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Scattering from Structures
Formed by Resonant Elements
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Abstract—A two-dimensional (2-D) structure, formed by a
finite number of resonant elements, has been considered in this
paper, and its scattering characteristics have been analyzed in
detail over a wide frequency band including the resonance region.
The elements of the structure comprise perfectly conducting thin
cylinders with longitudinal slots. It has been demonstrated that
the scattered field of such an array exhibits rather remarkable
properties at resonance frequencies. For instance, the strong
coupling between the elements in the resonance region manifests
itself into superdirective radiation in the far field and that this
is a common attribute of scatterers formed by coupled resonant
elements.

Index Terms—Electromagnetic scattering.

I. INTRODUCTION

RESONANT elements often play an important role as
components of many electromagnetic devices, e.g., os-

cillators. The complexity of these resonant structures, for
instance, the presence of internal cavities that couple to their
exteriors via apertures, makes them rather difficult to analyze
via direct numerical methods, especially over a wide frequency
band.

The problem of electromagnetic wave scattering from
cavity-backed apertures (CBA’s) has received considerable
recent attention. Single elements with resonant cavities have
been investigated by a number of authors. A thin, cylindrical
conducting screen with a longitudinal slot represents a simple
example of a two-dimensional (2-D) CBA.

An efficient solution to the problem of scattering from the
slotted cylinder with a circular cross section has been obtained
by using a rigorous approach based on the solution to the Rie-
mann–Hilbert problem in the theory of functions of complex
variables [1]. The method has been successfully applied to the
problem of scattering from slotted circular cylinders [2]–[4]
and is well-suited for studying the influence of the resonance
of the interior cavity on the characteristics of the scattered
fields. Recently, the above method has been generalized [5],
[6] to the problem of electromagnetic scattering from thin 2-D
screens whose cross sections can be arbitrary. It is based on the
extraction of the principal singular part of the integral equation
kernel and the subsequent inversion of the corresponding
residual operator. This partial-inversion approach reduces the
initial boundary value problem to an infinite system of linear
algebraic equations of the second kind. The fact that the
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resulting system is a Fredholm system of the second kind
contributes to the numerical efficiency of the method. An
important feature of this type of second-kind operator is that
the condition number of its associated matrix system does not
grow with the size of the truncated system and this makes
such a semi-analytic approach especially useful for analyzing
scatterers of complex shapes in the resonance region.

While the characteristics of single CBA’s have been thor-
oughly investigated in the past, the same cannot be said
about multiply-coupled resonant CBA’s that have received
scant attention. While it is tempting to analyze the scattering
properties of finite arrays of CBA’s by following techniques
typically employed for infinite periodic structures, this is not
advisable because the field scattered by a structure formed by
a finite array of passive resonant elements have some unique
characteristics that are not found in their infinite counterparts.
For instance, the field scattered by such structures can be
superdirective [8] in a narrow frequency band, despite the fact
that the resonant elements are totally passive. This paper shows
that the occurrence of the superdirectivity can be attributed
to the excitation of modes that induce a phase reversal in
the adjacent scatterers and that the amplitude distribution also
plays an important role. While the role played by the phase
reversal of the fields in the adjacent elements in inducing
superdirectivity in the array is obvious, the same cannot be said
for the amplitude structure of the field near the array, which
turns out to be equally important. This is because an active
superdirective antenna is highly sensitive to small changes in
both the phase and amplitude distributions of the sources and
this sensitivity increases with the increase in the directivity.

The field distribution in an array aperture emanating su-
perdirective radiation is rather complex, though its primary
attributes are phase reversals accompanied by high-field am-
plitudes. In addition, the elements of such an array are located
in close proximity to each other, with the spacing considerably
less than�=2. Although the literature is replete with reports of
extensive studies of superdirective antennas [9], the practical
realization of these compact antennas appears to be very
difficult, if not impossible [10].

An alternate approach to fabricating a 2-D superdirec-
tive antenna using a single active element and a reflector
comprising of resonant scatterers, has been explored in the
past [4], [11]. Physical phenomena responsible for inducing
superdirective radiation have been studied in some detail and
it has been shown that the interaction between the resonant
elements helps excite a mode characterized by a high level
of reactive power in the vicinity of a passive structure. In the
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above works, particular attention was paid to the sensitivity
of the superdirective antenna and to the constraints on the
tolerances of the parameters. It was demonstrated [11] that
superdirectivity can be maintained even when the angular
width of the slots in one or more open cylinders in a CBA
is allowed to vary by�1%.

The purpose of this paper is to demonstrate that a moderate
superdirective property of the scattered field is “natural” for
passive scatterers formed by resonant elements. We show how
the mutual coupling between the elements can be exploited to
generate and control the desired phase and amplitude behaviors
of the near field that lead, in turn, to the superdirectivity
in the radiated field. This is true despite the fact that all
of the elements of the array are passive and this is indeed
a remarkable property of the CBA scatterers. Incidentally,
even though the structure is totally passive, its amplitude and
phase distributions can nonetheless be controlled to enhance
the effect of superdirectivity by varying the coupling between
the elements through an adjustment of their spacing or mutual
orientation.

It should be realized, however, that structures formed by
passive elements have their own intrinsic limitation in terms
of the level of the superdirectivity that they can achieve, even
when we assume that they are perfect conductors. Obviously,
the finite dimensions of the elements impose a limit on
the closeness of the elements, which, in turn, limits their
directivity. However, it is possible to raise this limit by varying
the shapes of the elements such that theirQ factors are
increased.

The numerical results presented in this paper pertain to the
simplest, 2-D case of finite number of thin perfectly conducting
circular cylinders with longitudinal slots; however, the method
of analysis itself is applicable to screens with arbitrary cross
sections. The simple geometry was chosen as an illustrative
example because an alteration of the cross-sectional shape does
not affect the qualitative scattering characteristics of the array.

Before closing this section, it is interesting to point out that
the superdirective phenomena are found to exist only in finite
arrays since the phase reversal property does not appear to
exist in infinite gratings.

II. A NALYSIS OF FINITE CAVITY -BACKED APERTUREARRAYS

In this section, we consider the problem of analyzing a finite
array of CBA’s comprised of perfectly conducting thin slotted
cylinders that are infinite along thez axis. An H-polarized
plane wave is incident upon the structure with the wave vector
~k in the plane perpendicular to thez axis. The angle between
the~k andy axis is'i (see Fig. 1). For theH-polarized case,
we can derive the following integral equation forN cylindrical
screens whose cross sections can be arbitrary:
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Fig. 1. Cross-sectional views of finite arrays of cavity-backed apertures.

whereLs is the contour of the surface of thesth cylinder,
ps, gq are the radius vectors from the origin of the system of
coordinates to the corresponding points on the surfaces of the
sth, andqth cylinders is a normal to the contour of theqth
cylinder at the pointgq, H

(2)
0 is the Hankel function of the

second kind,̂�s(ps) denotes the surface current density, and
Hi
z represents the incidentH-polarized wave.
The construction of the solution entails the following steps:

1) isolation of the logarithmic singularity from the Hankel
function appearing in the kernel of (1); 2) reduction of the
integral equation on the curve to a conventional one by
following the procedure given in [12]; and 3) Fourier series
representation of the functions.

The contour of thesth scatterer is parametrized by the pair
of functions xs(� ); ys(� ), where � is the parameter in the
interval [��s; �s], as follows:

�s(� ) = �̂s[�s(� )]; � 2 [��s; �s]; �
s(� ) = [xs(� ); ys(� )]:

(2a)

Using the functions of parametrization the integral (1) can be
rewritten as
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The functionsHqs given in (2d) are not smooth and, hence,
their Fourier coefficients must be calculated by using special
numerical algorithms for efficient computation.

Our next step is to transform the integral equation (2a) into
dual-series equations by using the Fourier series representation
of the functions given as follows:
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together with the one for the logarithmic function given
in (2). Next, by using the definition�q(� ) = 0 if � =
[��; �]n(��q; �q), we arrive at the following desired equa-
tions for Fourier coefficients of the unknown currents induced
on the surfaces of the array elements:
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Our next step is to reduce the dual-series equations (4), with
q = 1; � � � ; N to the followingN coupled infinite systems of
linear algebraic equations via the generalized Reimann–Hilbert
technique described in [5]

�qm =2
NX
s=1

1X
p=�1

�sp

1X
n=�1

hqsn;�p
V n�1
m�1(cos �q)

m

+ 2
1X

n=�1

fqn
V n�1
m�1(cos �q)

m
(5a)

~�q (1 �Cq)�
NX
s=1

~�sM qs = ~bq (5b)

where ~�q = f�qng
1
n=�1;

~bq = fbqng
1
n=�1; b

q
n =

2
P1

n=�1 fqn[V
n�1
m�1(cos �q)]=m and V m

n are functions

(a)

(b)

Fig. 2. (a) Frequency scan of TCS of a resonant structure formed by seven
slotted cylinders. The parameters are:�1 = �2 = � � � = �7 = 5

�,
�1 = �2 = � � � = �7 = 90

�, angle of incidence of the plane wave
'i = 0

�, distance between the cylindersd is 2.1a, wherea is the radius of
the cylinders. (b) Frequency scan of the RCS of a resonant structure formed
by seven slotted cylinders. The parameters are:�1 = �2 = � � � = �7 = 5

�,
�1 = �2 = � � � = �7 = 90

�, angle of incidence of the plane wave'i = 0
�,

distance between the cylindersd is 2.1a, wherea is the radius of the cylinders.
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(a)

(b)

Fig. 3. (a) Amplitude distribution of the magnetic field (logjHz j) in the vicinity of the resonant structure described in Fig. 2, withka = 0:39288. The total
cross section/4a = 10:34965. (b) Phase distribution of theHz field in the vicinity of a resonant structure described in Fig. 2, withka = 0:39288.

The scattered field in the near and far zones can both
be expressed such that they depend only on the coefficients
f�s

n
g1n=�1

s=1���N
that are obtained by solving the system (5),

which is a cellular matrix. The diagonal blocks of this matrix
correspond to the system of equations associated with the
single open screen, while the off-diagonal blocks describe the
interaction between the various elements. The diagonal and
nondiagonal matrices define the Hilbert–Schmidt operators in
the l2 space. Thus, the operator defined by the system matrix
is a Hilbert–Schmidt operator in thelN2 space (N th degree
of the spacel2). The system may be solved after truncating
the infinite matrices, which form the main cellular matrix,
followed by the use of conventional inversion algorithms. The

truncation technique does not limit the range of parameters of
the problem and permits a determination of the scattered field
with any desired accuracy.

III. N UMERICAL RESULTS

The total cross section (TCS),�H , is one of the most desired
characteristics of the scattering properties of a structure. We
consider a finite array of thin equispaced perfectly conducting
and circularly cylindrical screens with longitudinal slots (see
Fig. 1) whose axes are coplanar and are parallel to thez axis.
For the above configuration, using the representation to the
scattered field in far zone [11] and definitions of the TCS [13]
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Fig. 4. Scattered far-field patterns of a resonant screen formed by seven
slotted cylinders.ka = 0:39302 (max RCS) �-mode excitation that
increases the TCS and the RCS values.� � � far-field pattern of the field
radiated by seven isotropic line sources with equiphase excitation. The
collinear sources are equally spaced with a separation of 0.131 31�.
D(') = sin[7(kd cos ')=2]=7 sin(kd cos'=2).
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where (rqs; 'qs) are the coordinates of thesth cylinder in
the system of coordinates associated with theqth cylinder and
f�sg

N
s=1 are the angles of orientations of the slots (see Fig. 1).

It can be shown analytically and substantiated numerically
that the TCS is independent of the indexs of the particular
cylinder.

The radar cross section (RCS) of the array can be evaluated
by using the following expression:
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and the far-field pattern (FFP)�(') can be calculated from the
values of the coefficientsf�sng

1
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. The expression

for the pattern reads
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where(rq0; 'q0) are the coordinates of theqth cylinder.

(a)

(b)

Fig. 5. (a) Frequency scan of the TCS of the structure formed by five slotted
cylinders.�1 = �2 = � � � = �5 = 5

�, �1 = �2 = � � � = �5 = 90�, the
angle in the incidence of the plane wave'i = 0�, the distance between the
cylindersd is 2.1a. (b) Frequency scan of the RCS of the structure formed
by five slotted cylinders.

It should be noted that the solution to the corresponding
eigenvalue problem, viz., that of determining the complex-
valued eigenfrequencies of the structure, can be solved in an
analogous way. It can be shown that in the domain of the com-
plex values of the frequency parameterka, the matrix operator
of the obtained system of linear algebraic equations is of trace
class. Thus, it can be proven that the method of truncation can
be applied to calculate eigenfrequencies and eigenmodes of
the structure. The complex eigenfrequency spectrum forms a
discrete set and has a finite multiplicity. Also, for eigenvalues
with small imaginary parts, the stored energy in the scattered
field rises up considerably at frequencies close to the real parts
of these eigenvalues.

In scatterers with internal cavities as, for instance, slotted
cylinders or grooves in a conducting surface, anH-polarized
incident field excites certain eigenmodes, e.g., theH00-mode
in the slotted cylinder or the�=4 mode in the rectangular
groove. Such excitation occurs at frequencies for which the
wavelength of the incident field considerably exceeds the
dimensions of the screen. The excitation of such structural
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(a)

(b)

Fig. 6. (a) Amplitude distribution of the magnetic field (logjHz j) in the vicinity of the resonant structure described in Fig. 5, forka = 0:3919. Total
cross-section/4a = 8:845. (b) Phase distribution of theHz field in the vicinity of a resonant structure described in Fig. 5 forka = 0:3919.

modes leads to a sharp increase of the energy in the scattered
field. This, in turn, causes a number of peaks to appear in the
frequency response of the total and bistatic cross sections and
also leads to a sharp increase in the electromagnetic energy in
the near field of the structure.

The eigenfrequencies associated with a single-element split
into a set of several when a finite array of these elements
is considered. TheQ factors of the corresponding modes are
different and, typically, the real parts of these eigenfrequen-
cies, i.e., the resonant frequencies of the structure, are in close
proximity to each other.

Modes with higherQ factors are characterized by high
levels of stored energy accompanied by high-field amplitudes
in the structural elements. Consequently, a mode with a high
Q factor will typically dominate, although it is possible to

suppress a particular mode with a suitable choice of the
incident field. For instance, it is obvious that no asymmetrical
modes will be excited in the structure for the normal incidence
('i = 0�) case.

The frequency responses of the total and radar cross sections
of a structure comprising seven slotted cylinders are presented
in Fig. 2. The radii of the cylinders and the slot width are
equal to each other (� = 5�). The slots are oriented at the
same angle (� = 90�). The three maxima of the TCS in
Fig. 2(a) correspond to the excitation of three eigenmodes
in the scatterer. The strong coupling of the cylinders leads
to a considerable difference of the eigenfrequencies and,
consequently, to the possibility that the incident plane wave
will excite them. Note that theQ factors of the modes are
different.
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An analysis of the near-field behavior shows that the reso-
nance with the highestQ factor at the frequencyka = 0:392 88
is associated with the excitation of the oscillation mode,
which is characterized by a difference of� radians between
the phases of the magnetic fields (Htot

z
) in the neighboring

cylinders. This implies that coupling of energy occurs between
the elements of the structure during the process of oscillation.
The amplitude and phase behaviors of the near field at the
above resonance are shown in Fig. 3.

The high level of the energy in the near zone and the phase
reversal of the fields in the adjacent elements are the principal
characteristics of superdirectivity and they are evident in the
CBA under consideration. It should be mentioned, however,
that the amplitude structure of the field also plays an important
role in the process of achieving superdirectivity. For instance,
by adjusting the coupling between the cylinders, say, by
changing the angular orientation of the slots, the amplitude
structure of the near field and, hence, the superdirectivity in
the far field can be controlled.

The FFP for the scattered field is presented in Fig. 4
for ka = 0:39288, where a is the radius of the cylinder.
It is evident from this figure that the equivalent aperture
corresponding to the main lobe is greater than the physical
dimensions of the array aperture. The increase in the effective
aperture is attributed to an increase in the energy of the
electromagnetic field in the vicinity of the structure at the
resonant frequency. For comparison, we present in Fig. 4
(curve 2), the far-field pattern of an array of magnetic line
sources that have equal phases and amplitudes and are located
at the axes of the cylinders.

The presence of other resonances associated with the max-
ima of the RCS and TCS, shown in the Fig. 2 forka = 0:352
and 0:383, can be attributed to the excitation of oscillation
modes with complex phase structures. The first resonance oc-
curs when the phases of the fields in three central cylinders are
close to each other and these fields are approximately out-of-
phase with those in the cylinders near the edges. Symbolically,
the above phase structure can be depicted by (++� � �++),
whereas the second maximum of the TCS is associated with
a modal phase structure depicted by (+��+��+).

For a five-element array, the normally-incident wave ef-
ficiently excites two modes of oscillations in the frequency
range under investigation. The frequency variations of the
TCS and RCS of a slotted cylinder are presented in Fig. 5
for the following choice of parameters:�1 = �2 = � � � = �5 =
5�; �1 = �2 = � � � = �5 = 90�, the angle of incidence of the
plane wave'i = 0�, and the distanced between the cylinders
equal to 2.1a, where a is the radius of the cylinders. The
near-field structure at the frequency of the second resonance
is presented in Fig. 6. The sharp increases of the energy in the
scattered field at frequencies that correspond to the maxima
of the TCS are associated with the excitation of the�-mode
(+�+�+). The first maximum of the TCS is related to the
excitation of the (++�++) mode, for which the field in the
cylinder at the center is out-of phase with the rest of the
elements. The scattered field patterns at both of the resonant
frequencies exhibit the superdirective properties as evidenced
by the plot in Fig. 7 forka = 0:3919.

Fig. 7. Scattered FFP’s of a resonant screen formed by five slotted cylinders.
ka = 0:3919and�-mode excitation that produces maxima in TCS and

RCS; FFP of the field radiated by five isotropic line sources with equiphase
excitation. The collinear sources are equally spaced with a separation of
0.130 98�. D(') = sin[5(kd cos ')=2]=5 sin(kd cos'=2).

IV. CONCLUSIONS

In this paper, the scattering properties of a finite array of
resonant elements, viz., thin cylinders with longitudinal slots,
have been studied forH-polarized incident fields. It has been
found that strong mutual coupling between the elements can
introduce rather interesting characteristics as, for instance,
superdirectivity in the FFP, even for a passive structure.

The resonant frequency is characterized by a differential
phase shift of� radians between the neighboring elements,
coupled with an amplitude behavior that causes the FFP of
the scattered field to exhibit a relatively narrow main lobe,
indicating an increase in the effective area of the aperture
of the array. The superdirectivity effect can be enhanced by
optimizing the parameters of the structure, viz., the distance
between the cylinders and the angle of orientation of the slots
(�i).
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