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A Hybrid (Parabolic Equation)–(Gaussian Beam)
Algorithm for Wave Propagation

Through Large Inhomogeneous Regions
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Abstract—The wide-angle split-step parabolic equation (PE)
algorithm is used to model electromagnetic wave propagation
over general inhomogeneous terrain up to a heighth. The
PE-computed fields at h are then projected onto a complete
Gabor basis from which we effect Gaussian beam propagation at
altitudes greater than h. The Gaussian beams can be propagated
through general inhomogeneous media, devoid of failures at caus-
tics and shadow boundaries (as befalls ray tracing). The accuracy
of the Gaussian beam algorithm is demonstrated via two real-
istic examples: 1) low-frequency (HF) ionospheric propagation
with application to over-the-horizon radar and 2) near-grazing
high-frequency propagation for communication or surveillance
applications. In the context of these examples, we discuss relevant
numerical issues associated with the hybrid algorithm from which
general advantages and disadvantages are addressed.

Index Terms—Gaussian beams, nonhomogeneous media, prop-
agation.

I. INTRODUCTION

L ONG-RANGE electromagnetic propagation is of interest
for many applications, including radar [1] and com-

munication [2] systems. For such problems, the propaga-
tion medium is often too complicated for Green’s-function-
based solutions or for the geometrical theory of diffraction
[3]. Moreover, the propagation range is generally so large
with respect to wavelength that rigorous numerical schemes
such as the finite-difference time-domain [4], the method
of moments [5], and the finite-element method [6] would
require prohibitive computational resources. Therefore, there
has recently been significant interest in the parabolic equation
(PE) approximation to the Helmholtz wave equation, which
yields a computationally efficient algorithm for long-range,
forward-wave propagation through relatively general media
[7]–[15]. Although the PE algorithm is approximate, upon
comparison with rigorous schemes, it has been shown to yield
highly accurate results [10], [11].

While the PE algorithm permits the accurate analysis of
wave propagation over large ranges, finite computational re-
sources ultimately limit the extent over which it can be applied.
Therefore, researchers have sought the development of hybrid
schemes that utilize the PE algorithm for complicated but
relatively localized regions of the computational domain and
alternative efficient schemes to extend the solution into the
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more “regular” regions. For example, Levy [13] used the
standard “vertical PE” algorithm to model wave propagation
over a rough ground or sea interface, while above a particular
height, an efficient “horizontal PE” algorithm was applied.
Additionally, Marcus [14] has matched the PE-computed fields
to a Green’s function appropriate for the region outside the
PE algorithm’s computational domain. In the work presented
here we follow this strategy, but Gaussian beam propagation
[17]–[21] is utilized to extend the fields beyond the region
in which the PE algorithm is applied. This scheme is more
flexible than the horizontal PE [13] or Green’s function [14]
algorithm in that it is applicable to general atmospheric inho-
mogeneities. Further, unlike ray-based codes [15], the beams
are not subject to failure at shadow boundaries and caustics.

To effect the Gaussian beam strategy outlined above, one
must self consistently extend the fields away from a given
aperture field distribution. Here, we project the aperture fields
rigorously onto a Gabor basis in a manner similar to that in
[17]–[19]. One can show asymptotically that along the tilted
axis of propagation (paraxially), the fields radiated by such
Gabor basis functions constitute Gaussian beams [17]–[19].
The compact and analytic nature of such beam fields has
motivated their application in a number of problems, including
radome design [18]. However, nearly all previous research
on Gaussian beam propagation away from an aperture has
dealt with radiation in free-space (vacuum) [17]–[19] or has
considered Gaussian beam interaction withdiscretestructures
[18]. In these previous investigations, detailed studies have
been undertaken on the asymptotic and numerical properties
of Gabor-function-generated beams, yielding requirements for
validity of common approximations (e.g., paraxial and far
zone). In the work presented here, we are interested in Gauss-
ian beam propagation away from an aperture into a general
inhomogeneousmedium. Therefore, we utilize the beams
launched by the Gabor basis functions asstarter fieldsfor a
Gaussian beam-tracing algorithm [20], [21] applicable to gen-
eral continuously varying inhomogeneous media. The coupling
of aperture theory with Gaussian beam tracing for inhomoge-
neous media places additional constraints on the Gabor-basis
parameters, which have not been considered previously. In
this paper, we discuss such issues in detail analytically, with
demonstration provided by several numerical examples.

While Gaussian beam tracing through inhomogeneous me-
dia has been considered previously in acoustics [21] and
seismology [20], such studies have treated the Gaussian beam
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excitation in an admittedlyad hoc manner [20], [21]. In
the work presented here, we place the launching of such
Gaussian beams on a firm mathematical footing, through use
of the well-known Gabor expansion. Therefore, the princi-
pal contribution of this paper is the coupling of the Gabor
transform with Gaussian beam propagation for inhomogeneous
media. While the Gabor expansion and beam tracing are
well known individually, their coupling is believed to be
new. Moreover, as alluded to above, this synergy introduces
new constraints on the Gabor expansion functions, which are
shown to be dictated by the detailed characteristics of the
inhomogeneous medium through which the beams are traced.
The resulting (Gabor expansion)–(Gaussian beam tracing) al-
gorithm provides a new method of extending the PE-generated
fields beyond a predefined aperture, into an inhomogeneous
medium. This hybrid scheme is applicable to general inhomo-
geneities, thereby avoiding previous restrictions to particular
inhomogeneity profiles [13] or specialized Green’s function
[14]. However, the details of the Gabor expansion introduce
advantages and disadvantages to the use of this method for
extending the PE-generated fields, with such issues addressed
in detail through consideration of examples.

The remainder of the paper is organized as follows. In
Section II, we give a brief summary of the wide-angle PE
algorithm, followed by a detailed explanation of how the
PE fields are extended by Gaussian beam tracing. The new
constraints on the Gabor aperture expansion are discussed and
demonstrated numerically in subsequent examples. The accu-
racy of the beam-tracing algorithm is calibrated in Section III,
through consideration of two realistic examples of interest to
radar and communication applications. Finally, conclusions are
summarized in Section IV.

II. FORMULATION

A. Parabolic Equation

The parabolic equation (PE) method has been utilized
for over half a century [7]–[15] to model long-range wave
propagation through the atmosphere. Here, we describe how
the PE method can be coupled rigorously with Gaussian beam
algorithms to model propagation through general inhomoge-
neous regions. Such that the discussion is self contained, we
briefly review key aspects of the PE method, before proceeding
to the hybrid PE-(Gaussian beam) formulation.

For vertical and horizontal polarization, respectively, we
defineuv(rrr) and uh(rrr) [12] as

uv(rrr) =

r
r sin �

�r
H�(rrr); uh(rrr) =

p
r sin � E�(rrr) (1)

with �(rrr) representing the inhomogeneous medium permit-
tivity, an exp(j!t) time dependence is suppressed, and the
spherical coordinate system has its origin at the earth center.
Defining the r� plane as containing the transmitting and
receiving antennas, we utilize the “earth flattening” relations
[12], [22], [23] x = a� andz = a ln(r=a), wherea is the earth
radius. The wave equation in thexz coordinate system is then

@2u

@z2
+
@2u

@x2
+K2(x; z)u = 0 (2)

where

Kh(x; z)
2 � k2o�(rrr)(r=a)2 �

3

4x2

K2

v(x; z) � k2o�(rrr)(1 + 2z=a)2 � 3

4x2
(3)

with ko = !(�o�o)1=2; the approximations in (3) are valid for
x� a andz � a. As will be discussed below, the singularity
in (3) due to the source atx = 0 does not cause a problem
when implementing the PE approximation to (2).

Using operator notation, we write (2) as

(@=@x + jQ)(@=@x� jQ)u(x; z) + j[@=@x;Q]u(x; z) = 0

Q(x; z) =
p
@2=@z2 +K2(x; z) (4)

where [@=@x;Q] = @=@xQ � Q@=@x is the commutator
of the operators@=@x andQ. For range-independent media
(@=@xK = 0), the commutator vanishes and we obtain the
exact one-way parabolic equation

@u(x; z)=@x = �jQ(z)u(x; z) (5)

which has the formal solution

u(�x; z) = exp[�j�Q]u(0; z) (6)

We solve (6) approximately via the well-known wide-angle,
split-step algorithm [9], [10]; in this scheme, the down-range
discretization(x) is generally large compared to wavelength
�, so k2o � 1=x2 at the sample points and, therefore, we
can ignore the�3=4x2 terms in (3). It should be pointed
out that (5) is exact for range-independent media (prior to
approximatingQ), but it can be used approximately for
propagation in range-dependent(@=@xK 6= 0) environments
[7]–[15].

B. Gabor Transform

While the wide-angle PE algorithm can, in principle, be
applied to compute the fields up to arbitrary altitudes(z),
in practice, the height to which such computations can be
performed is limited by the computational resources available.
For ionospheric propagation, for example, it is difficult to
model the entire computational domain (from the earth surface
to the upper ionosphere) via the PE algorithm. This suggests
a hybrid scheme in which the PE algorithm is utilized to
model electromagnetic propagation near the earth surface,
up to a heightz = h, taking proper account of surface
roughness and an imperfectly conducting earth [11]–[13]; the
PE-computed fields atz = h are then used by a separate
efficient algorithm to handle propagation forz > h. This
strategy has been pursued by several authors [13]–[15], but
all such previous schemes have invoked various simplifying
assumptions (e.g., that the atmosphere has a “standard” profile
[13], that a Green’s function can be found for the outer region
[14] and that simple ray tracing is applicable [15]). In many
applications, however, such assumptions are inappropriate and,
therefore, here we demonstrate how the fields atz > h can be
computed rigorously via Gaussian beam propagation. Gaussian
beams represent a natural extension of ray codes [24] and are



702 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 5, MAY 1998

applicable to general atmospheric profiles; unlike ray codes,
the beam-tracing algorithm does not have problems at caustics
and shadow boundaries.

Let the PE-computed fields atz = h be represented by
f(x), wheref(x) is E� for horizontal polarization andH�

for vertical polarization. If we assume that the regionz > h
is characterized by ahomogeneousmedium with wavenumber
k, thenEEE(x; z > h) = �r �  y for horizontal polarization
andHHH(x; z) = r� y for vertical polarization(y = �x�z),
where

 (x; z) = 2

Z
1

�1

f(x0)Gf (x; z;x
0; 0) dx0 (7)

and

Gf (x; z;x
0; z0) =� j

4
H(2)
o (kR)

R =
p

(x� x0)2 + (z � z0)2 (8)

In theory, the integral in (7) is taken over the entire surface
at z = h (such that the equivalence and image theorems
from which (7) is derived are valid); however, in practice,
we integrate over the regionx0 that contributes significantly
to the fields of interest inz > h. It is interesting to note
that, through the earth-flattening transformation used in the PE
algorithm discussed in Section II-A, the PE-computed fields
at z = h; f(x) fit naturally within the Cartesian coordinate
system employed here and below, despite the curved nature
of the earth.

Following [17]–[19], we expand the fieldsf(x) in Gaussian
beams by employing the Gabor transform

f(x) = (
p
2=Lx)

1=2
X
m

X
n

amn exp[��(x�mLx)
2=L2

x]

� exp(jnkxx); Lxkx = 2� (9)

The coefficientsamn can be determined via a well-known
biorthogonality condition [17]–[19]. While the summations in
(9) are theoretically of infinite extent, as is customary, we only
include those modes that are propagating [17]–[19]. Defining
 mn(x; z) as the fields produced by themnth modulated
Gaussian, we have

 mn(x; z) = 2(
p
2=Lx)

1=2

Z
1

�1

Gf (x; z;x
0; 0)

� exp[��(x0 �mLx)2=L2
x] exp(jnkxx

0) dx0:

(10)

From standard asymptotics, one can show that [25]

 mn(x; z) � exp(�j�=4) 21=4

�

s
Lx�

zR + jb

� exp
�
�jk

�
zR +

1

2

x2R
zR + jb)

��
b =L2

x cos
2 �x=� (11)

where � = 2�=k, �n = sin�1(nkx=k), and (xR; zR) cor-
responds to a coordinate system rotated to the angle�n
(see Fig. 1). The result in (11) is valid in the paraxial limit
xR � jzR + jbj and corresponds to a wave traveling in the

Fig. 1. Rotated coordinate system used to define the asymptotic behavior of
the fields radiated from a Gabor basis function with spectral wavenumbernkx

and propagation angle�n = sin
�1(nkx=k) for wavenumberk [see (11)].

The asymptotic fields are used atzR = 10� as starter fields for the general
Gaussian beam scheme detailed in (15)–(19) and the unit vectorn̂̂n̂n is normal
to the ray trajectory.

+zR direction with a Gaussian amplitude profile; the beam
radius at which the amplitude decreases to1=e of its value
on axis is

B(zR; Lx) �
r

2

k

z2
R
+ b2

b
: (12)

Before proceeding, we consider several properties associ-
ated with the approximation in (11). In particular, note that
the Gabor sizeLx required to achieve a givenb is

Lx �
p
b�= cos �n (13)

for all �n of importance. Therefore, for angles near grazing
(�n � �=2), which may be of interest for some PE applica-
tions, the basis sizeLx required for a desired beamwidth [see
(12)] may be quite large. Additionally, it has been shown that
the asymptotic result in (11) is valid for observation points

zRn � bn = (Lx cos �n)
2=�: (14)

For the numerical examples considered here, we have found
the asymptotic results to be accurate forzR � 10�. Therefore,
(13) is the principal constraint of interest here; it and a
new requirement, introduced by Gaussian beam propagation
through inhomogeneous media, will be studied in detail in the
subsequent numerical examples.

The Gaussian beam fields in (11) for appropriate Gabor
width Lx serve as starter fields for a subsequent beam-tracing
algorithm applicable to inhomogeneous media. We typically
start the beam-tracing algorithm atzR = 10� at which point, as
mentioned, the asymptotic beam profile in (11) has been found
to be accurate. Recall that (11) was derived assuming that the
region z > h is characterized byhomogeneouswavenumber
k. Thus, for it to be a valid starter field, we require the region
h � z � h + 10� to be homogeneous with wavenumber
k. From (3), we see that the earth-flattening transformation
results in az-dependent atmosphere, even in regions where
the original dielectric constant�(rrr) is homogeneous. However,
for most frequencies of interest,10� is sufficiently small
compared to the earth radiusa, which, practically speaking,
the homogeneity condition required of (11) is met easily.
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C. Beam Tracing

As discussed with respect to (10) and (11), several authors
[17]–[19] have developed beam codes for propagation away
from apertures; however, these formulations assume that the
medium is described by the homogeneous wavenumberk
and are not easily extended to general inhomogeneous media
(although they have been applied successfully for propagation
through canonical inhomogeneous environments [17]–[19]).
Therefore, we utilize the Gaussian beams in (11) as starter
fields for a beam-tracing algorithm that is applicable for
wave propagation throughgeneral inhomogeneous media. In
particular, we have adapted the beam-tracing algorithm first
developed byČerven´y et al. [20] in the geophysical literature
and later applied by Porter and Bucker [21] in underwater
acoustics. A succinct summary of this algorithm is given here.

Solutions are sought for the homogeneous wave equation

@2u(x; z)

@x2
+

@2u(x; z)

@z2
+

!2

c2(rrr)
u(x; z) = 0 (15)

wherec(rrr) is the inhomogeneous wave velocity. The equation
is solved under theparabolic approximation, with forward-
wave propagation along the ray paths characteristic of con-
ventional ray tracing [26]. Interestingly, our final scheme
is, therefore, a hybrid solution of two different parabolic
equations: one describing general forward-wave propagation
in an earth-flattened environment and the other representing
forward-wave propagation along conventional ray trajectories.
The ray trajectories, defined by the vectorttt, satisfy [26]

d

ds

�
1

c

dttt

ds

�
= � 1

c2
rc (16)

wheres is the distance along the ray trajectory(jdttt=dsj = 1).
Along the trajectories (16), the parabolic approximation to (15)
satisfies [20], [21]

u(s;n) = U (s; n) exp

�
�j!

Z
s

so

ds

c(s)

�
(17)

whereso represents the start point along the ray trajectory and
n is normal to the ray path (Fig. 1). In classical ray tracing,
the n dependence ofU (s; n) is neglected, while here, in the
context of Gaussian beam tracing, we consider

U (s; n) = A
p
c(s)=q(s) exp

��j!
2

p

q
n2
�
: (18)

For (17) and (18) to constitute a solution to the parabolic wave
equation, we find that [20], [21]

@q=@s = cp @p=@s = �cnn
c2

q (19)

wherecnn = @2c=@n2 evaluated atn = 0.
To use this beam solution in the context of a hybrid PE-

(Gaussian beam) algorithm, at the launch point of the Gaussian
beam [see Fig. 1], we match (18) to (11) by settingq(s = 0) =
c(s = 0)=(zR + jb) andp(s = 0) = 1; the constantA in (18)
can be determined easily by matching (17) and (18) to the
remaining terms in (11). The beam is then traced away from
the launch points = 0 as in conventional ray tracing, with

q(s) and p(s) updated continuously by employing a finite-
difference approximation to (19) [21]. In conventional ray
tracing q(s) is real and caustics occur atq(s) = 0; in beam
tracing,q(s) is complex and caustics are, therefore, avoided.

It is important to address the inherent approximations in
the beam-tracing scheme such that algorithm parameters are
selected appropriately. From (19), the beam characteristics
are dictated entirely by thec and cnn in the vicinity of the
ray trajectoryttt. Therefore, implicitly, it is assumed that the
Gaussian beamwidthB is tight enough such that the material
properties do not vary too quickly as one moves away from
the ray path (beam axis). This, therefore, introduces a new
requirement on the Gabor parameters, which has not been
examined to date. The beamwidth at a given angle�n is
dictated from (11) and (12) by the Gabor widthLx. Therefore,
Lx must be selected appropriately as to assure the accuracy
of (17)–(19), introducing a new constraint in addition to the
well-known (13) and (14).

The issue of how tight the Gaussian beams must be relative
to the material inhomogeneities has not been studied in detail
to date. To address this issue, we introduce the parameter


(rrr; Lz) �

_@

@n

p
�(rrr)

p
�(rrr)

B(rrr; Lx) (20)

which quantifies the relative change in the index of refraction
over the beamwidthB(rrr), whererrr exists along the beam axis.
It is of interest to determine how small
 must be to assure
accurate beam-tracing results. This places constraints on the
Gabor-basis widthLx, with the ultimate limit on
 dictated
by the wavelength of operation. A detailed consideration of
such issues is addressed below when addressing the numerical
examples.

III. EXAMPLES

A. Over-the-Horizon Radar

We consider the numerical properties of the hybrid scheme
introduced above by first considering an example of interest
to over-the-horizon radar (OTHR). In OTHR applications,
one must track electromagnetic propagation over thousands of
kilometers, through highly inhomogeneous media [16], usually
in the HF frequency band. An example refractive-index profile
[16] is shown in Fig. 2 as a function of height for a frequency
of 10 MHz. The beam tracing code of Sections II-B and C does
not require the index of refraction to be independent of the
spherical coordinate�, although we make that assumption here
(this assumption is often also made in actual OTHR systems
[16], [27]). We compute the fields via PE up to a height of
2 km in the earth-flattened environment and store the fields
at heighth = 1 km as a function of transverse distancex,
up to a distancex = 5 km at which the radiated fields are
negligible. For simplicity, we consider the earth to be smooth
with soil characterized by the complex permittivity 2-j.01; one
could use far more complicated (and, perhaps, realistic) earth
profiles in the PE algorithm [7]–[15], but our motivation here
is to demonstrate the hybrid PE-beam scheme, not to present
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Fig. 2. Refractive-index profile used in the ionospheric wave-propagation
example.

the most sophisticated application of the PE approximation,
which has been done elsewhere [7]–[15].

In the PE algorithm, we require a starter field atx = 0
as a function of heightz. There are many options available,
but we have picked the distribution [12] (for the horizontally
polarized example considered here)

E�(x = 0; z) = exp[�(z � zo)
2=2�2]

� exp(�jk sin �oz) (21)

wherezo = 200 m, � = 75 m, �o = 28:6�, k = 2�=�, and
� = 30 m. The wide-angle PE-computed fields are presented
in Fig. 3, with the dashed line identifying the aperture over
which the fields are stored for subsequent beam propagation.
The magnitude of these aperture fields are plotted in Fig. 4
where we see a peak field near 2 km, which is consistent
with predominant field propagation at the angle� = 28:6�,
as prescribed by (21). These aperture fieldsf(x) are then
subjected to the Gabor transform in (9).

The first numerical issue we address is the coupling of the
PE solution with the Gabor expansion reviewed in Section II-
B. In the PE computations, the fields are discretized coarsely
(relative to wavelength) in the longitudinal direction, the
highly oscillatory exp(�jkx) term having been extracted
prior to the PE analysis [7]–[13]. However, the Gabor expan-
sion requires subwavelength discretization to assure algorithm
accuracy. This issue is easily handled by interpolating the
slowly varying term computed via the PE (we have utilized
spline interpolation here). Therefore, the coupling of these two
algorithms presents little difficulty in this connection.

With regard to the parameterLx used in the Gabor ex-
pansion, care must be taken to assure that the beams are
sufficiently tight such that the ionospheric inhomogeneities are
sampled properly in the beam-tracing algorithm of Section II-
C. This issue was addressed through introduction of the
parameter
(r; Lx) in (20). Several of the ray trajectories are
plotted in Fig. 5, for the profile in Fig. 2, and the complicated
refractive-index profile results in interesting ray trajectories,
only a few of which are shown here for clarity. To determine
the effects of the beamwidth on the accuracy of the beam-

Fig. 3. Magnitude of the fields computed via a split-step wide-angle para-
bolic equation analysis for radiation above the earth. Results are plotted in the
“earth-flattened” coordinate system and the initial field profile is described in
(21).

Fig. 4. Magnitude of the electric fields computed in Fig. 3, observed on the
dashed curve denoted there.

tracing results, we consider a representative beam from Fig. 5,
highlighted there in bold (corresponding to a launch angle
of 28.6� from (21) characteristic of the principal propagation
direction). In Fig. 6, we plot the beamwidth, as measured at
the receiver with the initial beamwidth (at the launch) as a
parameter; since the initial beamwidth is a function ofLx,
variation of the beamwidthB in Fig. 6 is equivalent to varying
Lx. As expected, for smallB the final beamwidth is quite
large. A minimum beamwidth is achieved nearLx = 12 km,
followed by an approximately linear increase with increasing
Lx. As mentioned above, the Gabor-generated Gaussian beams
are matched to the beam-tracing algorithm10� from the
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Fig. 5. Example beam trajectories for the Gabor-excited beams representa-
tive of the fields in Fig. 4 for the refractive-index profile described in Fig. 2.
The bold curve corresponds to a launch angle of 28.6�.

Fig. 6. Beamwidth of the bold beam in Fig. 5, as a function of the beamwidth
at the launch of the Gaussian beam (or, equivalently, as a function of the Gabor
parameterLx). The minimum occurs forLx = 12 km.

aperture, at which the asymptotic expression in (11) was found
accurate for allLx considered. Therefore, the accuracy of
the subsequent results, as a function ofLx; are dictated by
the degree to which the approximations in the beam-tracing
scheme are accurate, i.e., whether the consequent beamwidths
are sufficiently small for the inhomogeneity considered here.

In Fig. 7 is plotted the parameter
(rrr; Lx) for the repre-
sentative beam considered above, as a function of height for
Lx = 12 km (which, from Fig. 6, gives the tightest beam).
The dashed lines indicate the maximum height achieved by
this beam; at this height the beam cross section is parallel to
the direction of the inhomogeneity and, therefore,
(rrr, Lx)
is maximum at this point. We see that the maximum change
in the index of refraction over the beamwidth is less than
2%. Since the maximum variation occurs at the peak height
of the beam, in Fig. 8 we plot
(rrr, Lx) at this point, as a
function of the Gabor parameterLx. The left-most vertical
dashed line represents the value ofLx required such that the

Fig. 7. The height-dependent change in the refractive index over the
beamwidth for the bold beam in Fig. 5. The refractive-index change is
defined by
(rrr; Lx) from (20). We consider the index-of-refraction profile in
Fig. 2 and useLx = 12 km, which corresponds to the minimum in Fig. 6.

Fig. 8. Change in the refractive index over the beamwidth for the bold beam
in Fig. 5. The refractive-index change is defined by
(rrr; Lx) in (20), as
measured at the inflection point (peak height) of this beam [see Fig. 5]. The
parameter
(rrr;Lx) is plotted as a function of the Gabor-expansion widthLx.

paraxial approximation is valid10� from the aperture at which
the Gabor fields are matched to the beam-tracing algorithm.
While satisfaction of the paraxial and far-zone approximations
are sufficient for free-space applications, here we have the
additional constraint that the beam must be tight enough such
that the underlying assumptions in the beam-tracing algorithm
are appropriate. We see from Fig. 8 that the value ofLx
required of the paraxial approximation results in a 40% change
in the index of refraction over the beamwidth(
(rrr, Lx) = 0:4)
at the point of inflection (peak beam height). The beam-tracing
results for this value ofLx were meaningless and are not
presented. However, in Fig. 9 are plotted the results of the
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Fig. 9. Comparison of the fields radiated through the profile in Fig. 2 for
the initial field distribution in (21). The dashed curves correspond to solutions
from the hybrid PE (Gabor expansion–beam tracing) algorithm while the solid
curve corresponds to the solution from the full PE algorithm (over the entire
computational domain). With regard to the former, results are shown using
Gabor widths ofLx = 1:5 km andLx = 12 km and all results are plotted
for an observation height of 10 km.

Gaussian beam tracing forLx = 1:5 km andLx = 12 km, as
observed as a function of range at an altitude of 10 km. We
see from these results thatLx = 1:5 km, which corresponds to
a maximum change in the index of refraction of 8% over the
beamwidth (Fig. 8), yields results that are inaccurate relative
to the full-PE solution (in which the PE algorithm was used
to calculate fields over the entire domain, with results shown
in Fig. 10). The beam-tracing results in Fig. 9 forLx = 12
km (which corresponds from Fig. 5 to the tightest beamwidth)
yield good agreement compared to the full PE results.

Before proceeding, we summarize the conclusions of this
numerical study for OTHR. We have found that the well-
known constraint onLx, dictated by the paraxial approxi-
mation, may be inadequate for applications involving inho-
mogeneous medium. In particular, the beamwidth must be
narrow enough over the range of propagation, relative to the
material inhomogeneity, such that the underlying assumptions
required of beam-tracing are met. In particular, we require
that the dynamics of beam propagation are dictated primarily
by the electrical properties near the beam axis. For this
to hold, material properties must change slowly over the
beamwidth. This led us to develop a new parameter
(rrr; Lx),
which quantifies the relative change in the index of refraction
over ther-dependent beamwidth. For the numerical example
considered here, we have found accurate Gaussian beam-
tracing results when
(rrr; Lx) indicates a maximum rate of
change in the index of refraction of less than approximately
4% over the beamwidth. It should be noted, however, that
this requirement is likely to depend as well on the electrical
distance over which the beams are traced. For the example
considered here, the beams traveled a distance of over20 000�,
presenting a particularly challenging case.

Fig. 10. Results of the full PE solution for the profile in Fig. 2 and initial
fields in (21).

Finally, note from Fig. 6 that a minimum final beamwidth
is achieved as a function ofLx, dictated by the wavelength
� and the dominant angles of propagation�n. Therefore,
there is a maximum degree of inhomogeneity that can be
tolerated after which� and�n dictate thatnoLx will provide a
beam with sufficient tightness. This reiterates the fact that the
beam algorithm is valid for forward-wave propagation along
the ray trajectory, thereby assuming smooth variation in the
inhomogeneity profile relative to wavelength. However, the
OTHR is a particularly challenging example, characterized by
severe inhomogeneities and very long-range propagation and
the results in Fig. 9 are in close agreement with the full PE
solution (for the appropriateLx).

B. Near-Grazing High-Frequency Radar

As a final example, we consider near-grazing propagation
at high frequencies, as addressed in [13]. In particular, we
consider an initial field distribution for the wide-angle PE
[as in (21)] with zo = 50 m, �o = 1�, k is the free-space
wavelength for� = 0:1 m (frequency of 3 GHz), and� = 50�.
The ground is treated as in the OTHR example, and the PE
is used to compute the fields to a range of 250 km and a
height of 100 m with the fields stored at the heighth = 75
m. These fields are then projected onto the Gabor basis after
interpolating the slowly varying range dependence of the PE-
computed fields (as for the OTHR problem).

The near-grazing example poses a particularly challenging
case for the Gaussian beams, because from (13), the prominent
angles of propagation dictate a very largeLx such that a given
beamwidth can be achieved. However, for this example, we
have the advantage that the inhomogeneity profile is not as
severe as in the OTHR problem and, therefore, the beamwidth
need not be as tight to satisfy the underlying beam-tracing
assumptions. In particular, we utilize one of the inhomogeneity
profiles considered in [13], described in terms of the modified
refractive indexm(r; z) = n(r; z) + z=a, introduced by the
earth-flattening relationships in (3). Moreover, sincez=a is
generally a very small quantity, in [13], the parameterM �
106(m � 1) is introduced and here we considerM = 2 at
z = 0;M = 0 at z = 100 m andM = 118 at z = 1100 m,
with a linear distribution in between ([13, Table II]).
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Fig. 11. Variation of the beamwidth as a function ofLx for a beam launched
at the anglei = 1�, through the inhomogeneous medium described in
Section III-B. The beamwidth is measured at a height ofz = 5 km.

In Fig. 11, we plot the beamwidthB(Lx) as measured at
the heightz = 5 km, considering a beam launched at the
principal angle� = 1�. As in the OTHR example (Fig. 6),
the beamwidth is quite large for narrowLx, there is a value
of Lx for which B is minimum (Lx = 6 km), followed
by a subsequent slow increase inB(Lx) for Lx > 6 km.
The Gabor-generated beams are matched to the beam-tracing
algorithm at zR = 10� at which, as discussed above, the
asymptotic results in (11) were found to be quite accurate.
For the paraxial approximation [17]–[19] to be valid atzR =
10�, we require anLx = 60 m. Unfortunately, while this
value of Lx is sufficient for free-space applications, for the
inhomogeneity considered here the subsequent beamwidth
B(Lx) is too large for the underlying assumptions in the beam-
tracing algorithm (as was found for the OTHR example). To
quantify this, in Fig. 12 we plot the parameter
(rrr; Lx) from
(20) as a function ofLx; as measured for a fixedrrr at z = 5
km [as in Fig. 11]. We see that the weak inhomogeneity of this
problem (relative to the OTHR example) results in much less
material variation over a beamwidth. The minimum variation
occurs at the null in Fig. 11,Lx = 6 km. For Lx = 60 m
dictated by the paraxial approximation, the beamwidth is 8.3
km at the observation heightz = 5 km, thereby encompassing
all the inhomogeneity seen in the problem (the beam-tracing
results were, therefore, meaningless for this value ofLx).

Finally, in Fig. 13 we plot a comparison of results computed
via the full PE solution (over the entire computational domain,
as depicted in Fig. 14) with data computed using the hybrid
beam-tracing scheme. Results are plotted forLx = 1 and 6
km, as measured atz = 5 km [see Fig. 11]. We see that for this
example and these parameters, the agreement between the PE
and hybrid algorithm is excellent. While in the OTHR example
it was found that some of the underlying assumptions in the
PE approximation were tenuous (for some observation points)
for this example the error in the approximation toQ(x; z) [see
(4)] is less than 0.04% over the entire computational domain.

Fig. 12. Change in the index of refraction across a beamwidth, as measured
at the heightz = 5 km for the beam considered in Fig. 11. The change in
index of refraction is defined by
(rrr; Lx) in (20).

Fig. 13. Power loss at a height of 5 km for near-grazing propagation at 3
GHz for the inhomogeneity profile considered in Figs. 11 and 12. Results are
compared between a full PE algorithm (for the entire computational domain)
and the hybrid PE (Gabor expansion–beam-tracing) algorithm for two values
of Gabor widthLx.

C. Numerical Issues and Comparisons with Other Algorithms

As indicated above, ifLx used in the Gabor expansion
is sufficiently large to assure a tight Gaussian beam,
relative to the material inhomogeneity, the hybrid (Gabor-
transform)–(beam-tracing) algorithm results in highly accurate
results, as compared with an independent (PE) solution.
Nevertheless, we address here several numerical issues which
highlight the advantages and disadvantages of this algorithm.
A principal shortcoming is the need to compute the coefficients
of the Gabor expansion functions, often whenLx is quite large
relative to wavelength. In particular, in the second example
(Section III-B) we consideredLx = 1 and 6 km, 33333�,
and 200000�, respectively. We utilize the bi-orthogonality
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Fig. 14. Results of the full PE computation for the problem in Fig. 13.

relationship

amn =

Z 1

�1

f(x)��(x�mLx) exp(jnkxx) dx

�(x) = (
p
2Lx)

�1=2

�
Ko

�

��3=2
exp[��(x=Lx)2]

�
1X
l�lo

(�1)l exp[��(l + 1=2)2] (22)

wherelo = (x=Lx)�1=2 andKo = 1:854 074 68. The integral
in (22) was computed via Gauss–Legendre integration and, for
the example in Section III-B, this required several hours of
CPU on a Pentium PC. The subsequent beam tracing is, by
contrast, quite efficient. Therefore, for this example, charac-
terized by a small wavelength and near-grazing propagation,
the algorithm yields highly accurate results at a relatively
significant computational expense.

The horizontal PE algorithm in [13] has the advantage that
vertical propagation is solved using the reduced form of the
fields and, therefore, the highly oscillatory term in thex
direction is eliminated (as is conventional in PE solutions).
Therefore, one does not suffer the problems discussed above
with regard to subwavelength sampling in thex direction.
However, while the scheme in [13] is more efficient com-
putationally in this respect, it is applicable only to standard
inhomogeneities.

Considering the OTHR example of Section III-A, the iono-
spheric profile does not fit readily into a standard form.
Moreover, note from Fig. 10 that the fields are reflected
back toward the earth, posing a particular challenge for a
forward-marching horizontal-PE scheme. For the problem in
Section III-A, we required a Gabor widthLx=lambda = 400
and, therefore, the computations in (22) were relatively effi-
cient (several minutes on a personal computer) and, therefore,
the Gabor-beam algorithm is quite efficient.

Finally, with regard to (22) and (9), in general one must
evaluateamn for each propagating beam. For the largeLx
considered in Sections III-A and B, this implies a very large
number of modes. However, we are generally only interested
in the fields radiated in a particular direction or region. Thus,
knowing the launch angles of the beams, we have advance

knowledge of which beams are necessary for the representation
of the fields in a given region. Moreover, one can neglect
beams with very small amplitudesamn contributing minimally
to the total fields. For example, in the example in Section III-B,
most of the energy travels at the angle� = 1� and, therefore,
only beams traveling near this angle are of principal concern.
Taking into account these considerations (for the example in
Fig. 9), we used 100 beams forLx = 12 km, while for the
results in Fig. 13, we used 300 and 25 beams, respectively,
for Lx = 1 km andLx = 6 km.

In summary, several algorithms have been developed over
the years for the propagation of fields (PE computed or
otherwise) away from an aperture into a inhomogeneous
medium. It is felt that no one algorithm can be viewed as
optimal, each having their respective domains of advantage.
For particular classes of inhomogeneity, Green’s function [14]
or ray-based [15] schemes are quite effective. Moreover, for
standard inhomogeneities the horizontal PE scheme is very
accurate and efficient [13]. The hybrid Gabor-beam algorithm
presented here appears to be a useful tool for problem types
for which these other algorithms have problems: in regions
for which the material is nonstandard or for which there is
reflection back toward the earth (cf., [13]), for which there
are caustics or shadow boundaries (cf. [15]) and for which a
Green s function is difficult to obtain (cf., [14]). These criteria
are naturally met for a problem of the type considered in
Section III-A (OTHR). On the other hand, while the example
in Section III-B demonstrated the accuracy of the Gabor-beam
scheme, a problem of this type is more efficiently handled with
the algorithm in [13] (from where this example was taken).

IV. CONCLUSIONS

A hybrid PE (Gaussian beam) algorithm has been developed
for the long-range propagation of fields through complicated
inhomogeneous environments. The PE computed fields are
stored along an aperture and then projected onto a complete
Gabor basis, each Gabor basis function giving rise to a tilted
Gaussian beam. These Gaussian beams are then used as starter
fields for a Gaussian beam algorithm, which is applicable
for propagation through general inhomogeneous environments.
The Gaussian beam algorithm applies the PE approximation
for forward propagation along ray trajectories each of which
is initiated at the center of the tilted Gaussian beam starter
fields. The beam-tracing algorithm, therefore, represents an
improvement on conventional ray tracing in that it uses
conventional ray trajectories yet, by utilizing fields that extend
beyond the trajectory, it circumvents artifacts at caustics and
shadow boundaries. Further, the Gabor basis functions provide
a rigorous and self-consistent coupling of the PE algorithm (or
any numerical algorithm) with beam tracing; such a coupling
is difficult with conventional ray tracing.

Example results were presented for a realistic over-the-
horizon radar (OTHR) scenario as well as for a near-grazing
high-frequency radar example. These examples allowed us to
address several numerical issues associated with this algo-
rithm. In particular, previous work on Gabor-launched beams
with application to free-space problems has identified two
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mathematical constraints on the Gabor expansion functions. In
particular, for a given distance away from the Gabor function
(i.e., from the aperture), the Gabor widthLx must be chosen
sufficiently large to satisfy the paraxial approximation and the
underlying assumptions in the asymptotic derivation of (11).
We have demonstrated that the presence of inhomogeneous
media introduces a new constraint onLx, essential for sub-
sequent beam tracing. In particular,Lx must be sufficiently
large such that the beam is tight enough relative to the
material inhomogeneity to satisfy the underlying beam-tracing
assumption: that the beam fields are dictated primarily by the
material properties along the beam axis. For the examples
considered here, this latter restriction was found more severe
(required largerLx) than either of the former two.

With regard to the projection of the aperture fields onto a
Gabor basis, the Gabor basis functions constitute elements with
constant support in the spatial–spectral phase space [28] (more
commonly viewed in time-frequency). Over the last several
years, however, substantial research has been performed on
wavelets, which are characterized by multiresolution in the
phase space [29], [30]. Further, wavelets have proven to
provide substantial compression for function (image) repre-
sentation. Thus, a potentially fruitful avenue of future research
involves investigation of projecting the aperture fields onto a
wavelets basis, which may reduce the number of beams vis-
à-vis the Gabor basis. However, in this context, the choice
of wavelet is critical, for the wavelets must provide good
propagators. As discussed in Section II-B, the Gabor basis
functions naturally give rise to tilted Gaussian beams. Similar
properties must hold for the wavelet basis selected if they are
to be useful for wave- propagation applications.
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