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On the Use of Cavity Modes as Basis Functions in
the Full Wave Analysis of Printed Antennas
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Abstract—Magnetic wall cavity (MWC) modes are often em- generated by the edge of the metallizations: in Sections I
ployed as basis functions in the method of moments (MoM) and IV substantiate the general discussion is substantiated with
full wave analysis of printed antennas, especially in its spectral 1y merical results for an annular patch. We have chosen this
domain version, where the use of entire domain basis functions is fi ti b in literat it IVsis is oft ied
particularly convenient, but in some cases the TE (solenoidal) con Igura lon because In literature 1 S analysis Is often carrie
modes are not included. Here we investigate on the effect of Out with MWC modes, but (as mentioned before) to the best
this exclusion, explaining the nature of the TE-TM coupling, of our knowledge, only TM modes are taken in account. On
presenting criteria to determine the necessary number of modes, the other hand, when printed rings are employed in frequency
and giving numerical results for annular patches, especially ggjective surfaces, both TM and TE modes are considered [9].
relevant in this context. . ! . .

Although in this work we will discuss numerical result only

Index Terms—Cavity modes, full-wave analysis, printed anten- for a free-standing annular patch, the formulation is carried
nas. out for an arbitrary geometry and the conclusions obtained

therefrom are of general validity.

I. INTRODUCTION

N the analysis of printed antennas with the integral equation  |l. REACTION INTEGRALS AND TE-TM COUPLING

(EFIE) approach, the use of appropriate entire-domain basisa key point in the MoM analysis is the computation of the
functions is often convenient, because few of such termsaction integrals between the basis functions, here denoted
are sufficient to well represent the solution. Entire-domaisy B, : we will be ultimately concerned with this computation
basis functions are almost always associated with the specfrathe spectral domaitk,, where the transformed functions
domain version of the method of moments (MoM): this impliegre denoted by a tikj@n); a Galerkin testing scheme will
that the two-fold Fourier transform (FT) of the basis/teie assumed throughout. For a transversally infinite dielectric,
functions has to be known in a form that allows a fasitratified along the axis, the spectral dyadic Green’s function
numerical evaluation. is diagonal in the polar basis identified by the polar unit vectors

Since a patch antenna approximately behaves like a mag-anda = 2 x k, (e.g., [10])
netic wall cavity (MWC), the modes of this cavity are often
employed to generate the basis functions for the surface current
on the patch. The MWC modes are readily available for several
separable geometries (rectangular, circular, annular, trianguifere the two scalar functions ™ (k. ), "™ (k) can be found
.--) and often also their FT can be found in conveniey solving equivalent transmission line problems and take
form; recenﬂy’ a genera"zation of these modes has also bé@tﬁ) account the characteristics of the dielectric Stratiﬁcation;
introduced by the authors [1], [2] to deal with arbitrary Shapége reaction integrals in the spectral domain can therefore be

Gki) = keky g™ (ki) 4 ac g™ (ke) (1)

and include the field singularity at the edge. written as
In the following we indicate (as usual) by TM the modes 1 .+ = tvm: = - E . E
with zero surface curl on the patch, and by TE (solenoidafjmn = 772 t{kt “ By g " ki - Bo) + (o By yg " - B,)}

those with zero surface divergence. To have a complete basis, 2

both TM and TE modes must obviously be considered. How-

ever, in the literature about printed antennas, often (althoug that only the projections of the transformed basis functions
with some exceptions [3]) only the TM modes are considere@long the two polar directions, anda are needed. Following
this seeming the rule in the case of ring radiators [4]-[8RN approach similar to that introduced by Amitay and Galindo
In the following, we will investigate on the effects of this[11] for a different problem (but never used before for printed
approximation; while the rationale for neglecting TE modedntennas) we rearranged the spectral MoM to evaluate those
is probably the TM dominance of the resonance modes,pitojections directly from their spatial counterparts, strongly
will be shown that this omission may lead to inaccuratéducing the complexity of the required FT [12]. This treat-

results. As explained in Section II, the TE-TM coupling ignent is valid for any stratification, and for a patch occupying a

surfaceX of arbitrary form delimited by the curvE : p = p_..
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); A property of the TE modes can be explicited to writd =
z x V,® everywhere, so that (4) for these modes can be
simplified to
a-B' = const.(—jk; )®. (7)

Note also that the definition of the modes wa®, V,¥ and

the Helmholtz equation allow one to easily write tRe - f

and theV, x f” terms as directly proportional t& and ®

[12]. From standard considerations on the boundary conditions
Z¥|r = 0 and®|r = 0, one can see that the boundary term in
(6) never vanishes for the TM modes of the MWC. Otherwise
said, in this context of open structures, the TE basis functions

> are solenoidal, but the TM basis functions are irrotational only
X in a weak sense (almost everywhere): the projection of their
FT on& is not zero, and TE-TM coupling is always present.
Fig. 1. Geometry for a patch of arbirtrary shape. Moreover, as detailed in [1], the solenoidal set of basis func-

tions represents the edge singularity responsible for the blow
out of the current parallel to the edge; this singular behavior

. : ) e - usually affects the coupling to the feed structure, when the
d|;1/_-cr(])nform|ng a;d tSUbJTDC,\tAéO thed_(t;oqdlt}?n~ %'ro - '?h latter extends across the edge of the patch, as it is always the
\}V f Acorlr;spontstho ad cdor:hl '0? '(—L: _Tl\/i Wld T%ase for monolithic or electromagnetic (proximity) coupling.
L = 2 x H|s) at the edge, an erelore he an n the other hand, this is scarcely noticeable for the probe-fed

modes of the MWC are a complete set for the unknown Surfaﬁgtches, a fact that may explain the results reported so far for

current./. : o . ;
= . e this case (like in [4] and [5]). While the incompleteness of
The projections of the transformed basis functiéfisalong  , .oy T set is obvious, the considerations above allow

the two polar directipns are related to th? FT of the divergen&? detail the effect of this incompleteness on the numerical
and curl of the basis functions, respectively [12] solution. This will be the objective of the next sections.

The basis functiong3 for the surface currenf must be

B = (=) Blk) = —FTVBp) @) Il THE RiG
' ' For an annular patch, the procedure described in Section
and Il for the evaluation of the FT of basis functions, i.e. of
MWC modes, is particularly meaningful; in fact, although
. 1 . . the ring is a canonical, separable shape, the evaluation of the
B = ik (—Jk,) - [z x B(k,)] Hankel transform that arises from the two-fold FT of most
1 , A reasonable basis funct|0ns_ proves to be a _d|ff|cult task; the
= FT{V; -[2 x B(p)]} (4) use of orthogonal polynomials, that can easily accommodate

the edge behavior, does not lead to entirely closed-form
expressions, and the evaluation of the reaction integrals is
computer-intensive [14], [15]. On the other hand, the Vector
i i ) Blankel Transform (VHT) method [4] allows an efficient
L, must vanish outside the conductor surfacewe write formulation of the problem in association with MWC modes,
B,(p) = Ws(p) [, (p), whereWs(p) = 1 onX and zero 4 is confined to axial-symmetric configurations, with an
elsewhere,_ an(i_need to be d_efmed only on. Thus, after extension to the probe-fed case, and a configuration with a
some manipulation [12] one finds general feed network cannot be analyzed with this technique.
Instead, application of the technique in Section Il will allow

(Vi -[2 x B(p)] is equivalent to the surface curl [V, x B]).
To explicitly enforce the condition that the basis function

Vi B(p) = Wx(p) Vi - f(p) (5) the use of MWC modes in the spectral domain with a general
V.- [xB(p))=5-f pr)é(p _pr) coupling geometry.
- e N— s The TM(B!,) and TE(B!) basis functions can be conve-
FWs(p) Vi G X Lp) () ) and 1oL

niently expressed in terms of the scalar eigenfunctions of the
coaxial waveguide with PEC walls [13]; for ease of reference,
where the operatoV; is transverse ta. in the following we will adhere to the usual notation of
Employing the MWC modes as basis functioffis the Marcuvitz [13, Sec. 2.4] (note the exchange BHM(') and

TM(f") and TE(f") modes can be immediately derived byI'E(”) superscripts when passing from the MWC to the dual
duality from the modes of the corresponding PEC waveguidgiectric-wall coaxial guide). Because of the separability of
and so they can be expressed in terms of the TE and TM scaldp, ¢), ®(p, ¢), the two-fold FT of (5), (6) reduce to one
eigenfunctions¥ and ®, respectively [13], Withf o« V,¥, Hankel (Bessel) transform, and one obtains their expressions
J" x 2 x V,® (note the TE-TM exchange). The solenoidain closed form [12]. For TM modes (corresponding to TE of
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3 Xmn IS thenth root of J,,, (ax /b)) Ny, (x) — N, (ax /0) T (x) =
0
25+t 1 / _ (C - 1)an
] @ Ky = b (15)
5 2r ( 1 The normalization of the spatial basis functions correspond-
5 ing to the above is the following:
215}
5 1 1
s il = _k_/v’qj = _Fé x V;® (16)
o = relative incremental error
05 = relative error on res. frequency | with [12]
% 5 10 15 20 ¥ () = 2 (Yoo b)k” cos(me) an
number of TE modes
and
Fig. 2. Wide ring: comparison between the relative incremental ekror
and the relative error on the resonance frequency. Inset: ring patch geometry. D, (/3) Z,. (an b) k’ sm(mqb) (18)
the coaxial guide) V. RESULTS
FT*{V, - B} = (k!,,,)" 27(3)™ cos(ma) L»n (k;)  (8)  We report here the results obtained for two configurations
with for which experimental data and/or other numerical results
(k) = were available. These latter are obtained using Chebyshev
L (ks p=a polynomials with the appropriate edge singular behavior for
kthm(an b) (Kt )= Xonn §Zm— 1(an b) mlk:p) the radial and azimuthal current components; the expressions
(xcljﬂ)?_ktz - of these functions and their FT are reported in the Appendix.
p=b Both the considered configurations consist of a free-standing
©) patch, printed on a dielectric layer of thickngss= 0.55 mm
FT2{V,; - [z x B' (p)]} = 27(3)" msin(ma) angl dielectrig constaryt, = 2.33._ In the first case the aspect
a - ratioc = a/b is equal to two (“wide” ring), while in the other
: [Zm (Xinn g) I (k@) = Z0 (Xpn ) m (ktb)] (10) ¢~ 1.2 (“narrow” ring). The comparison is done for the first
where k, = |k,|, a and b are the outer and inner radii of’€Sonant mode, with azimuthal index = 1.
the ring, respectively (see inset in Fig. 2),is the aspect N the case reported here of a free-standing patch, the
ratio ¢ = a/b, \',,,, is thenth root of JZ, (ax'/b)N., (x') — _two-dlm_en5|onal spectra_l reaction mtegrals reduce to a single
N’ (ax' /)5, (') = 0, J,, and N,, are the Bessel andmteg_ratlon glong the radial spectral _vanqblewe performed
Neumann functions the integration along the redl; axis with a contour de-
/ formation to avoid the (surface wave) poles of the Green's
k= MJ k= %J n>1 (11) function. ( )P
(a+0) (a—b) The resonance behavior is analyzed via the SVD technique,
and and the resonance frequency is found as the real part of
Zo (Xon P) = the complex frequency for which the smallest singular value
Tem  Im (Xon £) N (X )= N (X 2) Tty (o) (SViin) of the impedance matrix has a zero [16].
5 5 5 o1 172 In order to obtain an accurate representation of the solution,
{[%] [1_ (%) ]_ [1_ (XT,” ) ]} it is necessary to ascertain how many and what modes are
T s s needed. That can be done efficiently following a technique
(12) developed by the authors [1], [2], [17] for a more general
wheree,, = 1 if m = 0 ande¢,, = 2 otherwise. configuration. First, the number of the (dominant) TM modes
For the TE functionsyV, - B' = 0, while necessary to obtain a specific accuracy at a given frequency

TR S m+1 7 is established, then the information on the modes coupled to
Jki® = =27(y) sin(ma)ks Lnn (k:) (13) the selected TM is extracted from the asymptotic coupling
(sub)matrices formed by the reaction integrals associated to the

asymptotic behavior (for large ) of the spectral Green’s func-
Zn (X P) tion. These terms are frequency-independent, and correspond
e I (Xomm YN o ) — Now (X 2) T (Xomm to the static behavior in the spatial domain.
— VTm / ’<X h)N (IX (\C) ) <1X/2 h>J () Applying this procedure, we found that five TM terms are
[y = 1] sufficient, in the sense that there is no sensible change (less
(14) then 0.1%) in the resonance frequency using more terms, both

where I,,,,, has the same expression g, in (9), but with
Zm (Xinp) NOW replaced by
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for the narrow and the wide ring [18]. To determine the set 1 -

of necessary modes without computation of the frequency
response, one can employ the portion of the MoM impedance
matrix related to the asymptotic behavior of the TM part

of the Green’s function, that is frequency independent. The

procedure is identical to that outlined below for the TE, and g ¢ |

:

its explanation deferred until then.
For the annular patch, the selection of TE modes is smpl@r

than in the general case [1], [2], because the axial symmetT‘y0 41

of the ring causes the odd TM modes to be coupled predom-

inantly with the even TE modes, and vice-versa for the even g5 |

TM modes, and the coupling decreases (almost monotonically)
with increasing difference of the radial indexTherefore, one
can determine how many TE are needed simply proceeding
in an incremental manner, i.e. adding higher indieesnd
checking the asymptotic, frequency independent, part of the
TM-TE coupling matrix. Denoting byo],,

8. 5TM + 6 TE modes

— Cnebyshev polynomals
== 5 TM modes
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the vector of the Fig. 3. Wide ring: magnitude of/SV,,;, versus the frequency; continuous

singular values of this coupling matrix whenTE modes are line: only TM; dashed line: TMi- TE; dotted line: Chebyshev polynomials.

considered, we define the relative incremental error

_ loln = [oln-1]l2
Il

and stop adding terms wheh,, is below a given threshold.

In Fig. 2, A,, is shown (in the case of the wide ring and of
5 TM modes), and compared with the error on the resonance
frequency. This latter is defined as the relative shift of the
resonance frequency with respect to the “reference” value
obtained with 20 TE modes. The two curves have the same
trend, proving the efficiency of the truncation criterion given
above.

The effect of the TE on the resonance frequency can be
appreciated in Fig. 2; further information on the resonance
behavior is obtained from Fig. 3, where the magnitude of
1/SVuin is plotted versus the frequency, employing five TM
modes and no TE, 5 TM+ 6 TE, and six Chebyshev
polynomials three for each current component, that warrant
the convergence of the result). With the TM alone, a resonance
frequencyf.is = 3.457 GHz is found, with TE+ TM one finds
fris = 3.527 GHz, and employing Chebyshev polynomials
fris = 3.561 GHz. While the relative difference in the latter
two cases is below 1%, the use of TM alone shifts the
resonance frequency of about 3%; although small, this error is
not negligible in a structure with a bandwidth of a few percent.

As to the computational effort, even if the number of em-
ployed MWC modes is twice that of Chebyshev polynomials,
the time requested for the evaluation of the reaction integrals
for the MWC is sensibly smaller then that for the Chebyshev

A, (19)

Azimuthal component

1.5

&
=

05+

— only T™M
T™ + TE

0

0.5 1 1.5
p/b

Radial component

0.05

0.04 +

0.03 v

a

002}

0.01¢}

— only TM
TM +TE

0.5
p/b

polynomials, because the FT of the MWC modes is complet%@ 4. Wide ring: magnitude of azimuthal and radial current components at
in closed form. the resonance versys(¢ = 45°). Continuous line: only TM; dashed line:
Finally, in Fig. 4 the radial variation of the radial (top)™ + TE.

and azimuthal (bottom) current components at the resonance
is reported for an azimuthal angte = 45°. As expected, radiated fields, nor in the evaluation of circuit parameters, that

especially the azimuthal, dominant component is drasticafye “variational.”

modified by the introduction of TE terms, because of its For the case of the narrow ring, an analogous study has been
singular behavior at the edges. The “ripple” present in ttearried out; the results on the convergence of the TE and their

solution is an intrinsic effect of the orthogonal nature offfects on the the resonance frequency are almost the same
these entire domain basis functions, as in the mode matchagythe other configuration. For this configuration experimental

technique, and is known not to create problems neither in tresults were also available: the measured patch has been fed
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TABLE |
NARROW RING: RESONANCE FREQUENCY AND RELATIVE ERROR WITH RESPECT TO THEMEASURED VALUE
Resonance frequency (GHz) Per cent relative error
MWC TM modes alone 3.56 2.5%
MWC TM + TE modes 3.63 0.5%
Chebyshev polynomials 3.62 0.9%
measured data 3.65 -

by an electromagnetically coupled microstrip line, running a}](m")(k,) — 9j(m+1) 1 cOS M [_q + 2f(1)
- k

the same distance from the radiator and the groundplane; thé f 2 etz
distanc_e between the_line end_and the ring has been arra\_nged g+ 1f(1) B gf(U
to obtain a low coupling, to simulate as closely as possible $ dmgtl T 5img

a free-standing patch. In Table I, the computed and measured (24)

resonance frequencies are reported; there the relative error is

taken with reference to the measured resonance. 9 1 1o
m, _ (m+1 3 1 1

Hc(v (Z)(Et) —]( )k—tsmmoz [_§fr(m)q - §fm,q+2:|

V. CONCLUSION
(25)

We have discussed the use of TE MWC modes in the
full-wave analysis of printed antennas. This class of modesd
is sometimes neglected, in particular in the case of annular T (x) 1
patches. The TM-TE coupling has been shown to be related ffnly)w :/ Tinm (/mu(x + —)) dx
to the fact that a patch is an open structure, and the further -1 Vi-w !
role of the TE in building up the singular edge behavior = <Tr(r),Jm (ktw<x—|— 1>>> (26)
has been discussed. Numerical results for annular microstrip t
patches show that the neglect of TE modes produces a shif t = w/r.
the resonance frequency comparable to the (typically narrow)-l-he integral in (26) cannot be expressed in closed form. Its
bandwidth of these structures. Criteria for the determinatiQl|.,iation can be carried out via Neumann's addition formula
of the necessary number of modes have been given. [20] or similar procedures [15]. An alternative, efficient pro-
cedure is to evaluaté,(nl} as coefficients of the T-expansion
of Jo, (kiw(x + %)); these coefficients can be evaluated via
The Chebyshev polynomial basis functions for the ring hatke properties of Chebyshev polynomials [21]. In this way alll
the form integrals for different- and samen are evaluated at the cost

B, yn(p) = phy(p) cosme + qf;fn (p) sin mg (20) of one.
whereh, (p) = V1 — 22U, (), fa(p) = Tn(2x)/V1 =22, T, REFERENGES
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