretch the finite-element mesh coordinates within the PML by
enacting the complex coordinate transformation while leaving
the finite-element equations themselves essentially unaltered.
By adopting this approach we can virtually have an unlimited
number of PML regions which are defined by nodal-mesh
coordinates that can be deployed to form a more arbitrary
shape. Our scheme proceeds as follows.

1) Generate the 3-D mesh with a suitable convex layer
such that the interface between this layer and the interior
domain will be a closed convex surface.

2) For each FEM node at positichwithin the PML, find
the point on the outer surface of the interior domain that
is closest to¥ and designate it ag,.

3) Construct a new coordinate for eaghas #hew =
Z, + a(¥ — £,) wherea is the same complex number
used to characterize the media in the anisotropic PML
approach.

In essence, this algorithm stretches the nodal coordinate in
Mhe PML region along the direction normal to the outer
surface of the interior domain. It provides the identical discrete
The third and final benchmark to be reported here is tﬁgstem 0 t_hat_obtamed with the_ Cartesian an|§otroplc "?ed'a
S . . . |?1esh termination when the arbitrary surrounding PML is a
electric dipole problem. As a computational simulation o
this solution, we constructed a 3-D mesh of a hollow Spherr%ctangular box.
' Here, we present two test cases for this non-Cartesian PML

embedded inside a Cartesian rectangular box surroundeda Jorithm using the cylindrical radiator test case of Fig. 4 but

PMI.‘S as indicated in Fig. 6. For a short electric dipole, th\(/evith cylindrical and ellipsoidal terminations. The respective
H field has only ap component

geometries for these problems are illustrated in Fig. 8. The
numerical computations (compared to their analytical counter-
ik 1 parts) for these non-Cartesian PML terminations are shown in

Hy=e M (— + —2> sin(6) (46) Fig. 9. While we have not exhaustively tested this approach,
ror the results are very encouraging. The errors introduced by the
presence of the PML are comparable to those for the Cartesian

which we used to specify the tangential componerfffojn the term|nat|0ns. shown in !:'g' 5 and can be achieved with any of
the formulations described in Section IlI.

spherical surface in order to drive our computational solution.
The PML characteristics were the same as those in the previous
two examples. Fig. 7 shows a comparison between numerical
and analytical calculations. Results are again very favorableA node-based implementation of the PML concept for finite-
with maximum errors being less than 2.4% for either flie element frequency-domain electromagnetic scattering has been
or A — & calculations. presented. The development is set in the context of the

Fig. 8. Geometry of two benchmark problems for the arbitrarily shaped P
algorithm.

VI. CONCLUSIONS
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Fig. 9. Comparison of the numerical (markers) and analytical (solid line) solution for the cylindrical radiator with a cylindrical PML layer.
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Fig. 10. Comparison of the numerical (markers) and analytical (solid line) solution of the cylindrical radiator with an elliptical PML layer.
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