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Effective Impedance Boundary Conditions
for an Inhomogeneous Thin Layer
on a Curved Metallic Surface

Habib Ammari and Sailing He

Abstract—Effective impedance boundary conditions for an an arbitrary cross section) is considered first. An asymptotic
inhomogeneous thin layer coated on a perfectly conducting object expansion of the field solution in a power series of the
are considered. The permittivity of the thin layer is inhomoge- ihickness is used after a suitable scaling along the normal

neous along both the normal and tangential directions. Explicit . - - . .
forms of the first- and second-order approximate impedance diréction with the thickness of the thin layer (see, e.g., [9],

boundary conditions are derived first for a two-dimensional [11], [12]). The first- and second-order effective impedance
(2-D) thin layer for the TE and TM case. Numerical results boundary conditions are then derived. In the special case

are presented. The case of Maxwell's equations for a three- of a homogeneous layer on a metallic circular cylinder, the
dimensional inhomogeneous thin layer is also considered. exact solution of the scattering problem is known and this has
Index Terms—Coatings, electromagnetic scattering, impedance been used to check the accuracy of our effective impedance
boundary condition. boundary conditions. The general case of Maxwell’s equations
for a three-dimensional inhomogeneous thin layer on a curved

l. INTRODUCTION metallic surface is also considered.

PPROXIMATE boundary conditions, which provide an
approximate relation between the electric and magnetic
fields on a chosen surface, have been widely used in problems )
of wave propagation, diffraction, and guidance to simulafe The TE Case and the First-Order
the material and geometric properties of surfaces. Such™Pedance Boundary Condition
mathematically derived boundary condition is usually referred In this section, we consider an electromagnetic scattering
to as an effective impedance boundary condition. The genepabblem for a 2-D inhomogeneous thin layer coated on a
purpose of the effective impedance boundary conditions risetallic cylinder of an arbitrary smooth cross sectlon
to simplify the analytical or numerical solution of wave- Outside but sufficiently close td, we denote byrr the
scattering problem involving complex structures by, e.g., conrthogonal projection of a poimtonT', s a curvilinear abscissa
verting a two (or more) media problem into a single mediurftangential coordinate) ofr, and
problem. Many studies have been carried out in this area (see,
e.g., [1]-[8]). However, all are limited to the case of one (or n=r—rrl (1)
several) homogeneous layer(s). Then

In a previous paper [9], we have extended the idea to th€ ¢ o1 “The unit normal to the surface atrr is denoted
case of an inhomogeneous layer coated on a planar surf f. Denote byc(s, n) the curvature at the poirfts, n) of
In the present paper, we consider the effective impedarL% surface ’ ’

the

boundary conditions for an inhomogeneous (along both

normal and tangential directions) thin layer coated on a curved I, ={r=rpr+nn} (2)
surface. Inhomogeneous thin layers can be found in many

applications such as thin gratings, corrugated surfaces, auaich is “parallel” to the surfacé’. In a special case when
coated edges or junctions_ Due to the inhomogeneity of tHlQ metallic ObjeCt is a circular Cylinder with radiusone has
coating, the effective impedance boundary conditions are in 1

general nonuniform. The case of a two-dimensional (2-D) c(s,n) = atn

inhomogeneous thin layer coated on a metallic cylinder (of o
The length elements,, on the curvd’,, at the point: is related
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In the present paper, the convention notation for the partidbte that the derivatives in the expression (4) have the
derivative is used, e.gd, = g’—s. The LaplacianA has the following forms:
following form in the local coordinates syste(s, n) when

the field has no variation along the axis of the cylinder (see 9, =h~'o,
e.g. [10], [L1]): 02 = 07 — [2(5,0)702 + Ose(5,0)70,]h + -+
A=05+c(s,n)d, + 07 . 4
Thus, substituting (9) into the Helmholtz equation (5) and

Now consider the scattering problem for a 2-D perfectlhatching the coefficients of thé=2, h=', A", ---, terms,
conducting object (with surfac€) coated with an inhomo- respectively, one obtains
geneous thin layer of a thickneds Inside the layer the
permittivity ¢ is an arbitrary bounded function of and n, 92E™ — (13)
and the permeability has a constant vajue Outside the !
inhomogeneous layer there is vacuum with a permittivity
and a permeabilityu,. In this section, we consider a TE
plane wave (i.e., the electric field is parallel to the axis of
the cylinder) impinging on the object from the exterior region. 02 E® + 82 ) + ¢(5,0)0, B + 7¢/(s,0)9, £
The time-dependence of all fields is assumed tebe’. Let +wpre(s, 7)E® = 0. (15)
the electric fieldE = E(s, n)e,, wheree, is the unit vector
along the axis of the cylinder. Then the amplituiés, n) of

the electric field satisfies the following Helmholtz equation .
The boundary condition (6) becomes

AE +w?pe(s,n)E = 0. (5)

P EM 4 ¢(s,0)0, B =0 (14)

E(U(S,O) + hE(”(s,O) + h2E(2>(5,0) +...=0
The boundary condition at = 0 is
which gives
E=0, n=0 (6)
. ED(5,0)=0, i=0,1,2,---. (16)
and the conditions on the surfaee= /. are

Elyen- = Elpen+, i(anENn:h— _ i(anE)lnzm. It then follows from (13) and (14) that
" " ) 05, 7) = Cy(s) 7 )
1 2
Let the variable EO(s,7) = = (s, 0)Cols) + Ci(5) 7 (18)
Tr=n/h. (8)
) ) ) ) o where Cy(s) andC (s) are certain functions depending only

We m_vesUgate the asymptotic behavior Bfs, n;h)_ inside  on the tangential coordinate One thus obtains
the thin layer ag: goes to zero, under the assumption that the
“scaled” permittivity profilee(s, 7) remains unchanged. More O EW |2y +ho, BV, _y
precisely, we want to derive approximate conditions satisfied = Cy(s) + hC (5) — he(s, 0)Ca(s) (19)
by 0, E|,—»+ and E|,_,+. Inside the thin layer, one can ) N ’
expandE(s,n;h) in the following form: Bz 4 hE ]2y

1

E(s,n;h)y = EO(s, 1) + hEW (s, 1) + B2E® (s, 7) + - - = Co(s) +hC(s) — §hc(5, 0)Co(s)- (20)

() Taking the first two terms in (11) and (12) and using the
relation (20), one obtains the following first-order approximate
impedance boundary condition on the surface 2% (noting

c(s,ht) =¢(s,0) + hrc/(s,0) + - - (10) that Co(s) = E(0)|T:1):

The curvaturez(s, n) can be expanded as

where ¢(s,0) = [0, ¢(s,n)]n=0. I M p s e —0 (21
The impedance boundary condition that we are looking In=ns Ho (O Bl =it 2 o(5,0)Bln=ps = 0. (21)

for is an approximate relation betwee®, E(s,n;h) and

E(s, n; h) at the surface. = h*. From (9) and (7), one obtains Thus, to calculate the scattered field outside the inhomo-
T geneous thin layer, one can replace the original scattering

Elpept = BOizy + hED |2y + B2ED), problem with the following simple boundary-value problem
+RIE® | 4 (11) Wwhen the thickness is much less than the wavelength:
a71,£C|n:h+ = /:L—Oh [6TE(0)|TI1 + haTE(1)|TI1 AE—HUQ/,L()E()EIO n Z h
E-h 9, E — Lhe(s,0)E=0, n=nh
R0, B, po!t oY 2 - .
T 7= E—FE'" satisfies the radiation condition at infnity.

4 h367E(3)IT:1 4. ] (12) (22)
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One notes that the permittivity profile(s, ) does not one obtains from (19) and (27) that
appear in the first-order approximate impedance boundary 0) ) ) )
condition (21). In the next subsection, we derive a second- Or BV ezt + hOr BV |y + 100 BV

order impedance boundary condition in whigh, 7) appears. — E(o)| L+ h [E(1)| L+ 10(5 O)E(0)| 1]
T= T= 2 b) T=
B. Second-Order Impedance Boundary Condition — he(s, 0)E®| =y + A2 EP)| _,
Substituting (17) and (18) into (15) yields = B () — a2 [92E0)|
3 s 37 107 =
?E® = —w” iy 1e(s, 7)Co — T[07Co(s) — ¢*(5,0)Co(s) — (5,0)E™|, =y + (s, O)E(0)|T:1]
+ ¢(5,0)Co(s)] — ¢(s,0)C1 (s). (23)

1
— %hQC(S,O) [E(1)|T:1 + §C(S,O)E(0)|T:1:|

Integrating the above equation with respect-tamne obtains
g g q p = [E(0)|T:1 + hE(1)|TIl + h2E(2)|TIl]

9. E®) = —u?y, CO(S)/ T €e(s, ) dm N %hc(g;, 0)[E® =1 + hEM], =]
0
1
— 10 Cols) — (5,0)Ch(s) - g B leaits) g [0 E
+¢(5,0)Ca(s)] — ¢(s,0)C1(s)T 4 C(s) 1, (0) / (0)
(24) - 1° (5,0) " |21 +(s,0)F |T=1:|' (31)
E® = _u2y, Co(s)/ [/ 7-26(5)7-2)6[7-2] dry One thus obtains the following second-order approximate

0 0

1 impedance boundary condition [cf., (11), (12)]:
— —73[02Co(s) — ¢*(s,0)Co(s)

57 0 10 Bho,p=r— %hc(s,O)E— %hzwzm s)E
+¢(5,0)Co(s)] — 50(5,0)01 ()77 + C(s)r Ho

1 1
(25) - §h2 PE— 102(5, 0)E + (s, O)E]

where C(s) is a certain function depending only on the n=ht. (32)

abscissas. Puttingr = 1 in (25), one obtains Therefore, to calculate the scattered field outside the inho-

1 1 mogeneous thin layer, one can replace the original scattering
C(s) = B,y +w’p C0(8)/ [/ To€(s, ) de] dr problem with the following boundary-value problem when the
o LJo thicknessh is much less than the wavelength:

1
+6[6?CO(S)_62(570)00(5) ANFE + WQﬂOEOE = 0J nZh
1 E — Bh§, E—Lhe(s,0)E — th?w?puy € E
/ — Ho ’ 2 ’ 3
+¢(5,0)Co(s)] + 26(5’0)C1 (5)- (26) —Lh?[0?E — 1c*(s,0) B4/ (s,0) E] =0, n=nh

Substituting (26) into (24) with- = 1 yields E—E™ satisfies the radiation condition at infnity

where &(s) is given by (28).

1) Numerical ExampleAs a numerical example, we con-
sider a TE plane wave incident on a scatterer consisting of
a perfectly conducting circular cylinder (with radiug and

, 1 a dielectric coating layer (with thickneds). Thus, one has
+(5,0)Ca(s)] - 56(5’0)01 (5)- ¢(s,n) = 5. The permeability has a constant valug in
(27) the whole space. The total electric fields on the surface of the

cylindrical scatterer are calculated by solving the system (33)

aTE(2)|T:1 = E(2)|T:1 - %w2/’“ CO(S)g(S)

-~ Licu(s) - 000t

where (see the Appendix) and are shown in Fig. 2 for a homogeneous
R 1 1 1 dielectric coating withk = 2¢, or an inhomogeneous dielectric
é(s) = 3{/ Tie(s, m)dm —/ [/ Toe(s, ) dTQ] dry } coating with
0 0 0
28 —
(28) €:€0<3—Thacosﬁ>, a<r<a+h.

In the special case when the thin layer has no variation along
the normal direction, i.eq(s, 7) = ¢(s), one hasi(s) = ¢(s). In this example, we choosex = 5 and k2 = 0.27. In the

Since case of a homogeneous dielectric coating, the exact solution
0 of the scattering problem for the homogeneous dielectric
Co(s) = E )|r:1 (29) coating is known (see the Appendix) and this is used to check
1 the accuracy of our effective impedance boundary conditions
Ci(s) = ED |2y + =c(s,0)E©)|,_ 30) €4 Y 'mp Y )
() =1+ 26(5’ ) =1 (30) in this numerical example. Fig. 2 shows that the numerical
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1.4

© 2ndorder IBC, € = (3 —~ “5-% cosf)  -° )

exact, € = 2¢;

o 2nd order IBC, € = 2¢
+  1st order IBC, ¢ = 2¢,

1.2

perfect conductor

Fig. 1. The scattering configuration.

al electric field |(E* + E™)/Ei®|

result calculated with the second-order impedance boundarg
condition (the boxes in Fig. 2) is in good agreement with the &
exact solution (the solid curve in Fig. 2) for the homogeneous=
dielectric thin coating.

total

C. The TM Case

For the TM case, the magnetic fiel = H(s,n)e,. The
boundary condition is

4 4 + n 4 J
20 40 60 80 100 120 140 160 180

angle 8 (degree)

Fig. 2. The total electric field on the surface of a scatterer consisting of a
8nH(5; n) =0, n=20. (34) perfectly conducting circular cylinder (with radiug and a thin dielectric
coating layer (with thickness8). ka = 5, kh = 0.27.

A similar asymptotic analysis can be carried out without any

extra difficulty to derive the approximate boundary conditions ) ) ) ) ) )

for an inhomogeneous thin layer in the TM case. For example, @S described in the previous section. In this section, we
when the layer has a permeabiligy(s, n) and a constant afssume_that the_ parameterandy are bounded and_p_lec_eW|se
permittivity ¢,, one can obtain the following approximated'fferent'able with respect te. The boundary condition is

impedance boundary conditions: Exn=0, n=0. (41)
« first-order approximate impedance boundary condition
5 - ) On the surface: = & the tangential components of the electric
On H + hw"copi(s)H + ho  H =0 (35) and magnetic fields (i.eE x n andH x n) are continuous.
» the second-order approximate impedance boundary conket I (n > 0) be the family of the sgrfaces parallel to
dition (the surface of the perfect conductor), i.E,, = {(s,n),s €
I'}. For any smooth functiom or any vector fieldv defined
on a surfacd’,,, one can get an extension of each one in a

h2
On H + hw2€0ﬂ(5)H +ho’H 4+ —0, [e(s,0)0, H] _ :
2 neighborhood of the surfacé, by setting

— ¢(s,0)h*w’eq 1t (s)H =0 (36) . :
(,0) 0 () a(r) = u(rr,), v(r)=v(rr,)
where _ o
] whererr is the orthogonal projection afon the surfacé’,, .
ji(s) = / (s, 7y dr (37) One can then define the following surface differential operators
0 (see e.g. [10]):
1 p7 . . . .
% (s) = / / p(s, ) dr dr. (38) 1) the surfice .d|v~erger1ce of a tangential fisldon I',,:
o Jo divp, v = (divv)|r, ;
2) the vector rotational of a function oh,: curlr v =
[ll. I NHOMOGENEOUSTHIN LAYER IN THREE DIMENSIONS [curl (un)]|r,;

In this section, we derive an effective impedance boundary3) the scalar rotational of a tangential field dn,:
condition for an inhomogeneous thin dielectric layer for which curlp, v = n - (curlv)|r,.
both permittivity and permeability depend on all three-spadéhen, one has the following formulas:
coordinates. The thin dielectric layer is coated on a metallic
object (with a smooth surfacE). Inside the thin layer, one
has the following Maxwell's equations:

VxE-= W(s, %)H (39)

VXv= (curlrnvrn)ﬁ + curlr, (v -n)
+ [R, —e(s,n)]vxn—0,(vxn) (42)
V-v= (divrnvrn) +e(s,n)v-n+0,(v-n) (43)

n where R,, is the tensor of curvature &t,n), c(s,n) is the
VxH= —jWG(Sa E)E (40) mean curvature &ts, n), andvr is the orthogonal projection
. . . of the vectorv on T, i.e.,
where s = (sy,s2) is the curvilinear abscissas, artd, n)
is the parameterization of the neighborhood of the surface VrP=-NXnXV. (44)
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We introduce the following asymptotic expansions of th&herefore, it follows from the tangential component of (48)
electric and magnetic fields: that [cf., (51)]

E(s,n; h):E(O)(s, T)—i—hE(l)(S, T)—I—hZE(Z)(S, 4 (1) o j ()
{H@nmyﬂww&ﬂ+mﬂw&ﬂ+MH®@JHm“ d-(E Xn%—ﬂmﬂrwd&ﬂamﬂ#
(45) | o)
where the variable is defined by (8). + jop(s, T)HE . (60)

To obtain an effective boundary condition, we need to ﬁnl%tegrating the above equation from= 0 to 7 = 1, one
a relation between the tangential component of the eleCthtains (noting thatE(") x n)| — 0) ,
field and the tangential component of the magnetic field. =0

Substituting (45) into Maxwell's equations (39) and (40) and 1) o Jr 1" dr (0)
matching the coefficients of the~', 0, h, h?, -, terms, (B Xm)l=1 = o /0 (s, 7) curlpewrlrHy
respectively, one obtains . 1
1 / curlp L dr curlpH(O)
O, (B xn) =0 (46) w \Jp (s, T) r
M) v« f) = 1
Or(H' xm) =0 0 (47) + jw [/ s, 7) dr] H%O). (61)
0, (B x n) 4 (curlrEig))ﬁ + curl-(E" - n) 0
+ [Roln=o — ¢(5,0)]E® x n — 0, (E”) x n) Therefore, one obtains the following approximate impedance
= juwpu(s, 7.)H(O) (48) boundary condition on the surfaee— A+ [cf., (45) and (51)]:
O (H(l) xn) + (curer;O))ﬁ—l— curlr(H(O) -n) (E xn) =
— )« f— M % A 1
+ [Raln=0 — ¢(s, 0)JH x n— 8, (H" x n) h{ l |:/ —dT ]curlrcur]r(ﬁ x n x H)
= —jwe(s, T)E™ (49) w )y €(s,7)
1
+ (/ curlr[ ! ] dr) curlp(fn x n x H)
- w \ Jo (s, T)
The boundary condition (41) becomes 1
(EW x0),g =0, i=0,1,23, . (50) —w[/0 p(s,r)dr](nxan)}. (62)
From (46) and (50), one obtains In a similar way, one can derive higher order impedance
0 boundary conditions.
(B xn)(s,7) = 0. (51)
Substituting (45) into the conditioW - (¢E) = V- (¢H) = 0 IV. CONCLUSION
[obtained by taking the divergence of Egs. (39) and (40)] and|, he present paper, we have derived the effective

matching the coefficients of the=!, A%, h, h?, --., terms,

. : impedance boundary conditions for an inhomogeneous (along
respectively, one obtains

both the normal and tangential directions) thin layer coated on
O, [e(s, HE® ] =0 (52) @ curved metallic surface. Explicit forms of the first-order and
second-order effective impedance boundary conditions have

M . [l =
Or [pls, HT -] = 0 (53) been derived through an asymptotic analysis after a suitable
scaling with the thickness. The present effective impedance
. : boundary conditions are useful in simplifying the analytical
which gives . . . . .
or numerical solution of wave scattering problem involving
A
(B - n)(s,7) = 1(s) (54) complex structures.
(s, T)
A
(H(o) n)(s,7) = 2(s) (55) APPENDIX
s, 7) NUMERICAL SOLUTION FOR (33) IN

where 4; (s) and A»(s) are certain functions depending only THE CASE OF CIRCULAR CYLINDER

on s. The normal components of (48) and (49) give In this appendix, we describe a numerical method for
solving the boundary-value problem (33) when the metallic
curl B = jwp(s, )H™ -1 (56) object is a circular cylinder with radius. For this special
CuﬂrH(F”) = —jwe(s, HE -n. (57) case, one_ha&(s, n) = a,jl-n_' Con_sider a plane wave incident
on the cylinder (coated with a dielectric layer of thicknéss
From the above four equations, one obtains the permeability in the whole spaceyis), as depicted by the

j small scattering configuration in Fig. 2. Thus, one has
Ai(s) = ——curlrE%O) (58)
W [s.9]

Ein — E})n e Frcost _ E})n Z (])m I (kr)ejm,ﬁ (Al)

m=—00

&@:%wmmﬁ (59)
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wherek = w,/eupg is the incident wave number anf, (x)

is the Bessel function of orden. The scattered field outside

the scatterer can be expanded according to

E=EP N ()" S HYY (kr)ed ™

m=—-00

(A.2)

where ()’ is the Hankel function of the first kind. Substi-
tuting (A.2) into the first-order impedance boundary conditio
(21), one obtains the following approximation for the scatter

field on the surfacer = a + A:

oQ

Es|r:a+h ~ Es(1)|7‘:a+h = _E})n Z (])m

(= B (ko ) — AT (Ko 4 1)
(1- > Hyy (k(a+ h)) = kh P (k(a + h))
X H“)( (a+h))e™” (A.3)

where J/, (z) and H/\" (x) denote the derivatives of,, ()

3

(1]

(2]
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