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A Hybrid (Parabolic Equation)—(Gaussian Beam)
Algorithm for Wave Propagation
Through Large Inhomogeneous Regions

Bimba Rao and Lawrence Carigenior Member, |IEEE

Abstract—The wide-angle split-step parabolic equation (PE) more “regular” regions. For example, Levy [13] used the
algorithm is used to model electromagnetic wave propagation standard “vertical PE” algorithm to model wave propagation
over general inhomogeneous terrain up to a heighth. The = o0 5 rough ground or sea interface, while above a particular
PE-computed fields ath are then projected onto a complete . - o R . .
Gabor basis from which we effect Gaussian beam propagation at N€ight, an efficient “horizontal PE” algorithm was applied.
altitudes greater than k. The Gaussian beams can be propagated Additionally, Marcus [14] has matched the PE-computed fields
through general inhomogeneous media, devoid of failures at caus-to a Green’s function appropriate for the region outside the
tics and shadow boundaries (as befalls ray tracing). The accuracy pg algorithm’s computational domain. In the work presented
of the Gaussian beam algorithm is demonstrated via two real- h foll this strat but G ian b ti
istic examples: 1) low-frequency (HF) ionospheric propagation ere we 9 OW_ IS strategy, bu a_USSIan eam propagf_al 1on
with application to over-the-horizon radar and 2) near-grazing [17]-[21] is utilized to extend the fields beyond the region
high-frequency propagation for communication or surveillance in which the PE algorithm is applied. This scheme is more

applications. In the context of these examples, we discuss relevantflexible than the horizontal PE [13] or Green’s function [14]
numerical issues associated with the hybrid algorithm from which algorithm in that it is applicable to general atmospheric inho-
general advantages and disadvantages are addressed. o .
_ _ mogeneities. Further, unlike ray-based codes [15], the beams
Index Terms—Gaussian beams, nonhomogeneous media, prop-are not subject to failure at shadow boundaries and caustics.
agation. To effect the Gaussian beam strategy outlined above, one
must self consistently extend the fields away from a given
|. INTRODUCTION aperture field distribution. Here, we project the aperture fields

ONG-RANGE electromagnetic propagation is of interedigorously onto a Gabor basis in a manner similar to thgt in
for many applications, including radar [1] and coml17]-{19]. One can show asymptotically that along the tilted

munication [2] systems. For such problems, the propag%?ﬂis of proipagatioin (paraxia!ly), the fieIds radiated by such
tion medium is often too complicated for Green’s-function©abor basis functions constitute Gaussian beams [17]—[19].
based solutions or for the geometrical theory of diffractiohn€ compact and analytic nature of such beam fields has
[3]. Moreover, the propagation range is generally so |arggotivated their application in a number of problems, including
with respect to wavelength that rigorous numerical schem@lome design [18]. However, nearly all previous research
such as the finite-difference time-domain [4], the methdn Gaussian beam propagation away from an aperture has
of moments [5], and the finite-element method [6] wouldealt with radiation in free-space (vacuum) [17]-[19] or has
require prohibitive computational resources. Therefore, thegensidered Gaussian beam interaction wdi$cretestructures
has recently been significant interest in the parabolic equatid$]. In these previous investigations, detailed studies have
(PE) approximation to the Helmholtz wave equation, whicheen undertaken on the asymptotic and numerical properties
yields a computationally efficient algorithm for long-range9f Gabor-function-generated beams, yielding requirements for
forward-wave propagation through relatively general mediclidity of common approximations (e.g., paraxial and far
[7]-[15]. Although the PE algorithm is approximate, upomone). In the work presented here, we are interested in Gauss-
comparison with rigorous schemes, it has been shown to yiédth beam propagation away from an aperture into a general
highly accurate results [10], [11]. inhomogeneousnedium. Therefore, we utilize the beams
While the PE algorithm permits the accurate analysis tdunched by the Gabor basis functionssaarter fieldsfor a
wave propagation over large ranges, finite computational 1®aussian beam-tracing algorithm [20], [21] applicable to gen-
sources ultimately limit the extent over which it can be applieéral continuously varying inhomogeneous media. The coupling
Therefore, researchers have sought the development of hylafichperture theory with Gaussian beam tracing for inhomoge-
schemes that utilize the PE algorithm for complicated bueous media places additional constraints on the Gabor-basis
relatively localized regions of the computational domain anshrameters, which have not been considered previously. In
alternative efficient schemes to extend the solution into tligis paper, we discuss such issues in detail analytically, with
demonstration provided by several numerical examples.
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excitation in an admittedlyad hoc manner [20], [21]. In where

the work presented here, we place the launching of such - 2,012 2 i

Gaussian beams on a firm mathematical footing, through use Kz, 2)” mkoe(r)(r/a) Ax?

of the well-known Gabor expansion. Therefore, the princi- K2(x, 2) m k2e(r)(1 + 22 /a)? — 3 3)
pal contribution of this paper is the coupling of the Gabor A ° Az?

transform with Gaussian beam propagation for inhomogeneawish &, = w(p,¢,)'/?; the approximations in (3) are valid for
media. While the Gabor expansion and beam tracing areg a andz < a. As will be discussed below, the singularity
well known individually, their coupling is believed to bein (3) due to the source at = 0 does not cause a problem
new. Moreover, as alluded to above, this synergy introduceden implementing the PE approximation to (2).

new constraints on the Gabor expansion functions, which arelUsing operator notation, we write (2) as

shown to be dictated by the detailed characteristics of the ) ) )

inhomogeneous medium through which the beams are trackt0% +1Q)(9/0x — jQ)u(x, 2) + j[0/ Oz, QJu(x, 2) = 0

The resulting (Gabor expansion)—(Gaussian beam tracing) @z, z) = \/02/92% + K%(z, 2) 4)
gorithm provides a new method of extending the PE-generated

fields beyond a predefined aperture, into an inhomogeneous

medium. This hybrid scheme is applicable to general inhomwhere [0/0z,Q] = 0/9zQ — Q9/0x is the commutator
geneities, thereby avoiding previous restrictions to particul@f the operators)/dx and . For range-independent media
inhomogeneity profiles [13] or specialized Green’s functioff/dz/& = 0), the commutator vanishes and we obtain the
[14]. However, the details of the Gabor expansion introdugXact one-way parabolic equation

advantages and disadvantages to the use of this method for

extending the PE-generated fields, with such issues addressed Ou(w,2)/0z = =jQ(z)u(z, ) ®)
in detail through consideration of examples. which has the formal solution

The remainder of the paper is organized as follows. In
Section I, we give a brief summary of the wide-angle PE w(Az, z) = exp[—jAQ]u(0, 2) (6)

algorithm, followed by a detailed explanation of how th?Ne solve (6) approximatelv via the well-known wide-anale
PE fields are extended by Gaussian beam tracing. The ne (6) app y g,

constraints on the Gabor aperture expansion are discusseds\;YI(E'StEp algorithm [9], [10]; in this scheme, the down-range

demonstrated numerically in subsequent examples. The ac ﬁ_cretlzanon(ac) is generally large compared to wavelength

2 2 H
racy of the beam-tracing algorithm is calibrated in Section II],’ S0 kg > 1/a” at ;he sample points and, therefor_e, we
: . - : an ignore the—3/4x* terms in (3). It should be pointed
through consideration of two realistic examples of interest {0 . . : .
L o . : out that (5) is exact for range-independent media (prior to
radar and communication applications. Finally, conclusions are Lo : .
: : : approximating @), but it can be used approximately for
summarized in Section IV.

propagation in range-dependegiat/dx K # 0) environments
Il. FORMULATION [71-[15].

A. Parabolic Equation B. Gabor Transform

The parabolic equation (PE) method has been utilizedWhile the wide-angle PE algorithm can, in principle, be
for over half a century [7]-[15] to model long-range wavepplied to compute the fields up to arbitrary altitudes,
propagation through the atmosphere. Here, we describe hiampractice, the height to which such computations can be
the PE method can be coupled rigorously with Gaussian begerformed is limited by the computational resources available.
algorithms to model propagation through general inhomogEer ionospheric propagation, for example, it is difficult to
neous regions. Such that the discussion is self contained, medel the entire computational domain (from the earth surface
briefly review key aspects of the PE method, before proceedittgthe upper ionosphere) via the PE algorithm. This suggests

to the hybrid PE-(Gaussian beam) formulation. a hybrid scheme in which the PE algorithm is utilized to
For vertical and horizontal polarization, respectively, wenodel electromagnetic propagation near the earth surface,

define u, (r) andu,(r) [12] as up to a heightz = &, taking proper account of surface
sl roughness and an imperfectly conducting earth [11]-[13]; the

Uy (1) = ; Hy(r), wy(r)=+Vrsind E4(r) (1) PE-computed fields at = h are then used by a separate

r

efficient algorithm to handle propagation fer > h. This

- ) . . E’Erategy has been pursued by several authors [13]-[15], but
tivity, an eXp(Mt) time dependepce IS _suppressed, and e ,ch previous schemes have invoked various simplifying
sph_er_|cal coordinate system has_ltg origin at the e_a_rth Cent:%sumptions (e.g., that the atmosphere has a “standard” profile
Deﬂr_nrlg the 6 plane as _contalmng the trans_mlttlng 9”?13], that a Green'’s function can be found for the outer region
receiving antennas, we utilize the “earth flattening” relatlor*[§4] and that simple ray tracing is applicable [15]). In many

[12], [22], [23] * = a0 andz = aln(r/a), wherea is the earth 5, jications, however, such assumptions are inappropriate and,
radius. The wave equation in the coordinate system is thentherefore, here we demonstrate how the fields ath can be

Pu  0u -9 _ computed rigorously via Gaussian beam propagation. Gaussian
=+ =+ K (z,2))u=0 (2) .
2 beams represent a natural extension of ray codes [24] and are

with €(r) representing the inhomogeneous medium perm

0z2  Ox
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applicable to general atmospheric profiles; unlike ray codes, o
the beam-tracing algorithm does not have problems at caustics *
and shadow boundaries.

Let the PE-computed fields at = & be represented by
f(z), where f(z) is E, for horizontal polarization and?,,
for vertical polarization. If we assume that the region- h
is characterized by homogeneoumedium with wavenumber
k, thenE(x,z > h) = —V x )y for horizontal polarization
andH (z, z) = V x yy for vertical polarization(y = —z x ),
where

s=0 Beam Trajectory

Starter Fields

Y(e,z) =2 /_ J(@"Gy (2, z;2',0) da’ (7)

Fig. 1. Rotated coordinate system used to define the asymptotic behavior of

and the fields radiated from a Gabor basis function with spectral wavenuniher
j and propagation anglé, = sin~!(nk,/k) for wavenumbert [see (11)].

ol Y = g(2) The asymptotic fields are used gt = 10\ as starter fields for the general
Gy (as, “HE,z ) 4 H, (kR) Gaussian beam scheme detailed in (15)—(19) and the unit véd®normal

to the ray trajectory.

R=VE=2P+E=27 @

In theory, the integral in (7) is taken over the entire surfac_gZR direction with a Gaussian amplitude profile; the beam

at z = h (such that the equivalence and image theoremgyi,s at which the amplitude decreaseslfe of its value
from which (7) is derived are valid); however, in practice, .is is

we integrate over the regiorf that contributes significantly
to the fields of interest it > A. It is interesting to note
that, through the earth-flattening transformation used in the PE

k b
algorithm dlscus_sed n Sect|(_)n_II-A, the PE-f:omputed_ fields Before proceeding, we consider several properties associ-
at z = h, f(z) fit naturally within the Cartesian coordinate

. ated with the approximation in (11). In particular, note that
system employed here and below, despite the curved natyre ~-vor sizd, required to achieve a givehis
of the earth. ‘

Following [17]-[19], we expand the field&x) in Gaussian Ly > VbX[ cosb, (13)
beams by employing the Gabor transform

2 22 + 17
Blem, Ly) =/ = 210

(12)

for all 8, of importance. Therefore, for angles near grazing

F@) =(V2/ L) 3" amn exp[—n(z —mL,)*/L2] (8, ~ x/2), which may be of interest for some PE applica-
m.n tions, the basis sizé,. required for a desired beamwidth [see

-exp(jnk,x), Lyky =27 (9)  (12)] may be quite large. Additionally, it has been shown that

The coefficientsa,.,, can be determined via a WeII-knownthe asymptotic result in (11) is valid for observation points

biorthogonality condition [17]-[19]. While the summations in Zhn > by = (L, cos6,)%/\. (14)

(9) are theoretically of infinite extent, as is customary, we only

include those modes that are propagating [17]-[19]. Definifgor the numerical examples considered here, we have found
Ymn(2,z) as the fields produced by thenth modulated the asymptotic results to be accurate fgr> 10A. Therefore,

Gaussian, we have (13) is the principal constraint of interest here; it and a
o0 new requirement, introduced by Gaussian beam propagation
U (2, 2) = 2(v/2/ L)' ? / Gy(x,z;2',0) through inhomogeneous media, will be studied in detail in the
—o0 subsequent numerical examples.
cexp[=m(a' —mL,)*/ L] exp(jnk,z') dz'. The Gaussian beam fields in (11) for appropriate Gabor

(10) width L, serve as starter fields for a subsequent beam-tracing
algorithm applicable to inhomogeneous media. We typically

From standard asymptotics, one can show that [25] start the beam-tracing algorithma$ = 10 at which point, as
o1/4 F mentioned, the asymptotic beam profile in (11) has been found
Vmn (2, 2) ~ exp(—jm/4) — | —— to be accurate. Recall that (11) was derived assuming that the
T “r + b region z > L is characterized bjhomogeneousvavenumber
. 1 25 k. Thus, for it to be a valid starter field, we require the region
"exp [_]k(z’?’ ) R —|—jb)>] h < z < h+ 10X to be homogeneous with wavenumber
b=172cos” 0,/ (11) k. From (3), we see that the earth-flattening transformation

results in az-dependent atmosphere, even in regions where
where A = 27/k, 6, = sin~'(nk,/k), and (zg, 2g) cor- the original dielectric constantr) is homogeneous. However,
responds to a coordinate system rotated to the afigle for most frequencies of interest,0X is sufficiently small
(see Fig. 1). The result in (11) is valid in the paraxial limitompared to the earth radius which, practically speaking,
zr < |zgr + j»| and corresponds to a wave traveling in théhe homogeneity condition required of (11) is met easily.



RAO AND CARIN: HYBRID ALGORITHM FOR WAVE PROPAGATION THROUGH INHOMOGENEOUS REGIONS 703

C. Beam Tracing q(s) and p(s) updated continuously by employing a finite-

As discussed with respect to (10) and (11), several authgiference approximation to (19) [21]. In conventional ray
[17]-[19] have developed beam codes for propagation awi§cing4(s) is real and caustics occur ats) = 0; in beam
from apertures; however, these formulations assume that ffacing, ¢(s) is complex and caustics are, therefore, avoided.
medium is described by the homogeneous wavenuniber It is |mporta_mt to address the mherent_approxmatlons in
and are not easily extended to general inhomogeneous mdAf Peéam-tracing scheme such that algorithm parameters are

(although they have been applied successfully for propagatief€cted appropriately. From (19), the beam characteristics

through canonical inhomogeneous environments [17]-[19ff€ dictated entirely by the and¢,,, in the vicinity of the

Therefore, we utilize the Gaussian beams in (11) as startgy traiectoryt. Therefore, implicitly, it is assumed that the
fields for a beam-tracing algorithm that is applicable faPaussian beamwidths is tight enough such that the material
wave propagation througheneralinhomogeneous media. InProperties do not vary too quickly as one moves away from
particular, we have adapted the beam-tracing algorithm fif8¢ ray path (beam axis). This, therefore, introduces a new
developed byCervery et al. [20] in the geophysical literature requirement on the Gabor parameters, which has not been

and later applied by Porter and Bucker [21] in underwat&X@mineéd to date. The beamwidth at a given argleis
acoustics. A succinct summary of this algorithm is given herdictated from (11) and (12) by the Gabor width. Therefore,
Solutions are sought for the homogeneous wave equatiofiz MUSt be selected appropriately as to assure the accuracy
of (17)—(19), introducing a new constraint in addition to the
Pu(z,z)  FPu(w,z)  w? well-known (13) and (14).
Jx? 022 c2(r) The issue of how tight the Gaussian beams must be relative

to the material inhomogeneities has not been studied in detalil

yvherec(r) is the inhomogeneous wave v_elocity_. The equatiqy yate To address this issue, we introduce the parameter
is solved under thgarabolic approximation, with forward-

wave propagation along the ray paths characteristic of con- d
n Ve(r) B
)

u(z,2) =0 (15)

ventional ray tracing [26]. Interestingly, our final scheme (r,L.) = (r, L) (20)
is, therefore, a hybrid solution of two different parabolic N &) = \/6(—,. T

equations: one describing general forward-wave propagation

in an earth-flattened environment and the other representifgich quantifies the relative change in the index of refraction
forward-wave propagation along conventional ray trajectoriever the beamwidttB(r), wherer exists along the beam axis.

The ray trajectories, defined by the vectosatisfy [26] It is of interest to determine how small must be to assure
accurate beam-tracing results. This places constraints on the
a (l ﬁ) - _ 1 Ve (16) Gabor-basis widthl,;, with the ultimate limit on+y dictated
ds \ ¢ ds c? by the wavelength of operation. A detailed consideration of

wheres is the distance along the ray trajectdiyit/ds| = 1). such issues is addressed below when addressing the numerical

Along the trajectories (16), the parabolic approximation to (1g)xamples.
satisfies [20], [21]

u(s,n) = U(s, n) exp (—jw / s cc(l—j)) (17)

5o

I1l. EXAMPLES

A. Over-the-Horizon Radar

wheres,, represents the start point along the ray trajectory andWe consider the numerical properties of the hybrid scheme
n is normal to the ray path (Fig. 1). In classical ray tracingntroduced above by first considering an example of interest
the » dependence of/ (s, n) is neglected, while here, in theto over-the-horizon radar (OTHR). In OTHR applications,
context of Gaussian beam tracing, we consider one must track electromagnetic propagation over thousands of
. kilometers, through highly inhomogeneous media [16], usually
U(s,n) = A\/c(s)/q(s) exp (i b n2>. (18) in the HF frequency band. An example refractive-index profile
2 q [16] is shown in Fig. 2 as a function of height for a frequency
For (17) and (18) to constitute a solution to the parabolic wa@é 10 MHz. The beam tracing code of Sections 1I-B and C does

equation, we find that [20], [21] not require the index of refraction to be independent of the
c spherical coordinate, although we make that assumption here

dq/ds =cp Oplds=——"¢ (19) (this assumption is often also made in actual OTHR systems
¢ [16], [27]). We compute the fields via PE up to a height of

wherec,,,, = &’c¢/dn? evaluated at = 0. 2 km in the earth-flattened environment and store the fields

To use this beam solution in the context of a hybrid PEt height: = 1 km as a function of transverse distancg
(Gaussian beam) algorithm, at the launch point of the Gaussigmto a distancec = 5 km at which the radiated fields are
beam [see Fig. 1], we match (18) to (11) by settiig= 0) = negligible. For simplicity, we consider the earth to be smooth
¢(s =0)/(zr + jb) andp(s = 0) = 1; the constantd in (18) with soil characterized by the complex permittivityj D1; one
can be determined easily by matching (17) and (18) to tleeuld use far more complicated (and, perhaps, realistic) earth
remaining terms in (11). The beam is then traced away fropnofiles in the PE algorithm [7]-[15], but our motivation here
the launch points = 0 as in conventional ray tracing, withis to demonstrate the hybrid PE-beam scheme, not to present
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Height (km)
n
8

08 0.9
Refractive Index

Fig. 2. Refractive-index profile used in the ionospheric wave-propagation
example.

the most sophisticated application of the PE approximation, Range (km)
which has been done elsewhere [7]-[15].

In the PE algorithm we require a starter fieldzat= (0 Fig. 3. Magnitude of the fields computed via a split-step wide-angle para-
' bolic equation analysis for radiation above the earth. Results are plotted in the

as a function (_)f height. The_re E-’_‘re many options a\_/aiIable"earth-ﬂattened” coordinate system and the initial field profile is described in
but we have picked the distribution [12] (for the horizontally21).

polarized example considered here)

Ey(x=0,2) = exp[—(z — 2,)” /26”] 0.7
-exp(—jksin b, z) (21)
0.6
wherez, = 200 m, ¢ = 75 m, 0, = 28.6°, k = 27 /A, and
A = 30 m. The wide-angle PE-computed fields are presented g
in Fig. 3, with the dashed line identifying the aperture overg
which the fields are stored for subsequent beam propagatiqa.

LU I [N L L L L ) BN B BN BRI BRI

The magnitude of these aperture fields are plotted in Fig. § 04
where we see a peak field near 2 km, which is consisterg
with predominant field propagation at the andle= 28.6°, 50 0.3
as prescribed by (21). These aperture fiefds) are then =
subjected to the Gabor transform in (9). 3 0.2
The first numerical issue we address is the coupling of the
PE solution with the Gabor expansion reviewed in Section Il- 0.1
B. In the PE computations, the fields are discretized coarsely
(relative to wavelength) in the longitudinal direction, the 0 24 I SN N T
highly oscillatory exp(—jkx) term having been extracted 1000 2000 3000
Range (km)

prior to the PE analysis [7]-[13]. However, the Gabor expan-
sion requires subwavelength discretization to assure algoritiem 4. Magnitude of the electric fields computed in Fig. 3, observed on the
accuracy. This issue is easily handled by interpolating tidashed curve denoted there.
slowly varying term computed via the PE (we have utilized
spline interpolation here). Therefore, the coupling of these ti#cing results, we consider a representative beam from Fig. 5,
algorithms presents little difficulty in this connection. highlighted there in bold (corresponding to a launch angle
With regard to the parametel, used in the Gabor ex- of 28.6° from (21) characteristic of the principal propagation
pansion, care must be taken to assure that the beams difection). In Fig. 6, we plot the beamwidth, as measured at
sufficiently tight such that the ionospheric inhomogeneities aifee receiver with the initial beamwidth (at the launch) as a
sampled properly in the beam-tracing algorithm of Section Iparameter; since the initial beamwidth is a function /of,
C. This issue was addressed through introduction of thariation of the beamwidti in Fig. 6 is equivalent to varying
parametery(r, L, ) in (20). Several of the ray trajectories arel... As expected, for smalB the final beamwidth is quite
plotted in Fig. 5, for the profile in Fig. 2, and the complicatetirge. A minimum beamwidth is achieved nday = 12 km,
refractive-index profile results in interesting ray trajectorieollowed by an approximately linear increase with increasing
only a few of which are shown here for clarity. To determiné . As mentioned above, the Gabor-generated Gaussian beams
the effects of the beamwidth on the accuracy of the bealre matched to the beam-tracing algoritirdA from the
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200

150

height (km)

iy
o
o

height (km)

50

range (km)

Fig. 5. Example beam trajectories for the Gabor-excited beams representa-
tive of the fields in Fig. 4 for the refractive-index profile described in Fig. 2.
The bold curve corresponds to a launch angle of 28.6 0

Percentage change in index of refraction

15
Fig. 7. The height-dependent change in the refractive index over the

14 beamwidth for the bold beam in Fig. 5. The refractive-index change is
13 defined byv(r, L) from (20). We consider the index-of-refraction profile in
Fig. 2 and usd., = 12 km, which corresponds to the minimum in Fig. 6.
=12
\—E/ or
§ 11 1 - I |
2 10 |
g 10 -/ |
e E o
= 9 -20 | |
o i
= o |
g 8 = -30F i |
3 . o !
[ ! I
g 7 $h-40 I |
3 = t
M 6 2 o !
-50
o | 1 |
° ‘%D 60 l | !
4 : g§m |
' 5] | ! I
3 I 1 i 1 1 | 1 i 1 1 1 1 0.-70 | | |
10 20 |
Beamwidth at source (km) sl !
rl ! \
L |
Fig. 6. Beamwidth of the bold beam in Fig. 5, as a function of the beamwidth - |l I I
at the launch of the Gaussian beam (or, equivalently, as a function of the Gabor u : |
parameterl;:). The minimum occurs fol, = 12 km. L 1 1 [ ]
_1 OO | | | i | L L 10 I L 15
aperture, at which the asymptotic expression in (11) was found Lx (km)

accurate for allL, considered. Th?refore’ the _accuracy Olgig. 8. Change in the refractive index over the beamwidth for the bold beam
the subsequent results, as a function/of, are dictated by in Fig. 5. The refractive-index change is defined b, L) in (20), as
the degree to which the approximations in the beam-tracimgasured at the inflection point (peak height) of this beam [see Fig. 5]. The
scheme are accurate, i.e., whether the consequent beamwiBffgneten(r, L) is plotted as a function of the Gabor-expansion witith

are sufficiently small for the inhomogeneity considered here. . . ) .
In Fig. 7 is plotted the parametei(r, L..) for the repre- paraxial approximation is valitl0A from the aperture at which

sentative beam considered above, as a function of height f3¢ Gabor fields are matched to the beam-tracing algorithm.
L, = 12 km (which, from Fig. 6, gives the tightest beam)Wh'le satisfaction of the paraxial and far-zone approximations
The dashed lines indicate the maximum height achieved 8t¢ Sufficient for free-space applications, here we have the
this beam; at this height the beam cross section is parallel@gditional constraint that the beam must be tight enough such
the direction of the inhomogeneity and, therefoyér, L,) that the underlying assumptions in the beam-tracing algorithm
is maximum at this point. We see that the maximum changée appropriate. We see from Fig. 8 that the valueLof

in the index of refraction over the beamwidth is less thaigquired of the paraxial approximation results in a 40% change
2%. Since the maximum variation occurs at the peak heightthe index of refraction over the beamwidt(r, L, ) = 0.4)

of the beam, in Fig. 8 we plot(r, L,) at this point, as a at the point of inflection (peak beam height). The beam-tracing
function of the Gabor parametdr,. The left-most vertical results for this value off, were meaningless and are not
dashed line represents the valuelgf required such that the presented. However, in Fig. 9 are plotted the results of the
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Power pattern along a receiver at 10 km height /’ T
300

95 —
- PE solution
i — _ _Lx=12km
i .. Lx=15km _
30~ -
~ i | “ i . §/
g RSN, N =
A S RN =
= A T AT 2
T R =
ERC] pl AR SRR R
&b iy (R
5 L Jityvian (RN
: i SEERTE '\ 600
e i Wl l(
40 Il ‘ 0 1200
HA IH Range (km)
‘ \ i l : Fig. 10. Results of the full PE solution for the profile in Fig. 2 and initial
R ii i fields in (21).
45l | B N ST BT N Hx 'il ¥ li
800 900 ra:}ggo(km) 1100 1200 Finally, note from Fig. 6 that a minimum final beamwidth

is achieved as a function df,., dictated by the wavelength
Fig. 9. Comparison of the fields radiated through the profile in Fig. 2 fox and the dominant angles of propagatién. Therefore,
the initial field distribution in (21). The dashed curves correspond to solutio . . . .
from the hybrid PE (Gabor expansion—-beam tracing) algorithm while the soﬁﬁere IS a maX|rr_1um degree_ of mhomogene_lty tha_t can be
curve corresponds to the solution from the full PE algorithm (over the entit9lerated after which andé,, dictate thano L, will provide a
computational domain). With regard to the former, results are shown usipggam with sufficient tightness. This reiterates the fact that the
Gabor widths ofL; = 1.5 km andL, = 12 km and all results are plotted . . - .
for an observation height of 10 km., beam algo_rlthm is valid for forwar_d-wave propag_atl_on glong
the ray trajectory, thereby assuming smooth variation in the
_ _ inhomogeneity profile relative to wavelength. However, the
Gaussian beam tracing fdr, = 1.5 km and/, = 12 km, as OTHR is a particularly challenging example, characterized by
observed as a function of range at an altitude of 10 km. Wevere inhomogeneities and very long-range propagation and

see from these results that = 1.5 km, which corresponds to the results in Fig. 9 are in close agreement with the full PE
a maximum change in the index of refraction of 8% over theplution (for the appropriaté ., ).

beamwidth (Fig. 8), yields results that are inaccurate relative _ _
to the full-PE solution (in which the PE algorithm was useB. Near-Grazing High-Frequency Radar
to calculate fields over the entire domain, with results ShOWnAS a final examp|e, we consider near-grazing propagation

in Fig. 10). The beam-tracing results in Fig. 9 fbr = 12 at high frequencies, as addressed in [13]. In particular, we
km (which corresponds from Fig. 5 to the tightest beamwidtighnsider an initial field distribution for the wide-angle PE
yield good agreement compared to the full PE results. [as in (21)] withz, = 50 m, 0, = 1°, k is the free-space
Before proceeding, we summarize the conclusions of thigavelength fors = 0.1 m (frequency of 3 GHz), and = 50).
numerical study for OTHR. We have found that the wellthe ground is treated as in the OTHR example, and the PE
known constraint on’,, dictated by the paraxial approxi-is used to compute the fields to a range of 250 km and a
mation, may be inadequate for applications involving inhgreight of 100 m with the fields stored at the height= 75
mogeneous medium. In particular, the beamwidth must & These fields are then projected onto the Gabor basis after
narrow enough over the range of propagation, relative to tlierpolating the slowly varying range dependence of the PE-
material inhomogeneity, such that the underlying assumptiogémputed fields (as for the OTHR problem).
required of beam-tracing are met. In particular, we require The near-grazing example poses a particularly challenging
that the dynamics of beam propagation are dictated primargise for the Gaussian beams, because from (13), the prominent
by the electrical properties near the beam axis. For thasigles of propagation dictate a very lafyesuch that a given
to hold, material properties must change slowly over thseamwidth can be achieved. However, for this example, we
beamwidth. This led us to develop a new parameter L), have the advantage that the inhomogeneity profile is not as
which quantifies the relative change in the index of refractiasevere as in the OTHR problem and, therefore, the beamwidth
over ther-dependent beamwidth. For the numerical exampleed not be as tight to satisfy the underlying beam-tracing
considered here, we have found accurate Gaussian beassumptions. In particular, we utilize one of the inhomogeneity
tracing results wheny(r, L,) indicates a maximum rate of profiles considered in [13], described in terms of the modified
change in the index of refraction of less than approximatefgfractive indexm(r, z) = n(r, z) + z/a, introduced by the
4% over the beamwidth. It should be noted, however, thaarth-flattening relationships in (3). Moreover, singé: is
this requirement is likely to depend as well on the electricgenerally a very small quantity, in [13], the paramelér=
distance over which the beams are traced. For the examplé(n — 1) is introduced and here we considéf = 2 at
considered here, the beams traveled a distance oR0vM#0), 2z =0, M =0 atz = 100 mandM = 118 at z = 1100 m,
presenting a particularly challenging case. with a linear distribution in between ([13, Table II]).
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Fig. 11. Variation of the beamwidth as a function/of for a beam launched Fig. 12. Change in the index of refraction across a beamwidth, as measured
at the angles = 1°, through the inhomogeneous medium described iat the height- = 5 km for the beam considered in Fig. 11. The change in
Section IlI-B. The beamwidth is measured at a height e 5 km. index of refraction is defined by(r, I.) in (20).
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In Fig. 11, we plot the beamwidt®(L,) as measured at
the heightz = 5 km, considering a beam launched at the .1ap
principal anglef = 1°. As in the OTHR example (Fig. 6),
the beamwidth is quite large for narrofy,, there is a value -1
of L, for which B is minimum (L, = 6 km), followed
by a subsequent slow increase ®(L,) for L, > 6 km.
The Gabor-generated beams are matched to the beam-tracings
algorithm atzrp = 10X at which, as discussed above, th§
asymptotic results in (11) were found to be quite accurate'®
For the paraxial approximation [17]-[19] to be validat = 2,5
10, we require anL, = 60 m. Unfortunately, while this
value of L, is sufficient for free-space applications, for the -160
inhomogeneity considered here the subsequent beamwidth
B(L,) is too large for the underlying assumptions in the beam-:'®
tracing algorithm (as was found for the OTHR example). To_,7 P T T RN
quantify this, in Fig. 12 we plot the parametgpr, L,,) from 180 1}7{2nge (k) 200 225
(20) as a function of.,., as measured for a fixedlat z = 5

km [as in Fig. 11]_ We see that the weak inhomogeneity of thidg- 13. Power loss at a height of 5 km for near-grazing propagation at 3
GHz for the inhomogeneity profile considered in Figs. 11 and 12. Results are

pmble_m (rel_at'_ve to the OTHR e?(ample) res_”'_ts In muc_h I_e%émpared between a full PE algorithm (for the entire computational domain)
material variation over a beamwidth. The minimum variatioand the hybrid PE (Gabor expansion-beam-tracing) algorithm for two values

occurs at the null in Fig. 11, = 6 km. For L, = 60 m ©of Gabor width ..

dictated by the paraxial approximation, the beamwidth is 8.3

km at the observation height= 5 km, thereby encompassingc, Numerical Issues and Comparisons with Other Algorithms

all the inhomogeneity seen in the problem (the beam-tracing . ) _ )

results were, therefore, meaningless for this valué. of _ As |r_1d_|cated above, ifL, used in the Gabor expansion
Finally, in Fig. 13 we plot a comparison of results computel§ Sufficiently large to assure a tight Gaussian beam,

via the full PE solution (over the entire computational domaifi€lative to the material inhomogeneity, the hybrid (Gabor-

as depicted in Fig. 14) with data computed using the hybﬂfgnsform)—(beam-traC|ng) algorithm results in highly accurate

beam-tracing scheme. Results are plotted ipr= 1 and 6 fesults, as compared with an independent (PE) solution.

km, as measured at= 5 km [see Fig. 11]. We see that for thisNevertheless, we address here several numerical issues which

example and these parameters, the agreement between th&ipilight the advantages and disadvantages of this algorithm.

and hybrid algorithm is excellent. While in the OTHR examplé principal shortcoming is the need to compute the coefficients

it was found that some of the underlying assumptions in tloé the Gabor expansion functions, often whignis quite large

PE approximation were tenuous (for some observation pointg)ative to wavelength. In particular, in the second example

for this example the error in the approximation@dz, ) [see (Section 11I-B) we considered,, = 1 and 6 km, 33333},

(4)] is less than 0.04% over the entire computational domaimnd 200 000, respectively. We utilize the bi-orthogonality

————— with Lx = 6 km
........... with Lx = 1 km

F140
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knowledge of which beams are necessary for the representation
of the fields in a given region. Moreover, one can neglect
beams with very small amplitudes,,, contributing minimally
to the total fields. For example, in the example in Section IlI-B,
most of the energy travels at the angle- 1° and, therefore,
only beams traveling near this angle are of principal concern.
Taking into account these considerations (for the example in
Fig. 9), we used 100 beams fdr, = 12 km, while for the
results in Fig. 13, we used 300 and 25 beams, respectively,
for L, =1 km and L, = 6 km.

In summary, several algorithms have been developed over

height (km)

110 the years for the propagation of fields (PE computed or
0 220 otherwise) away from an aperture into a inhomogeneous
range (km) medium. It is felt that no one algorithm can be viewed as

Fig. 14. Results of the full PE computation for the problem in Fig. 13. optimal,_ each having th?il’ respeCtive domains of ad\_/antage-
For particular classes of inhomogeneity, Green'’s function [14]
or ray-based [15] schemes are quite effective. Moreover, for

relationship standard inhomogeneities the horizontal PE scheme is very
oo ] accurate and efficient [13]. The hybrid Gabor-beam algorithm
Amn = / f(x)B* (x — mLy) exp(jnks x) de presented here appears to be a useful tool for problem types
o o\ for which these other algorithms have problems: in regions
B(z) = (\/iLm)_W (i) exp[_w(x/me] for WhICh the material is nonstandard or for Wh|ch there is
™ reflection back toward the earth (cf., [13]), for which there

(o)

; ) are caustics or shadow boundaries (cf. [15]) and for which a
' Z(_l) expl~(l +1/2)] (22)  Green s function is difficult to obtain (cf., [14]). These criteria
>0 are naturally met for a problem of the type considered in
wherel, = (¢/L;)—1/2 andK, = 1.854 074 68. The integral Section llI-A (OTHR). On the other hand, while the example
in (22) was computed via Gauss—Legendre integration and, farSection 11I-B demonstrated the accuracy of the Gabor-beam
the example in Section I1I-B, this required several hours §€heme, a problem of this type is more efficiently handled with
CPU on a Pentium PC. The subsequent beam tracing is, tB§ algorithm in [13] (from where this example was taken).
contrast, quite efficient. Therefore, for this example, charac-
terized by a small wavelength and near-grazing propagation,
the algorithm yields highly accurate results at a relatively
significant computational expense. A hybrid PE (Gaussian beam) algorithm has been developed

The horizontal PE algorithm in [13] has the advantage thédr the long-range propagation of fields through complicated
vertical propagation is solved using the reduced form of tliehomogeneous environments. The PE computed fields are
fields and, therefore, the highly oscillatory term in tle stored along an aperture and then projected onto a complete
direction is eliminated (as is conventional in PE solutions§zabor basis, each Gabor basis function giving rise to a tilted
Therefore, one does not suffer the problems discussed ab@aussian beam. These Gaussian beams are then used as starter
with regard to subwavelength sampling in thedirection. fields for a Gaussian beam algorithm, which is applicable
However, while the scheme in [13] is more efficient comfor propagation through general inhomogeneous environments.
putationally in this respect, it is applicable only to standarfihe Gaussian beam algorithm applies the PE approximation
inhomogeneities. for forward propagation along ray trajectories each of which

Considering the OTHR example of Section IlI-A, the ionois initiated at the center of the tilted Gaussian beam starter
spheric profile does not fit readily into a standard fornfields. The beam-tracing algorithm, therefore, represents an
Moreover, note from Fig. 10 that the fields are reflecteichprovement on conventional ray tracing in that it uses
back toward the earth, posing a particular challenge forcanventional ray trajectories yet, by utilizing fields that extend
forward-marching horizontal-PE scheme. For the problem breyond the trajectory, it circumvents artifacts at caustics and
Section Ill-A, we required a Gabor width, /lambda = 400  shadow boundaries. Further, the Gabor basis functions provide
and, therefore, the computations in (22) were relatively eff&rigorous and self-consistent coupling of the PE algorithm (or
cient (several minutes on a personal computer) and, therefary numerical algorithm) with beam tracing; such a coupling
the Gabor-beam algorithm is quite efficient. is difficult with conventional ray tracing.

Finally, with regard to (22) and (9), in general one must Example results were presented for a realistic over-the-
evaluateamn for each propagating beam. For the larhge horizon radar (OTHR) scenario as well as for a near-grazing
considered in Sections IlI-A and B, this implies a very larghigh-frequency radar example. These examples allowed us to
number of modes. However, we are generally only interestaddress several numerical issues associated with this algo-
in the fields radiated in a particular direction or region. Thusithm. In particular, previous work on Gabor-launched beams
knowing the launch angles of the beams, we have advamigh application to free-space problems has identified two

IV. CONCLUSIONS
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mathematical constraints on the Gabor expansion functions.[1a] S. H. Marcus, “A hybrid (finite difference-surface Green’s function)
particular, for a given distance away from the Gabor function

(i.e.

, from the aperture), the Gabor widil) must be chosen

sufficiently large to satisfy the paraxial approximation and thes]
underlying assumptions in the asymptotic derivation of (11).

We have demonstrated that the presence of inhomogenegds

media introduces a new constraint @n, essential for sub-

sequent beam tracing. In particuldr, must be sufficiently

[17]

method for computing transmission losses in an inhomogeneous atmos-
phere over irregular terrainJEEE Trans. Antennas Propagatol. 40,

pp. 1451-1458, Dec. 1992.

H. V. Hitney, “Hybrid ray optics and parabolic equation methods for
radar propagation modeling,” imst. Elect. Eng. Conf. Proc. Radar
Brighton, U.K., Oct. 1992, pp. 58-61.

J. M. Headrick and M. I. Skolnik, “Over-the-horizon radar in the HF
band,” Proc. IEEE vol. 62, pp. 664-673, June 1974.

J. J. Maciel and L. B. Felsen, “Systematic study of fields due to extended
apertures by Gaussian beam discretizatiodSEE Trans. Antennas

large such that the beam is tight enough relative to the propagat, vol. 37, pp. 884-892, July 1989.
material inhomogeneity to satisfy the underlying beam-tracirggl
assumption: that the beam fields are dictated primarily by the
material properties along the beam axis. For the examples pp. 1608-1624, Oct. 1990.
considered here, this latter restriction was found more sevétgl P. D. Einziger, S. Raz, and M. Shapira, “Gabor representation and
(required largerL, ) than either of the former two.
With regard to the projection of the aperture fields onto 0] V. Cervery, M. M. Popov, and |. Bérik, “Computation of wave
Gabor basis, the Gabor basis functions constitute elements with fields in inhomogeneous media-Gaussian beam appro@sphys. J.

constant support in the spatial-spectral phase space [28] (mgfig¢

commonly viewed in time-frequency). Over the last several

years, however, substantial research has been performed

wavelets, which are characterized by multiresolution in the
phase space [29], [30]. Further, wavelets have proven &5l
provide substantial compression for function (image) repre-
sentation. Thus, a potentially fruitful avenue of future researgiw)

involves investigation of projecting the aperture fields onto
wavelets basis, which may reduce the number of beams

s

a-vis the Gabor basis. However, in this context, the choice
of wavelet is critical, for the wavelets must provide gooélzs]
propagators. As discussed in Section I1I-B, the Gabor bag$
functions naturally give rise to tilted Gaussian beams. Similar

properties must hold for the wavelet basis selected if they
to be useful for wave- propagation applications.
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