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On the Use of Cavity Modes as Basis Functions in
the Full Wave Analysis of Printed Antennas
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Abstract—Magnetic wall cavity (MWC) modes are often em-
ployed as basis functions in the method of moments (MoM)
full wave analysis of printed antennas, especially in its spectral
domain version, where the use of entire domain basis functions is
particularly convenient, but in some cases the TE (solenoidal)
modes are not included. Here we investigate on the effect of
this exclusion, explaining the nature of the TE-TM coupling,
presenting criteria to determine the necessary number of modes,
and giving numerical results for annular patches, especially
relevant in this context.

Index Terms—Cavity modes, full-wave analysis, printed anten-
nas.

I. INTRODUCTION

I N the analysis of printed antennas with the integral equation
(EFIE) approach, the use of appropriate entire-domain basis

functions is often convenient, because few of such terms
are sufficient to well represent the solution. Entire-domain
basis functions are almost always associated with the spectral
domain version of the method of moments (MoM): this implies
that the two-fold Fourier transform (FT) of the basis/test
functions has to be known in a form that allows a fast
numerical evaluation.

Since a patch antenna approximately behaves like a mag-
netic wall cavity (MWC), the modes of this cavity are often
employed to generate the basis functions for the surface current
on the patch. The MWC modes are readily available for several
separable geometries (rectangular, circular, annular, triangular,
� � �) and often also their FT can be found in convenient
form; recently, a generalization of these modes has also been
introduced by the authors [1], [2] to deal with arbitrary shapes
and include the field singularity at the edge.

In the following we indicate (as usual) by TM the modes
with zero surface curl on the patch, and by TE (solenoidal)
those with zero surface divergence. To have a complete basis,
both TM and TE modes must obviously be considered. How-
ever, in the literature about printed antennas, often (although
with some exceptions [3]) only the TM modes are considered,
this seeming the rule in the case of ring radiators [4]–[8].
In the following, we will investigate on the effects of this
approximation; while the rationale for neglecting TE modes
is probably the TM dominance of the resonance modes, it
will be shown that this omission may lead to inaccurate
results. As explained in Section II, the TE-TM coupling is
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generated by the edge of the metallizations: in Sections III
and IV substantiate the general discussion is substantiated with
numerical results for an annular patch. We have chosen this
configuration because in literature its analysis is often carried
out with MWC modes, but (as mentioned before) to the best
of our knowledge, only TM modes are taken in account. On
the other hand, when printed rings are employed in frequency
selective surfaces, both TM and TE modes are considered [9].

Although in this work we will discuss numerical result only
for a free-standing annular patch, the formulation is carried
out for an arbitrary geometry and the conclusions obtained
therefrom are of general validity.

II. REACTION INTEGRALS AND TE-TM COUPLING

A key point in the MoM analysis is the computation of the
reaction integrals between the basis functions, here denoted
by B

n
: we will be ultimately concerned with this computation

in the spectral domaink
t
, where the transformed functions

are denoted by a tilde( ~B
n
); a Galerkin testing scheme will

be assumed throughout. For a transversally infinite dielectric,
stratified along the axiŝz, the spectral dyadic Green’s function
is diagonal in the polar basis identified by the polar unit vectors
k̂t and �̂ = ẑ � k̂t (e.g., [10])

~G(kt) = k̂tk̂t g
TM(kt) + �̂�̂ gTE(kt) (1)

where the two scalar functionsgTE(kt); gTM(kt) can be found
by solving equivalent transmission line problems and take
into account the characteristics of the dielectric stratification;
the reaction integrals in the spectral domain can therefore be
written as

Zmn =
1

4�2
fhk̂t � ~Bm

; gTM k̂t � ~Bn
i + h�̂ � ~B

m
; gTE �̂ � ~B

n
ig

(2)

so that only the projections of the transformed basis functions
along the two polar directionŝkt and�̂ are needed. Following
an approach similar to that introduced by Amitay and Galindo
[11] for a different problem (but never used before for printed
antennas) we rearranged the spectral MoM to evaluate those
projections directly from their spatial counterparts, strongly
reducing the complexity of the required FT [12]. This treat-
ment is valid for any stratification, and for a patch occupying a
surface� of arbitrary form delimited by the curve� : � = �

�
.

The relevant geometrical quantities are depicted in Fig. 1:�̂

and ŝ = ẑ � �̂ are normal and tangential directions on�,
respectively.
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Fig. 1. Geometry for a patch of arbirtrary shape.

The basis functionsB for the surface currentJ must be
div-conforming and subject to the condition̂� � J j� = 0,
which corresponds to a PMC condition (ŝ � Hj� = 0, with
J = ẑ � Hj�) at the edge, and therefore the TM and TE
modes of the MWC are a complete set for the unknown surface
current J .

The projections of the transformed basis functions~B
n

along
the two polar directions are related to the FT of the divergence
and curl of the basis functions, respectively [12]

k̂t � ~B =
1

�jkt
(�jk

t
) � ~B(k

t
) =

1

�jkt
FT2frt �B(�)g (3)

and

�̂ � ~B =
1

�jkt
(�jk

t
) � [ẑ � ~B(k

t
)]

=
1

�jkt
FT2frt � [ẑ � B(�)]g (4)

(rt � [ẑ�B(�)] is equivalent to the surface curlẑ � [rt�B]).
To explicitly enforce the condition that the basis functions

B
n

must vanish outside the conductor surface�, we write
B
n
(�) = W�(�) f

n
(�), whereW�(�) = 1 on � and zero

elsewhere, andf need to be defined only on�. Thus, after
some manipulation [12] one finds

rt �B(�) = W�(�)rt � f (�) (5)

rt � [ẑ �B(�)] = ŝ � f (�
�
) �(� � �

�
)

+W�(�)rt � (ẑ � f (�)) (6)

where the operatorrt is transverse tôz.
Employing the MWC modes as basis functionsf , the

TM(f 0) andTE(f 00) modes can be immediately derived by
duality from the modes of the corresponding PEC waveguide,
and so they can be expressed in terms of the TE and TM scalar
eigenfunctions	 and�, respectively [13], withf 0 / rt	;
f 00 / ẑ � rt� (note the TE-TM exchange). The solenoidal

property of the TE modes can be explicited to writeB00 =
ẑ � rt� everywhere, so that (4) for these modes can be
simplified to

�̂ � ~B00

= const:(�jkt) ~�: (7)

Note also that the definition of the modes viart�, rt	 and
the Helmholtz equation allow one to easily write thert � f 0

and thert � f 00 terms as directly proportional to	 and�
[12]. From standard considerations on the boundary conditions
@
@�
	j� = 0 and�j� = 0, one can see that the boundary term in

(6) never vanishes for the TM modes of the MWC. Otherwise
said, in this context of open structures, the TE basis functions
are solenoidal, but the TM basis functions are irrotational only
in a weak sense (almost everywhere): the projection of their
FT on �̂ is not zero, and TE-TM coupling is always present.

Moreover, as detailed in [1], the solenoidal set of basis func-
tions represents the edge singularity responsible for the blow
out of the current parallel to the edge; this singular behavior
usually affects the coupling to the feed structure, when the
latter extends across the edge of the patch, as it is always the
case for monolithic or electromagnetic (proximity) coupling.
On the other hand, this is scarcely noticeable for the probe-fed
patches, a fact that may explain the results reported so far for
this case (like in [4] and [5]). While the incompleteness of
a purely TM set is obvious, the considerations above allow
to detail the effect of this incompleteness on the numerical
solution. This will be the objective of the next sections.

III. T HE RING

For an annular patch, the procedure described in Section
II for the evaluation of the FT of basis functions, i.e. of
MWC modes, is particularly meaningful; in fact, although
the ring is a canonical, separable shape, the evaluation of the
Hankel transform that arises from the two-fold FT of most
reasonable basis functions proves to be a difficult task; the
use of orthogonal polynomials, that can easily accommodate
the edge behavior, does not lead to entirely closed-form
expressions, and the evaluation of the reaction integrals is
computer-intensive [14], [15]. On the other hand, the Vector
Hankel Transform (VHT) method [4] allows an efficient
formulation of the problem in association with MWC modes,
but is confined to axial-symmetric configurations, with an
extension to the probe-fed case, and a configuration with a
general feed network cannot be analyzed with this technique.
Instead, application of the technique in Section II will allow
the use of MWC modes in the spectral domain with a general
coupling geometry.

The TM(B0

n) andTE(B00

n) basis functions can be conve-
niently expressed in terms of the scalar eigenfunctions of the
coaxial waveguide with PEC walls [13]; for ease of reference,
in the following we will adhere to the usual notation of
Marcuvitz [13, Sec. 2.4] (note the exchange ofTM(0) and
TE(00) superscripts when passing from the MWC to the dual
electric-wall coaxial guide). Because of the separability of
	(�; �); �(�; �), the two-fold FT of (5), (6) reduce to one
Hankel (Bessel) transform, and one obtains their expressions
in closed form [12]. For TM modes (corresponding to TE of
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Fig. 2. Wide ring: comparison between the relative incremental error�n

and the relative error on the resonance frequency. Inset: ring patch geometry.

the coaxial guide)

FT2frt �B0

mng = (k00

cmn)
2 2�(|)m cos(m�) Imn(kt) (8)

with

Imn(kt) �"
kt�Zm

�
�0

mn
�
b

�
Jm�1(kt�)��0mn

�
b
Zm�1

�
�0mn

�
b

�
Jm(kt�)�

�0

mn

b

�2�k2t
#�=a
�=b

(9)

FT2frt � [ẑ �B0

mn(�)]g = 2�(|)mm sin(m�)

�
h
Zm

�
�0mn

a

b

�
Jm(kta) �Zm(�

0

mn)Jm(ktb)
i

(10)

where kt = jktj; a and b are the outer and inner radii of
the ring, respectively (see inset in Fig. 2),c is the aspect
ratio c = a=b; �0mn is thenth root of J 0m(a�

0=b)N 0

m(�
0) �

N 0

m(a�
0=b)J 0m(�

0) = 0; Jm and Nm are the Bessel and
Neumann functions

k00cm1
=

(c+ 1)�0m1

(a + b)
; k00cmn =

(c� 1)�0mn

(a� b)
; n > 1 (11)

and

Zm(�
0

mn�) =p
��m
2

Jm
�
�0mn

�

b

�
N 0

m(�
0

mn)�Nm

�
�0mn

�

b

�
J 0m(�

0

mn)�h
J 0

m
(�0

mn
)

J 0

m
(c�0

mn
)

i2�
1�

�
m

c�0

mn

�2�
�
�
1�

�
m

�0

mn

�2��1=2

(12)

where�m = 1 if m = 0 and �m = 2 otherwise.
For the TE functions,rt � B00

mn = 0, while

�jkt~� = �2�(|)m+1 sin(m�)kt �Imn(kt) (13)

where �Imn has the same expression asImn in (9), but with
Zm(�0

mn�) now replaced by
�Zm(�mn�)

=

p
��m
2

Jm
�
�mn

�
b

�
Nm(�mn) �Nm

�
�mn

�
b

�
Jm(�mn)� Jm(�mn)

Jm(c�mn)
� 1

�1=2
(14)

�mn is thenth root ofJm(a�=b)Nm(�)�Nm(a�=b)Jm(�) =
0

k0

cmn =
(c� 1)�mn

(a� b)
: (15)

The normalization of the spatial basis functions correspond-
ing to the above is the following:

f 0 = � 1

k0

c

rt	 f 00 = � 1

k00

c

ẑ �rt� (16)

with [12]

	mn(�) = Zm

�
�0

mn

�

b

�
k00

c cos(m�) (17)

and

�mn(�) = �Zm

�
�mn

�

b

�
k0

c sin(m�) (18)

IV. RESULTS

We report here the results obtained for two configurations
for which experimental data and/or other numerical results
were available. These latter are obtained using Chebyshev
polynomials with the appropriate edge singular behavior for
the radial and azimuthal current components; the expressions
of these functions and their FT are reported in the Appendix.
Both the considered configurations consist of a free-standing
patch, printed on a dielectric layer of thicknessh = 0:55 mm
and dielectric constant"r = 2:33. In the first case the aspect
ratio c = a=b is equal to two (“wide” ring), while in the other
c ' 1:2 (“narrow” ring). The comparison is done for the first
resonant mode, with azimuthal indexm = 1.

In the case reported here of a free-standing patch, the
two-dimensional spectral reaction integrals reduce to a single
integration along the radial spectral variablekt; we performed
the integration along the realkt axis with a contour de-
formation to avoid the (surface wave) poles of the Green’s
function.

The resonance behavior is analyzed via the SVD technique,
and the resonance frequency is found as the real part of
the complex frequency for which the smallest singular value
(SVmin) of the impedance matrix has a zero [16].

In order to obtain an accurate representation of the solution,
it is necessary to ascertain how many and what modes are
needed. That can be done efficiently following a technique
developed by the authors [1], [2], [17] for a more general
configuration. First, the number of the (dominant) TM modes
necessary to obtain a specific accuracy at a given frequency
is established, then the information on the modes coupled to
the selected TM is extracted from the asymptotic coupling
(sub)matrices formed by the reaction integrals associated to the
asymptotic behavior (for largekt) of the spectral Green’s func-
tion. These terms are frequency-independent, and correspond
to the static behavior in the spatial domain.

Applying this procedure, we found that five TM terms are
sufficient, in the sense that there is no sensible change (less
then 0.1%) in the resonance frequency using more terms, both
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for the narrow and the wide ring [18]. To determine the set
of necessary modes without computation of the frequency
response, one can employ the portion of the MoM impedance
matrix related to the asymptotic behavior of the TM part
of the Green’s function, that is frequency independent. The
procedure is identical to that outlined below for the TE, and
its explanation deferred until then.

For the annular patch, the selection of TE modes is simpler
than in the general case [1], [2], because the axial symmetry
of the ring causes the odd TM modes to be coupled predom-
inantly with the even TE modes, and vice-versa for the even
TM modes, and the coupling decreases (almost monotonically)
with increasing difference of the radial indexn. Therefore, one
can determine how many TE are needed simply proceeding
in an incremental manner, i.e. adding higher indicesn and
checking the asymptotic, frequency independent, part of the
TM-TE coupling matrix. Denoting by[�]n the vector of the
singular values of this coupling matrix whenn TE modes are
considered, we define the relative incremental error

�n =
k[�]n � [�]n�1k2

k[�]nk2 (19)

and stop adding terms when�n is below a given threshold.
In Fig. 2, �n is shown (in the case of the wide ring and of
5 TM modes), and compared with the error on the resonance
frequency. This latter is defined as the relative shift of the
resonance frequency with respect to the “reference” value
obtained with 20 TE modes. The two curves have the same
trend, proving the efficiency of the truncation criterion given
above.

The effect of the TE on the resonance frequency can be
appreciated in Fig. 2; further information on the resonance
behavior is obtained from Fig. 3, where the magnitude of
1=SVmin is plotted versus the frequency, employing five TM
modes and no TE, 5 TM+ 6 TE, and six Chebyshev
polynomials three for each current component, that warrant
the convergence of the result). With the TM alone, a resonance
frequencyfris = 3:457 GHz is found, with TE+ TM one finds
fris = 3:527 GHz, and employing Chebyshev polynomials
fris = 3:561 GHz. While the relative difference in the latter
two cases is below 1%, the use of TM alone shifts the
resonance frequency of about 3%; although small, this error is
not negligible in a structure with a bandwidth of a few percent.

As to the computational effort, even if the number of em-
ployed MWC modes is twice that of Chebyshev polynomials,
the time requested for the evaluation of the reaction integrals
for the MWC is sensibly smaller then that for the Chebyshev
polynomials, because the FT of the MWC modes is completely
in closed form.

Finally, in Fig. 4 the radial variation of the radial (top)
and azimuthal (bottom) current components at the resonance
is reported for an azimuthal angle� = 45�. As expected,
especially the azimuthal, dominant component is drastically
modified by the introduction of TE terms, because of its
singular behavior at the edges. The “ripple” present in the
solution is an intrinsic effect of the orthogonal nature of
these entire domain basis functions, as in the mode matching
technique, and is known not to create problems neither in the

Fig. 3. Wide ring: magnitude of1=SV
min versus the frequency; continuous

line: only TM; dashed line: TM+ TE; dotted line: Chebyshev polynomials.

Fig. 4. Wide ring: magnitude of azimuthal and radial current components at
the resonance versus� (� = 45�). Continuous line: only TM; dashed line:
TM + TE.

radiated fields, nor in the evaluation of circuit parameters, that
are “variational.”

For the case of the narrow ring, an analogous study has been
carried out; the results on the convergence of the TE and their
effects on the the resonance frequency are almost the same
as the other configuration. For this configuration experimental
results were also available: the measured patch has been fed
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TABLE I
NARROW RING: RESONANCE FREQUENCY AND RELATIVE ERROR WITH RESPECT TO THEMEASURED VALUE

by an electromagnetically coupled microstrip line, running at
the same distance from the radiator and the groundplane; the
distance between the line end and the ring has been arranged
to obtain a low coupling, to simulate as closely as possible
a free-standing patch. In Table I, the computed and measured
resonance frequencies are reported; there the relative error is
taken with reference to the measured resonance.

V. CONCLUSION

We have discussed the use of TE MWC modes in the
full-wave analysis of printed antennas. This class of modes
is sometimes neglected, in particular in the case of annular
patches. The TM-TE coupling has been shown to be related
to the fact that a patch is an open structure, and the further
role of the TE in building up the singular edge behavior
has been discussed. Numerical results for annular microstrip
patches show that the neglect of TE modes produces a shift of
the resonance frequency comparable to the (typically narrow)
bandwidth of these structures. Criteria for the determination
of the necessary number of modes have been given.

APPENDIX

The Chebyshev polynomial basis functions for the ring have
the form

Bm;q;n(�) = �̂ hq(�) cosm�+ �̂ fn(�) sinm� (20)

wherehq(�) =
p
1� x2Uq(x); fn(�) = Tn(x)=

p
1� x2; Tn

andUn are Chebyshev polynomial of first and second kind,
respectively, andx = (� � r0)=w, with r0 = (a + b)=2 and
w = (a � b)=2.

In the spectral domain, one finds [19]

~Bm;q;n(kt) =
�
H

(m;q)
k (kt)k̂t +H(m;q)

� (kt)�̂
�

+
�
F
(m;n)
k (kt)k̂t + F (m;n)

� (kt)�̂
�

(21)

where

F
(m;n)
k

(kt) = j(m+1) 2m

kt
cosm�f (1)m;n (22)

F (m;n)
� (kt)

= j(m+1)w sinm�

�
1

2

�
f
(1)
m+1;n+1 � f

(1)
m�1;n+1

�

+
1

t

�
f
(1)
m+1;n � f

(1)
m�1;n

�
+

1

2

�
f
(1)
m+1;n�1 � f

(1)
m�1;n�1

��

(23)

H
(m;q)
k (kt) = 2j(m+1) 1

kt
cosm�

�
�
q + 2

2
f
(1)
m;q+2

�
q + 1

t
f
(1)
m;q+1 �

q

2
f (1)m;q

�

(24)

H(m;q)
� (kt) = j(m+1) 2m

kt
sinm�

�
�
1

2
f (1)m;q �

1

2
f
(1)
m;q+2

�

(25)

and

f (1)m;r =

Z +1

�1

Tr(x)p
1� x2

Jm

�
ktw

�
x+

1

t

��
dx

=

�
Tr(x); Jm

�
ktw

�
x+

1

t

���
(26)

with t = w=r0.
The integral in (26) cannot be expressed in closed form. Its

calculation can be carried out via Neumann’s addition formula
[20] or similar procedures [15]. An alternative, efficient pro-
cedure is to evaluatef (1)m;r as coefficients of the T-expansion
of Jm(ktw(x + 1

t
)); these coefficients can be evaluated via

the properties of Chebyshev polynomials [21]. In this way all
integrals for differentr and samem are evaluated at the cost
of one.
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