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Perfectly Matched Layer Mesh Terminations
for Nodal-Based Finite-Element

Methods in Electromagnetic Scattering
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Abstract—The perfectly matched layer (PML) concept intro-
duced by Berenger is implemented for nodal-based finite-element
frequency-domain methods. Starting from a scalar/vector poten-
tial framework, anisotropic-media-equivalent gauge conditions
are developed for both coupled and uncoupled (i.e., direct field)
scalar/vector field formulations. The resulting discrete system of
equations are shown to be identical for both the anisotropic and
stretched coordinate viewpoints of PML mesh termination on
node-based finite elements. Reaching this equivalency requires
that special attention be paid to the basis/weighting functions
used within the PML region, specifically, a material dependency
is found to be essential. The alternative but identical stretched
coordinate approach provides the perspective needed to realize
a scheme for generalizing the PML to non-Cartesian mesh ter-
minations which are more natural in the finite-element context.
Several benchmark problems and associated numerical results
are presented to demonstrate the performance of the PML on
node-based finite elements.

Index Terms—Electromagnetic scattering, finite-element meth-
ods, perfectly matched layer.

I. INTRODUCTION

T HERE has been considerable interest in the develop-
ment, implementation, and interpretation of the perfectly

matched layer (PML) concept, first introduced by Beringer
[1] as an effective mesh-truncation scheme for differential
equation solutions in computational electromagnetics (e.g.,
[2]–[10]). Investigation has spawned two views of the PML
approach: 1) a coordinate stretching construct involving a
complex-valued coordinate transformation, which alters the
spatial derivative operators in Maxwell’s equations [3], [4]
and 2) an anisotropic material formulation where the Maxwell
equations retain their familiar forms, but with the insertion
of complex material property tensors for the permittivity and
permeability within the layer [2]. More recent analysis has
shown the mathematical equivalence of these two approaches
[6], [9], although close scrutiny reveals that the continuity
conditions on the normal field components will, in general, be
different leading to different normal fields between the two
schemes [6].
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On the implementation/validation front, the majority of
attention to date has been devoted to finite-difference time-
domain (FDTD) considerations [3], [5], [8], [9] although
there has been a significant increase in the development and
use of the PML in finite-element (FE) frequency-domain
scattering calculations as well [2], [6]. In this regard, edge-
element formulations have served as the primary focus and
have dominated the advances that have been reported in
the literature for finite elements. In both the FDTD and FE
cases, the results reported appear to be largely positive. Pa-
rameters of interest (e.g., layer thickness, material properties,
and distance from the scatterers) have been studied and a
certain amount of fine-tuning and selection guidelines for
setting these parameters has developed. Some iterative solution
convergence difficulties have been noted [6], which have
constrained property value choices; nonetheless, the success of
the PML to date along with its relative ease of implementation,
compared to alternatives, suggests that it may become the
method of choice for mesh truncation with differential equation
approaches to electromagnetic (EM) scattering problems.

In this paper, we report on the development of PML analogs
for node-based finite-element discretizations. We show that
the PML concept can be efficiently and effectively incorpo-
rated into the node-based scalar/vector potential framework of
Boyseet al. [11], which is free of spurious solutions at least
in the absence of perfectly conducting sharp corners, although
some progress on this front has been recently realized [12].
Specifically, we demonstrate that the PML can be implemented
in both Lorentz gauge #2 and Lorentz gauge #1 from [11], the
former leading to a coupled set of continuous scalar/vector
potential equations [13], while the later produces an uncoupled
pair, which, under proper boundary condition specification,
results in a direct field formulation [11], [14]. An interesting
and important feature of our numerical approach is the fact that
both the anisotropic media and stretched coordinate viewpoints
of mesh truncation in this context lead to the same discrete
system of equations and hence are numerically identical. This
is accomplished through the careful selection of material
dependent basis/weighting functions that satisfy all jump con-
ditions while also preserving matrix symmetry. Further, these
parallel views are used to identify an implementation strategy
for realizing the PML on node-based finite elements, which is
generalized to non-Cartesian mesh terminations that not only
preserves the flexibility of the finite-element method (FEM) in
terms of accommodating complex geometries, but also relieves
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the imposition of any constraints on the already difficult task
of three-dimensional (3-D) mesh generation when the PML is
employed.

In the following sections, we develop the node-based PML
construct in terms of the scalar/vector potential framework
by deriving the associated gauge conditions and weak forms.
The importance of selecting material dependent basis functions
within the layer is illustrated. Results from several sample
benchmark problems, including examples with non-Cartesian
mesh terminations are highlighted to demonstrate the validity
and overall performance of the PML within the node-based
finite element computational framework.

II. A NISOTROPICSCALAR/VECTOR POTENTIAL WEAK FORMS

Following the notation of Zhao and Cangellaris [9], we
begin with the Maxwell equations in anisotropic source-free
media

r� ~E = i!� � ~H (1)

r� ~H =�i!� � ~E (2)

r � � � ~E = 0 (3)

r � � � ~H = 0 (4)

where� and � are the permeability and permittivity tensors
which have diagonal forms [2], [9]

� = �� (5)

� =�� (6)

such that

[�] = diagfa1; a2; a3g: (7)

As shown in [2] and elsewhere,a1, a2, anda3 are complex
constants that take on a special relationship in the absorbing
layer in order to preserve its perfect match with the interior
domain. Introducing the vector and scalar potentials~A and�
defined as

� � ~H =r� ~A (8)
~E = i! ~A �r� (9)

into (2) and (3) yields the coupled equations [whose solution
also satisfies (1) and (4) provided the appropriate gauge and
boundary conditions are satisfied]

r�
1

�
��1 � r � ~A � !2� � ~A� i!� � r� = 0 (10)

r � � � (i! ~A �r�) = 0 (11)

which are identical to those in [11] with� and� replaced by
their tensor counterparts� and�.

Motivated by the generality of the approach in [9], we can
identify a set of scaled potentials, which are simply related to
the true potentials as

~A =G � Â (12)

� = �̂ (13)

whereG is a constant diagonal scaling matrix

[G] = diagfg1; g2; g3g: (14)

Fig. 1. Point P connecting to multiple materials.

~A = fAx; Ay; Azg
T and � are the true potentials and

Â = fÂx; Ây; Âzg
T and�̂ are their scaled versions provided

that the scaling factorsg1; g2; g3 are chosen such that

�
g1

g2

�2

=
a2

a1
;

�
g2

g3

�2

=
a3

a2
;

�
g3

g1

�2

=
a1

a3
: (15)

This mapping when introduced into (10) and (11) produces
the coupled system of equations for the scaled potentials in
isotropic media

ra �
1

�
ra � Â� !2�Â � i!�ra�̂ = 0 (16)

ra � �(i!Â �ra�̂) = 0 (17)

where

ra
def
= x̂

1

g1
@x + ŷ

1

g2
@y + ẑ

1

g3
@z: (18)

Equations (16) and (17) are readily recognized as the vec-
tor/scalar potential representations of the isotropic Maxwell
forms

ra � Ê = i!�Ĥ (19)

ra � Ĥ =�i!�Ê (20)

ra � �Ê =0 (21)

ra � �Ĥ =0 (22)

which means that we can follow the development in [11] in
order to identify two possible gauge conditions

ra � �Â = i!�2�� (23)

ra � Â = i!���̂ (24)

corresponding to Lorentz gauge #1 and Lorentz gauge #2,
respectively. Transforming these relationships back in terms
of the true potentials in anisotropic medium leads to

r � �� � ~A = a1a2a3i!�
2�� (25)
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Fig. 2. Geometry of the computational domain for benchmark problem 1—a plane wave normally incident on a PML.

r � � � ~A = a1a2a3i!��� (26)

which become the desired gauge conditions for implementing
the PML within the scalar/vector potential framework.

Realizing a node-based discrete system under Lorentz gauge
#2 begins by substituting (26) into (10) and (11), which yields

r�
1

�
��1 � r � ~A � !2�� � ~A� � � r

1

�a1a2a3
r

� (� � ~A) + i!�� � r� = 0 (27)

�r � �� � r�+ � � i! ~A � r�� !2�2�a1a2a3� = 0: (28)

Weighted residual treatment of (27) and (28) follows analo-
gously from that presented in Paulsenet al. [13], which, in
this case, results in the weak forms�
r�i �

1

�
��1 � r � ~A

�
+

�
1

�a1a2a3
r � (� � ~A) (� � r�i)

�

� hi!�(� � r) (��i)i � h!2�� � ~A�ii

= �

I
n̂ �

�
1

�
��1 � r � ~A

�
�idS +

I
(� � n̂)

�

�
1

�a1a2a3
r � (� � ~A)� i!��

�
�idS (29)

Aij =

2
6666666666666666666664
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Fig. 3. Comparsion of the numerical (markers) and analytical (solidline) solution for benchmark problem 1.

Fig. 4. Schematic of the geometry of benchmark problem 2—the cylindrical
radiator.

h�r�i � �� � r�i+h!2�2�a1a2a3��ii+hi!�r � (�i� � ~A)i

=

I
n̂ � �(i!� � ~A� � � r�)�idS (30a)

whereh�i represents domain integration and
H

denotes integra-
tion over the enclosing boundary. Spatial expansion of~A and
� in the nodal basis functions�i leads to a single symmetric
algebraic systemAijFj = Rj where as shown in (30b) at the
bottom of the previous page.

Similarly, using anisotropic Lorentz gauge #1, i.e., (25),
we can obtain the corresponding~H and ~E formulations for
anisotropic medium

r�
1

i!�
��1 � r� ~H � � � r

�
1

i!�a1a2a3
r � � � ~H

�

+ i!�� � ~H = 0 (31)

r�
1

i!�
��1 � r� ~E � �� � r

�
1

i!��2a1a2a3
r � �� � ~E

�

+ i!�� � ~E = 0: (32)

With either of the two derived gauged conditions, the finite-
element matrixAij not only remains symmetric, but also
preserves many of the desirable properties of the correspond-
ing matrices for isotropic media [13]. For example, if either
node i or nodej is not on a boundary or material interface,
the off-diagonal terms inAij will be zero which significantly
reduces the number of nonzero entries within the completely
assembled sparse matrix system.

III. M ATERIAL DEPENDENT BASES

To employ the PML technique in 3-D calculations, we
need six PML faces, 12 PML edges, and eight PML corners
as described by Zhao and Cangellaris [9] to enclose the
rectangular volume in which electromagnetic interactions are
calculated. In order to make these PML regions reflectionless,
matrix � takes on a special form in each case. For example,
following the notation in [9], the matrix� will be

�(z) =diag

�
az; az;

1

az

�
(33)

�(zx) =diag

�
az

ax
; azax;

ax

az

�
(34)

�(xyz) =diag

�
ayaz

ax
;
azax

ay
;
axay

az

�
(35)

in the PMLz, PMLzx, PMLxyz regions, respectively. Here,
PMLz corresponds to the PML region containing the face of
the rectangular volume whose normal is in thez direction.
PMLzx is the PML region corresponding to the volume



TANG et al.: PML MESH TERMINATIONS FOR NODAL-BASED FEM’S IN EM SCATTERING 511

containing the common edge which separates the PMLx and
PMLz faces. PMLxyz is the PML region corresponding to
the corner cuboid which separates the PMLzx, PMLxy, and
PMLyz edges.

In isotropic media, ~A is continuous across all material
interfaces when Lorentz gauge #2 is used. However, this is
no longer the case when the Lorentz gauge #2 equivalent for
anisotropic media [i.e., (26)] is employed. Specifically,~A is
discontinous across different PML materials and at the PML
interface with the interior (isotropic) domain. For example,
at a planar interface between air (i.e., the interior) and the
PMLx region, the boundary conditions require a jump in the
x component of~A (normal to the plane) and continuity in the
y and z components of~A (tangential to the plane)

1

ax
APMLx
x =Aair

x (36)

APMLx
y =Aair

y (37)

APMLx
z =Aair

z : (38)

This causes some difficulty for nodal FEM’s using conven-
tional basis functions because of the multiplicity of solution
values at nodes, which connect multiple materials. For exam-
ple, at point P in Fig. 1, vector potential~A will have four

different values in the four different regions and they need to
satisfy the following relationships:

~Aair
x = ~APMLy

x =
1

ax
~APMLx
x =

1

ax
~APMLxy
x (39)

~Aair
y = ~APMLx

y =
1

ay
~APMLy
y =

1

ay
~APMLxy
x (40)

~Aair
z = ~APMLy

z = ~APMLx
z = ~APMLxy

z : (41)

However, we find that if we use material dependent basis
functions we can overcome this problem. Specifically, the
basis functions become

interior domain: (�i; �i; �i)

PMLx : (ax�i; �i; �i)

PMLy : (�i; ay�i; �i)

PMLz : (�i; �i; az�i)

PMLxy : (ax�i; ay�i; �i)

PMLyz : (�i; ay�i; az�i)

PMLzx : (ax�i; �i; az�i)

PMLxyz : (ax�i; ay�i; az�i) (42)

where�i is the conventional linear basis function at nodei,
which has value one at nodei and zero at other nodes. Notation
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Fig. 5. Comparsion of the numerical (markers) and analytical (solid line) solution for benchmark problem 2.

Fig. 6. Schematic of benchmark problem 3—the electric dipole.

(a�i; �i; �i) indicates that we usea�i as the basis function
for the x component of~A and �i as the basis function for
y and z components of~A, respectively. It can be shown that
under these sets of basis functions, all of the jump conditions
are satisfied. For example, at point P in Fig. 1, vector potential
~A will have the following different values in the four different
regions:

interior domain: (Ax; Ay; Az)

PMLx : (axAx; Ay; Az)

PMLy : (Ax; ayAy; Az)

PMLxy : (axAx; ayAy; Az): (43a)

It is easy to see that these values satisfy (39)–(41).

In order to render a symmetric system, we keep the weight-
ing functions the same as the basis functions and to simplify
the implementation, we setax = ay = az = a. After using
(a�i; �i; �i) as the basis and weighting functions,~Aij in the
PMLx material becomes as shown in (43b), at the bottom of
the previous page. In contrast to the equivalent isotropic (i.e.,
interior region) matrix where off-diagonal terms vanish when
at least one of nodei and j is in a homogeneous subregion,
in the PML, the off-diagonal terms are zero for alli and j

(except at the outer boundary of the PML itself).
It is interesting to note that this numerical system is identical

to the one that we would have obtained if we stretched the
coordinatex using x0 = ax, which is exactly the stretched
coordinate approach to the PML. Hence, for our formulation,
both the stretched coordinate and anisotropic medium imple-
mentations generate the exact same numerical system. They
will certainly produce the same fields in nonPML regions. In
the PML region, the fields may be interpreted differently for
stretched coordinate and anisotropic media systems; however,
interpretation of the fields in PML region does not have great
significance since they are not part of the physical system.

IV. BENCHMARK RESULTS

In this section, we present results from three sample bench-
mark problems which have been used to verify our formu-
lations. The intent is to demonstrate that the computational
underpinnings of the proposed PML approach lead to valid
Maxwell equation solutions for nodal FEM’s rather than to
explore and optimize the parameter space associated with
the PML itself (e.g., attenuation coefficient value/spatial dis-
tribution, layer thickness, etc.), which tends to be problem
dependent. As a result, we have opted to maintain a constant
coefficient PML region whose value can be estimated from
normal incidence reflection coefficient analysis [2] and is well
within the range considered by others (e.g., [6]). Further, the



TANG et al.: PML MESH TERMINATIONS FOR NODAL-BASED FEM’S IN EM SCATTERING 513

Fig. 7. Comparsion of the numerical (markers) and analytical (solidline) solution for benchmark problem 3.

layer thickness in terms of the numbers of elements, which
span this distance, has been selected to be a representative
average of those used by others [5], [6], [9]. It is also
worth noting that while there have been reports of poor
finite-element system matrix conditioning and concomitant
poor iterative solver behavior associated with the PML when
implemented for edge-element solution strategies [6], we have
not observed any degradation in iterative solver performance
in the examples presented herein. Clearly, our experience in
this regard is anecdotal and more systematic study of this issue
is warranted, although we have explored the PML parameter
space in some depth in a specialty application and have not
observed degraded iterative solver convergence when the PML
was employed in a node-based finite-element scheme in this
case either [15].

The first benchmark example involves the simulation of a
plane wave normally incident on the PML as illustrated in
Fig. 2. The interface between the interior domain and the PML
occurs atz = 0. TheH formulation (31) was used in this case
on a tetrahrahedral finite-element mesh having dimensions of
0.4� 0.4� 1.0 m in thex, y, andz directions, respectively,
with approximate sampling rates of 15 nodes/wavelength. The
solution was driven at 200 Mhz by a unit-magnitude tangential
magnetic field polarized in thêx direction atz = �0:5 m.
Boundary conditions aty = �0:2 andx = �0:2 were PEC
(i.e.,~n� ~E = 0) and PMC (i.e.,~n� ~H = 0), respectively. The
PML, itself, was terminated with PEC conditions and utilized
complex numbera = 1 � 2i as its attenuation factor. The
analytical solution for this example is quite simple:

~H =
~Hoe

�jkz z < 0
~Hoe

�jkze�k�z z > 0:
(44)

Fig. 3 provides a comparison of the numerical and analytical
results for the~H field in this case. The solid lines indicate
the exact solutions whereas the markers depict the computed

real, imaginary, and magnitude components. As can be seen,
the agreement is excellent with the maximum error in any of
the numerical curvers in Fig. 3 being less than 1.2%. Similar
calculations and results (not shown) have been obtained with
the A � � formulation under Lorentz gauge #2 with nearly
identical computational precision.

The second more challenging benchmark problem is that of
an infinite cylindrical radiator in free-space. Fig. 4 illustrates
a cross section of the computational domain and indicates the
relevant geometrical dimensions that have been used. In this
case, a unit-magnitude tangential electric field polarized in
the azimuthal direction oscillating at a 200-Mhz excitation
frequency has been imposed on the cylinder surface. The
analytical solution to this problem is

~E =
H1

1(kr)

H1
1(kR)

�̂ (45)

which is one-dimensional, but the computations have been
carried out on a fully 3-D mesh (with similar sampling rates
as in the first benchmark) and the results have been compared
along the midplane of the computational domain. The cylinder
was 1.6 m tall with PMC conditions imposed on its top and
bottom surfaces. As indicated in Fig. 4, the PML was Cartesian
in geometry, consisted of six layers, useda = 1 � 2i as
its attenuation factor, and was terminated by PEC conditions
similar to those used in the previous example.

Comparison of the computed and analytical results are
shown in Fig. 5. Again the agreement is excellent with max-
imum errors being less 1% for the magnitude and the real
part of theE field and no worse than 5% for the imaginary
part of the solution. The numerical results in this figure were
generated with theA�� approach. Using theH formulation to
compute the corresponding dual problem generates an almost
identical numerical solution (the maximum difference between
the two numerical computations was less than 0.01%).
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Fig. 8. Geometry of two benchmark problems for the arbitrarily shaped PML
algorithm.

The third and final benchmark to be reported here is the
electric dipole problem. As a computational simulation of
this solution, we constructed a 3-D mesh of a hollow sphere
embedded inside a Cartesian rectangular box surrounded by
PML’s as indicated in Fig. 6. For a short electric dipole, the
H field has only a�̂ component

H� = e�jkr

�
jk

r
+

1

r2

�
sin(�) (46)

which we used to specify the tangential component of~H on the
spherical surface in order to drive our computational solution.
The PML characteristics were the same as those in the previous
two examples. Fig. 7 shows a comparison between numerical
and analytical calculations. Results are again very favorable
with maximum errors being less than 2.4% for either theH

or A � � calculations.

V. ARBITRARILY SHAPED PML

The requirement of a Cartesian mesh termination imposed
by the usual PML treatment is somewhat cumbersome for
finite elements and serves to constrain the flexibility of the
method in terms of representing complex shapes. Three-
dimensional mesh generation is already difficult enough with-
out the additional insistence on a Cartesian termination with
predefined specifications for corner, edge, and face regions.
In this section, we provide and test an approach for extending
the conventional Cartesian PML formulation to one that can be
adapted to a more arbitrary shape. The key in realizing this ap-
proach is to recognize that in our formulations the anisotropic
and stretched coordinate frameworks lead to identical discrete
systems, as illustrated in Section III. In the arbitrarily shaped
PML context, it is much more natural to adopt the stretched
coordinate view. Specifically, instead of modifying the finite-
element equations based on material property changes with
predefined layer regions in order to eliminate all reflections, we
stretch the finite-element mesh coordinates within the PML by
enacting the complex coordinate transformation while leaving
the finite-element equations themselves essentially unaltered.
By adopting this approach we can virtually have an unlimited
number of PML regions which are defined by nodal-mesh
coordinates that can be deployed to form a more arbitrary
shape. Our scheme proceeds as follows.

1) Generate the 3-D mesh with a suitable convex layer
such that the interface between this layer and the interior
domain will be a closed convex surface.

2) For each FEM node at position~x within the PML, find
the point on the outer surface of the interior domain that
is closest to~x and designate it as~xo.

3) Construct a new coordinate for each~x as ~xnew =
~xo + a(~x � ~xo) wherea is the same complex number
used to characterize the media in the anisotropic PML
approach.

In essence, this algorithm stretches the nodal coordinate in
the PML region along the direction normal to the outer
surface of the interior domain. It provides the identical discrete
system to that obtained with the Cartesian anisotropic media
mesh termination when the arbitrary surrounding PML is a
rectangular box.

Here, we present two test cases for this non-Cartesian PML
algorithm using the cylindrical radiator test case of Fig. 4 but
with cylindrical and ellipsoidal terminations. The respective
geometries for these problems are illustrated in Fig. 8. The
numerical computations (compared to their analytical counter-
parts) for these non-Cartesian PML terminations are shown in
Fig. 9. While we have not exhaustively tested this approach,
the results are very encouraging. The errors introduced by the
presence of the PML are comparable to those for the Cartesian
terminations shown in Fig. 5 and can be achieved with any of
the formulations described in Section II.

VI. CONCLUSIONS

A node-based implementation of the PML concept for finite-
element frequency-domain electromagnetic scattering has been
presented. The development is set in the context of the



TANG et al.: PML MESH TERMINATIONS FOR NODAL-BASED FEM’S IN EM SCATTERING 515

Fig. 9. Comparison of the numerical (markers) and analytical (solid line) solution for the cylindrical radiator with a cylindrical PML layer.

Fig. 10. Comparison of the numerical (markers) and analytical (solid line) solution of the cylindrical radiator with an elliptical PML layer.

generalized scalar/vector potential formulations of Boyseet
al. [11]. In doing so, determination of the appropriate gauge
condition for the PML region is required and the analogous
gauge conditions for both coupled and decoupled (i.e., direct
field) systems have been determined. Use of a material depen-
dent basis/weighting function produces a symmetric discrete
system, which is identical (in all components) from either the
anisotropic or stretched coordinate viewpoints of the PML
mesh termination. This equivalency leads to a simple approach
for realizing non-Cartesian mesh terminations, which are more
natural for finite-element discretizations in the sense that
they can be arbitrarily shaped which has been a hallmark of

the success of finite elements. Benchmark results for three
example problems using both Cartesian/non-Cartesian mesh
terminations andA � �, E, andH formulations have been
shown with promising results.
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