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Effective Impedance Boundary Conditions
for an Inhomogeneous Thin Layer

on a Curved Metallic Surface
Habib Ammari and Sailing He

Abstract—Effective impedance boundary conditions for an
inhomogeneous thin layer coated on a perfectly conducting object
are considered. The permittivity of the thin layer is inhomoge-
neous along both the normal and tangential directions. Explicit
forms of the first- and second-order approximate impedance
boundary conditions are derived first for a two-dimensional
(2-D) thin layer for the TE and TM case. Numerical results
are presented. The case of Maxwell’s equations for a three-
dimensional inhomogeneous thin layer is also considered.

Index Terms—Coatings, electromagnetic scattering, impedance
boundary condition.

I. INTRODUCTION

A PPROXIMATE boundary conditions, which provide an
approximate relation between the electric and magnetic

fields on a chosen surface, have been widely used in problems
of wave propagation, diffraction, and guidance to simulate
the material and geometric properties of surfaces. Such a
mathematically derived boundary condition is usually referred
to as an effective impedance boundary condition. The general
purpose of the effective impedance boundary conditions is
to simplify the analytical or numerical solution of wave-
scattering problem involving complex structures by, e.g., con-
verting a two (or more) media problem into a single medium
problem. Many studies have been carried out in this area (see,
e.g., [1]–[8]). However, all are limited to the case of one (or
several) homogeneous layer(s).

In a previous paper [9], we have extended the idea to the
case of an inhomogeneous layer coated on a planar surface.
In the present paper, we consider the effective impedance
boundary conditions for an inhomogeneous (along both the
normal and tangential directions) thin layer coated on a curved
surface. Inhomogeneous thin layers can be found in many
applications such as thin gratings, corrugated surfaces, and
coated edges or junctions. Due to the inhomogeneity of the
coating, the effective impedance boundary conditions are in
general nonuniform. The case of a two-dimensional (2-D)
inhomogeneous thin layer coated on a metallic cylinder (of
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an arbitrary cross section) is considered first. An asymptotic
expansion of the field solution in a power series of the
thickness is used after a suitable scaling along the normal
direction with the thickness of the thin layer (see, e.g., [9],
[11], [12]). The first- and second-order effective impedance
boundary conditions are then derived. In the special case
of a homogeneous layer on a metallic circular cylinder, the
exact solution of the scattering problem is known and this has
been used to check the accuracy of our effective impedance
boundary conditions. The general case of Maxwell’s equations
for a three-dimensional inhomogeneous thin layer on a curved
metallic surface is also considered.

II. I NHOMOGENEOUSTHIN LAYER IN TWO DIMENSIONS

A. The TE Case and the First-Order
Impedance Boundary Condition

In this section, we consider an electromagnetic scattering
problem for a 2-D inhomogeneous thin layer coated on a
metallic cylinder of an arbitrary smooth cross section�.

Outside but sufficiently close to�, we denote byr� the
orthogonal projection of a pointr on�, s a curvilinear abscissa
(tangential coordinate) ofr�, and

n = jr� r�j: (1)

Then (s; n) is a parameterization of the neighborhood of the
surface�. The unit normal to the surface� at r� is denoted
by n̂. Denote byc(s; n) the curvature at the point(s; n) of
the surface

�n � fr = r� + nn̂g (2)

which is “parallel” to the surface�. In a special case when
the metallic object is a circular cylinder with radiusa, one has

c(s; n) =
1

a+ n
:

The length elementdsn on the curve�n at the pointr is related
to the length elementds on the curve� at the pointr� by

dsn = [1+ c(s; 0)n] ds:

Thus, one has

@sn =
1

1 + c(s; 0)n
@s: (3)
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In the present paper, the convention notation for the partial
derivative is used, e.g.,@s � @

@s
. The Laplacian4 has the

following form in the local coordinates system(s; n) when
the field has no variation along the axis of the cylinder (see
e.g. [10], [11]):

4 = @2
n
+ c(s; n)@n + @2

sn
: (4)

Now consider the scattering problem for a 2-D perfectly
conducting object (with surface�) coated with an inhomo-
geneous thin layer of a thicknessh. Inside the layer the
permittivity � is an arbitrary bounded function ofs and n,
and the permeability has a constant value�1. Outside the
inhomogeneous layer there is vacuum with a permittivity�0
and a permeability�0. In this section, we consider a TE
plane wave (i.e., the electric field is parallel to the axis of
the cylinder) impinging on the object from the exterior region.
The time-dependence of all fields is assumed to bee�j!t. Let
the electric fieldE = E(s;n)ez, whereez is the unit vector
along the axis of the cylinder. Then the amplitudeE(s; n) of
the electric field satisfies the following Helmholtz equation

4E + !2�1�(s; n)E = 0: (5)

The boundary condition atn = 0 is

E = 0; n = 0 (6)

and the conditions on the surfacen = h are

Ejn=h� = Ejn=h+ ;
1

�1
(@nE)jn=h� =

1

�0
(@nE)jn=h+ :

(7)
Let the variable

� = n=h: (8)

We investigate the asymptotic behavior ofE(s; n;h) inside
the thin layer ash goes to zero, under the assumption that the
“scaled” permittivity profile�(s; � ) remains unchanged. More
precisely, we want to derive approximate conditions satisfied
by @nEjn=h+ and Ejn=h+ . Inside the thin layer, one can
expandE(s; n;h) in the following form:

E(s; n;h) = E(0)(s; � ) + hE(1)(s; � ) + h2E(2)(s; � ) + � � � :

(9)

The curvaturec(s; n) can be expanded as

c(s; h� ) = c(s; 0) + h�c0(s; 0) + � � � (10)

where c0(s; 0) = [@nc(s; n)]n=0.
The impedance boundary condition that we are looking

for is an approximate relation between@nE(s; n;h) and
E(s; n;h) at the surfacen = h+. From (9) and (7), one obtains

Ejn=h+ = E(0)j�=1 + hE(1)j�=1 + h2E(2)j�=1

+ h3E(3)j�=1 + � � � (11)

@nEjn=h+ =
�0
�1 h

�
@�E

(0)j�=1 + h@�E
(1)j�=1

+ h2@�E
(2)j�=1

+ h3@�E
(3)j�=1 + � � �

�
: (12)

Note that the derivatives in the expression (4) have the
following forms:

@n = h�1@�

@2sn = @2s � [2c(s; 0)�@2s + @sc(s; 0)�@s]h+ � � � :

Thus, substituting (9) into the Helmholtz equation (5) and
matching the coefficients of theh�2, h�1, h0, � � �, terms,
respectively, one obtains

@2�E
(0) = 0 (13)

@2�E
(1) + c(s; 0)@�E

(0) = 0 (14)

@2�E
(2) + @2sE

(0) + c(s; 0)@�E
(1) + �c0(s; 0)@�E

(0)

+ !2�1�(s; � )E
(0) = 0: (15)

� � �

The boundary condition (6) becomes

E(1)(s; 0) + hE(1)(s; 0) + h2E(2)(s; 0) + � � � = 0

which gives

E(i)(s; 0) = 0; i = 0; 1; 2; � � � : (16)

It then follows from (13) and (14) that

E(0)(s; � ) = C0(s) � (17)

E(1)(s; � ) = �
�2

2
c(s; 0)C0(s) +C1(s) � (18)

whereC0(s) andC1(s) are certain functions depending only
on the tangential coordinates. One thus obtains

@�E
(0)j�=1 + h@�E

(1)j�=1

= C0(s) + hC1(s) � hc(s; 0)C0(s) (19)

E(0)j�=1 + hE(1)j�=1

= C0(s) + hC1(s) �
1

2
hc(s; 0)C0(s): (20)

Taking the first two terms in (11) and (12) and using the
relation (20), one obtains the following first-order approximate
impedance boundary condition on the surfacen = h+ (noting
that C0(s) = E(0)j�=1):

Ejn=h+�
�1
�0

h(@nE)jn=h+�
1

2
hc(s; 0)Ejn=h+ = 0: (21)

Thus, to calculate the scattered field outside the inhomo-
geneous thin layer, one can replace the original scattering
problem with the following simple boundary-value problem
when the thicknessh is much less than the wavelength:
8<
:
4E+!2�0�0E=0 n � h
E��1

�0
h @nE � 1

2
h c(s; 0)E=0; n = h

E�Ein satisfies the radiation condition at infnity.
(22)
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One notes that the permittivity profile�(s; � ) does not
appear in the first-order approximate impedance boundary
condition (21). In the next subsection, we derive a second-
order impedance boundary condition in which�(s; � ) appears.

B. Second-Order Impedance Boundary Condition

Substituting (17) and (18) into (15) yields

@2�E
(2) = �!2�1��(s; � )C0 � �

�
@2sC0(s) � c2(s; 0)C0(s)

+ c0(s; 0)C0(s)
�
� c(s; 0)C1(s): (23)

Integrating the above equation with respect to� , one obtains

@�E
(2) = �!2�1C0(s)

Z �

0

�1�(s; �1) d�1

�
1

2
�2
�
@2sC0(s) � c2(s; 0)C0(s)

+ c0(s; 0)C0(s)
�
� c(s; 0)C1(s)� +C(s)

(24)

E(2) = �!2�1C0(s)

Z �

0

�Z �1

0

�2�(s; �2) d�2

�
d�1

�
1

6
�3
�
@2sC0(s) � c2(s; 0)C0(s)

+ c0(s; 0)C0(s)
�
�

1

2
c(s; 0)C1(s)�

2 + C(s)�

(25)

where C(s) is a certain function depending only on the
abscissas. Putting � = 1 in (25), one obtains

C(s) = E(2)j�=1 + !2�1C0(s)

Z 1

0

�Z �1

0

�2�(s; �2) d�2

�
d�1

+
1

6

�
@2sC0(s) � c2(s; 0)C0(s)

+ c0(s; 0)C0(s)
�
+

1

2
c(s; 0)C1(s): (26)

Substituting (26) into (24) with� = 1 yields

@�E
(2)j�=1 = E(2)j�=1 �

1

3
!2�1C0(s)~�(s)

�
1

3

�
@2sC0(s) � c2(s; 0)C0(s)

+ c0(s; 0)C0(s)
�
�

1

2
c(s; 0)C1(s):

(27)

where

~�(s) = 3

�Z 1

0

�1�(s; �1) d�1 �

Z 1

0

�Z �1

0

�2�(s; �2) d�2

�
d�1

�
:

(28)

In the special case when the thin layer has no variation along
the normal direction, i.e.,�(s; � ) = �(s), one has~�(s) = �(s).

Since

C0(s) = E(0)j�=1 (29)

C1(s) = E(1)j�=1 +
1

2
c(s; 0)E(0)j�=1 (30)

one obtains from (19) and (27) that

@�E
(0)j�=1 + h@�E

(1)j�=1 + h2@�E
(2)j�=1

= E(0)j�=1 + h

�
E(1)j�=1 +

1

2
c(s; 0)E(0)j�=1

�

� hc(s; 0)E(0)j�=1 + h2E(2)j�=1

�
1

3
h2!2�1E

(0)j�=1~�(s) �
1

3
h2
�
@2sE

(0)
��
�=1

� c2(s; 0)E(0)j�=1 + c0(s; 0)E(0)j�=1
�

�
1

2
h2c(s; 0)

�
E(1)j�=1 +

1

2
c(s; 0)E(0)j�=1

�

=
�
E(0)j�=1 + hE(1)j�=1 + h2E(2)j�=1

�
�

1

2
hc(s; 0)

�
E(0)j�=1 + hE(1)j�=1

�

�
1

3
h2!2�1E

(0)j�=1~�(s) �
1

3
h2
�
@2sE

(0)j�=1

�
1

4
c2(s; 0)E(0)j�=1 + c0(s; 0)E(0)j�=1

�
: (31)

One thus obtains the following second-order approximate
impedance boundary condition [cf., (11), (12)]:

�1
�0

h @nE = E �
1

2
hc(s; 0)E �

1

3
h2!2 �1 ~�(s)E

�
1

3
h2
�
@2sE �

1

4
c2(s; 0)E + c0(s; 0)E

�

n = h+: (32)

Therefore, to calculate the scattered field outside the inho-
mogeneous thin layer, one can replace the original scattering
problem with the following boundary-value problem when the
thicknessh is much less than the wavelength:8>><
>>:

4E + !2�0�0E = 0; n � h
E � �1

�0
h @nE�

1
2hc(s; 0)E � 1

3h
2!2�1 ~�E

�1
3
h2
�
@2sE � 1

4
c2(s; 0)E+c0(s; 0)E

�
= 0; n = h

E�Ein satisfies the radiation condition at infnity
(33)

where~�(s) is given by (28).
1) Numerical ExampleAs a numerical example, we con-

sider a TE plane wave incident on a scatterer consisting of
a perfectly conducting circular cylinder (with radiusa) and
a dielectric coating layer (with thicknessh). Thus, one has
c(s; n) = 1

a+n . The permeability has a constant value�0 in
the whole space. The total electric fields on the surface of the
cylindrical scatterer are calculated by solving the system (33)
(see the Appendix) and are shown in Fig. 2 for a homogeneous
dielectric coating with� = 2�0 or an inhomogeneous dielectric
coating with

� = �0

�
3�

r � a

h
cos �

�
; a < r < a+ h:

In this example, we chooseka = 5 and kh = 0:2�. In the
case of a homogeneous dielectric coating, the exact solution
of the scattering problem for the homogeneous dielectric
coating is known (see the Appendix) and this is used to check
the accuracy of our effective impedance boundary conditions
in this numerical example. Fig. 2 shows that the numerical
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Fig. 1. The scattering configuration.

result calculated with the second-order impedance boundary
condition (the boxes in Fig. 2) is in good agreement with the
exact solution (the solid curve in Fig. 2) for the homogeneous
dielectric thin coating.

C. The TM Case

For the TM case, the magnetic fieldH = H(s; n)ez . The
boundary condition is

@nH(s; n) = 0; n = 0: (34)

A similar asymptotic analysis can be carried out without any
extra difficulty to derive the approximate boundary conditions
for an inhomogeneous thin layer in the TM case. For example,
when the layer has a permeability�(s; n) and a constant
permittivity �0, one can obtain the following approximate
impedance boundary conditions:

• first-order approximate impedance boundary condition

@nH + h!2�0~�(s)H + h@2
s
H = 0 (35)

• the second-order approximate impedance boundary con-
dition

@nH + h!2�0~�(s)H + h@2
s
H +

h2

2
@s[c(s; 0)@sH]

� c(s; 0)h2!2�0
�

� (s)H = 0 (36)

where

~�(s) =

Z 1

0

�(s; � ) d� (37)

�

� (s) =

Z 1

0

Z
�

0

�(s; �1) d�1 d�: (38)

III. I NHOMOGENEOUSTHIN LAYER IN THREE DIMENSIONS

In this section, we derive an effective impedance boundary
condition for an inhomogeneous thin dielectric layer for which
both permittivity and permeability depend on all three-space
coordinates. The thin dielectric layer is coated on a metallic
object (with a smooth surface�). Inside the thin layer, one
has the following Maxwell’s equations:

r� E = j!�
�
s;
n

h

�
H (39)

r�H = �j!�
�
s;
n

h

�
E (40)

where s = (s1; s2) is the curvilinear abscissas, and(s; n)
is the parameterization of the neighborhood of the surface

Fig. 2. The total electric field on the surface of a scatterer consisting of a
perfectly conducting circular cylinder (with radiusa) and a thin dielectric
coating layer (with thicknessh). ka = 5, kh = 0:2�.

� as described in the previous section. In this section, we
assume that the parameters� and� are bounded and piecewise
differentiable with respect tos. The boundary condition is

E� n̂ = 0; n = 0: (41)

On the surfacen = h the tangential components of the electric
and magnetic fields (i.e.,E � n̂ andH� n̂) are continuous.

Let �n (n > 0) be the family of the surfaces parallel to�
(the surface of the perfect conductor), i.e.,�n = f(s; n); s 2
�g. For any smooth functionu or any vector fieldv defined
on a surface�n, one can get an extension of each one in a
neighborhood of the surface�n by setting

~u(r) = u
�
r�n

�
; ~v(r) = v

�
r�n

�
wherer�n is the orthogonal projection ofr on the surface�n.
One can then define the following surface differential operators
(see e.g. [10]):

1) the surface divergence of a tangential fieldv on �n:
div�

n
v � (div ~v)j�

n
;

2) the vector rotational of a function on�n: curl�nu �
[curl (un̂)]j�n;

3) the scalar rotational of a tangential field on�n:
curl�nv � n̂ � (curl ~v)j�n .

Then, one has the following formulas:

r� v =
�
curl�nv�n

�
n̂+ curl�n(v � n̂)

+ [Rn � c(s; n)]v� n̂� @n(v � n̂) (42)

r � v =
�
div�nv�n

�
+ c(s; n)v � n̂+ @n(v � n̂) (43)

whereRn is the tensor of curvature at(s; n), c(s; n) is the
mean curvature at(s; n), andv� is the orthogonal projection
of the vectorv on �, i.e.,

v� = �n̂� n̂� v: (44)
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We introduce the following asymptotic expansions of the
electric and magnetic fields:�
E(s; n;h)=E

(0)(s; � )+hE(1)(s; � )+h2E(2)(s; � ) + � � � ;
H(s; n;h)=H

(0)(s; � )+hH(1)(s; � )+h2H(2)(s; � )+� � �
(45)

where the variable� is defined by (8).
To obtain an effective boundary condition, we need to find

a relation between the tangential component of the electric
field and the tangential component of the magnetic field.
Substituting (45) into Maxwell’s equations (39) and (40) and
matching the coefficients of theh�1, h0, h, h2, � � �, terms,
respectively, one obtains

@� (E
(0) � n̂) = 0 (46)

@� (H
(0) � n̂) = 0 (47)

@� (E
(1) � n̂) +

�
curl�E

(0)
�

�
n̂+ curl�(E

(0) � n̂)

+ [Rnjn=0 � c(s; 0)]E(0) � n̂� @n(E
(0) � n̂)

= j!�(s; � )H(0) (48)

@� (H
(1) � n̂) +

�
curl�H

(0)
�

�
n̂+ curl�(H

(0) � n̂)

+ [Rnjn=0 � c(s; 0)]H(0) � n̂� @n(H
(0) � n̂)

= �j!�(s; � )E(0) (49)

� � � :

The boundary condition (41) becomes

(E(i) � n̂)j�=0 = 0; i = 0;1; 2;3; � � � : (50)

From (46) and (50), one obtains

(E(0) � n̂)(s; � ) = 0: (51)

Substituting (45) into the conditionr�(�E) = r�(�H) = 0
[obtained by taking the divergence of Eqs. (39) and (40)] and
matching the coefficients of theh�1, h0, h, h2, � � �, terms,
respectively, one obtains

@� [�(s; � )E
(0) � n̂] = 0 (52)

@� [�(s; � )H
(0) � n̂] = 0 (53)

� � �

which gives

(E(0) � n̂)(s; � ) =
A1(s)

�(s; � )
(54)

(H(0) � n̂)(s; � ) =
A2(s)

�(s; � )
(55)

whereA1(s) andA2(s) are certain functions depending only
on s. The normal components of (48) and (49) give

curl�E
(0)
� = j!�(s; � )H(0) � n̂ (56)

curl�H
(0)
� = �j!�(s; � )E(0) � n̂: (57)

From the above four equations, one obtains

A1(s) = �
j

!
curl�E

(0)
� (58)

A2(s) =
j

!
curl�H

(0)
� : (59)

Therefore, it follows from the tangential component of (48)
that [cf., (51)]

@� (E
(1) � n̂) = �curl�

�
j

!�(s; � )
curl�H

(0)
�

�

+ j!�(s; � )H(0)
� : (60)

Integrating the above equation from� = 0 to � = 1, one
obtains (noting that(E(1) � n̂)j�=0 = 0)

(E(1) � n̂)j�=1 = � j

!

�Z 1

0

d�

�(s; � )

�
curl�curl�H

(0)
�

� j

!

�Z 1

0

curl�

�
1

�(s; � )

�
d�

�
curl�H

(0)
�

+ j!

�Z 1

0

�(s; � ) d�

�
H

(0)
� : (61)

Therefore, one obtains the following approximate impedance
boundary condition on the surfacen = h+ [cf., (45) and (51)]:

(E � n̂) =

jh

�
1

!

�Z 1

0

d�

�(s; � )

�
curl�curl�(n̂� n̂�H)

+
1

!

�Z 1

0

curl�

�
1

�(s; � )

�
d�

�
curl�(n̂� n̂�H)

� !

�Z 1

0

�(s; � ) d�

�
(n̂� n̂�H)

�
: (62)

In a similar way, one can derive higher order impedance
boundary conditions.

IV. CONCLUSION

In the present paper, we have derived the effective
impedance boundary conditions for an inhomogeneous (along
both the normal and tangential directions) thin layer coated on
a curved metallic surface. Explicit forms of the first-order and
second-order effective impedance boundary conditions have
been derived through an asymptotic analysis after a suitable
scaling with the thickness. The present effective impedance
boundary conditions are useful in simplifying the analytical
or numerical solution of wave scattering problem involving
complex structures.

APPENDIX

NUMERICAL SOLUTION FOR (33) IN

THE CASE OF CIRCULAR CYLINDER

In this appendix, we describe a numerical method for
solving the boundary-value problem (33) when the metallic
object is a circular cylinder with radiusa. For this special
case, one hasc(s; n) = 1

a+n . Consider a plane wave incident
on the cylinder (coated with a dielectric layer of thicknessh;
the permeability in the whole space is�0), as depicted by the
small scattering configuration in Fig. 2. Thus, one has

Ein = Ein
0 e

jkr cos � = Ein
0

1X
m=�1

(j)mJm(kr)ejm� (A.1)
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wherek = !
p
�0�0 is the incident wave number andJm(x)

is the Bessel function of orderm. The scattered field outside
the scatterer can be expanded according to

Es = Ein
0

1X
m=�1

(j)mSmH
(1)
m (kr)ejm� (A.2)

whereH(1)
m is the Hankel function of the first kind. Substi-

tuting (A.2) into the first-order impedance boundary condition
(21), one obtains the following approximation for the scattered
field on the surfacer = a + h:

Esjr=a+h � Es(1)jr=a+h = �Ein
0

1X
m=�1

(j)m

�
�
1� h

2a

�
Jm(k(a+ h))� khJ 0m(k(a+ h))�

1� h
2a

�
H

(1)
m (k(a+ h))� khH

0(1)
m (k(a+ h))

�H(1)
m (k(a+ h))ejm� (A.3)

whereJ 0m(x) andH0(1)
m (x) denote the derivatives ofJm(x)

and H
(1)
m (x), respectively. For the second-order impedance

boundary condition (32), we first neglect the small inho-
mogeneous term ~�

3�0
h2k2, then solve the problem with the

remaining homogeneous boundary condition, and finally add
the inhomogeneous term~�

3�0
h2k2 back to the solution. The

final approximate result is

Esjr=a+h � Es(2)jr=a+h
= E

s(2)
0 jr=a+h +

k2h2

3�0
~�(�)

�
Ein +E

s(2)
0

�
(A.4)

where~�(�) is calculated by (28) and

E
s(2)
0 = �Ein

0

1X
m=�1

(j)m

� bmJm(k(a+ h))� khJ 0m(k(a + h))

bmH
(1)
m (k(a + h))� khH

0(1)
m (k(a+ h))

�H(1)
m (k(a+ h))ejm�: (A.5)

and wherebm = 1� h
2a

+ h
2

4a2
+ m

2
h
2

3(a+h)2
[here m

2
h
2

3(a+h)2
is due

to the term1
3h

2@2sEjn=h+ in (32)].
When the coating dielectric layer is homogeneous, one can

obtain an exact solution given by (A.2) with [13]

Sm =
k2Jm(k(a + h))Pm � kJ 0m(k(a+ h))Qm

�k2H(1)
m (k(a+ h))Pm + kH

0(1)
m (k(a+ h))Qm

(A.6)
wherek2 = k

p
�=�0, and

Pm = H0(1)
m (k2(a + h))H(2)

m (k2a)

�H0(2)
m (k2(a+ h))H(1)

m (k2a);

Qm = H(1)
m (k2(a+ h))H(2)

m (k2a)

�H(2)
m (k2(a+ h))H(1)

m (k2a):
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