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An Efficient Technique for Eigenspace-Based
Adaptive Interference Cancellation

Cheng-Chou Lee and Ju-Hong Lee,Member, IEEE

Abstract—This paper presents a technique for the computation
of the interference subspace for eigenspace-based interference
cancellation. Using a subarray partitioning scheme, we con-
struct the interference subspace from the subarray interference
subspaces. In the case of uniform linear arrays, the proposed tech-
nique has the advantages of reclaiming the lost degrees of freedom
due to signal blocking and reduced computational burden over
existing techniques. The proposed technique also possesses the
capabilities to cope with the case of using nonuniform linear
arrays in the environment of partially correlated signals. A
computer simulation example is provided for illustration and
comparison.

Index Terms—Adaptive arrays.

I. INTRODUCTION

A DAPTIVE interference cancellation is usually required
for maximizing the rejection of interference regardless of

the interference-to-noise power ratio (INR) when processing
array data. There are several eigenspace-based (ESB) interfer-
ence cancellers presented in the literature [1]–[6]. However,
the methods presented in [1] and [2] are only suitable for the
case without the desired signal. The method of [3] is developed
under the environment of two signal sources without correla-
tion, whereas the methods of [4] and [5] work only for the
situation where a uniform linear array (ULA) is used. As to
the method of [6], correlation between signal sources is not
allowed.

Moreover, several major problems in implementing the ESB
interference cancellation using the above methods must be
considered. In addition to the loss of degrees of freedom when
using a blocking matrix to eliminate the desired signal, the
interference canceller of [4] suffers the expansive computing
cost for performing the required generalized eigenvalue de-
composition (EVD) on the correlation matrix of the blocked
data vector in order to obtain the interference subspace (IS).
Based on the method of [5], the directional angles of the
interferers must be estimated before we can determine the
required IS. On the other hand, under the case of using an array
with arbitrary geometry as that considered in [6], the major
problem is the difficulty of removing the component associated
with the desired signal from the received data correlation
matrix in order to compute the required IS. The authors of [6]
resorted to an iterative process for the computation of the IS.
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In this paper, we present an efficient technique to overcome
the restrictions and drawbacks in utilizing the above existing
methods. Based on the observation that a vector orthogonal to
the IS of a subarray of the original array is also orthogonal
to the original IS after it is appended by zero entries, we first
present a subspace construction technique for the computation
of the IS spanned by the received array data vector. Based
on the partition of the original array into several overlapped
subarrays, the IS’s spanned by the subarray data vectors are
first computed and then used to construct the original IS
for finding the optimal weight vector. It is shown that the
proposed technique can alleviate the drawbacks like loss of
degrees of freedom and heavy computational burden when
using existing ESB adaptive interference cancellers with a
ULA. We find that the computational complexity required by
using the proposed technique is much less than that required by
using the existing method presented in [4]. Modifications for
the proposed technique are also presented for dealing with the
case of using a nonuniform linear array in the environment of
partially correlated signals.

This paper is organized as follows. Section II briefly de-
scribes ESB adaptive interference cancellation (ESB-AIC).
Based on a subarray partitioning scheme, a technique for con-
structing the IS is presented in Section III. The required com-
putational complexity is also evaluated. Section IV presents
the modifications required for performing ESB-AIC by using
the proposed technique under some considered situations.
A simulation example for showing the effectiveness of the
proposed technique is presented in Section V. We finally
conclude this paper in Section VI.

II. THE ESB ADAPTIVE INTERFERENCE

CANCELLATION (ESB-AIC)

Consider a linear array withM -sensor elements illuminated
by P narrowband signal sources. The received signal at the
mth sensor element can be expressed as

xm(t) =
PX
i=1

si(t)am(�i) + nm(t) (1)

where si(t) is the ith signal impinging on the array with
direction angle�i; nm(t) is the received noise. Both the signal
and sensor noise are assumed to be uncorrelated and zero-mean
Gaussian random processes.am(�i) represents the response of
the mth sensor to a signal with unit amplitude and direction
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angle�i. In vector form, (1) becomes

X(t) =
PX
i=1

A(�i)si(t) + N (t) = AAAsS(t) + N (t) (2)

where the response vector of theith signal A(�i) =
[a1(�i), a2(�i), � � � ; aM (�i)]

T , the noise vectorN (t) =
[n1(t); n2(t); � � � ; nM(t)]T , the signal source vectorS(t) =
[s1(t); s2(t); � � � ; sP (t)]T , and the response matrix of signal
sourcesAAAs = [A(�1); A(�2); � � � ; A(�P )]. The ensemble
correlation matrix ofX(t) is given by

RRR = EfX(t)XH (t)g = AAAs	sAAA
H
s +�n (3)

where�n = EfN (t)NH(t)g. 	s = EfS(t)SH (t)g with its
(i; j)th entry given by

	ij =

�
�i; for i = jp
�i�j�ij; for i 6= j:

(4)

where�ij denotes the correlation coefficient between theith
andjth signal sources. Without loss of generality, let the first
signal of theP signal sources be the desired signal and the
otherJ = P � 1 be the interferers. Thus, the response matrix
associated with interferers is given by

AAAj = [A(�2); A(�3); � � � ; A(�p)] (5)

The signal subspace (SS) and the interference subspace (IS)
can be designated as�s = rangefAAAsg and�j = range fAAAjg,
respectively. Moreover, let the complements of the SS and IS
be represented by SSC and ISC, respectively and the basis
matrices spanning the SS, IS, SSC, and ISC be denoted as
GGGs;GGGj;GGGn; andGGGr, respectively.

Consider the ESB-AIC. The optimal weight vector which
minimizes the array output power with a constraint of unit
gain in the direction of the desired signal, i.e.,A(�1) and a
constraint of the optimal weight vector orthogonal to the IS can
be obtained by solving the following optimization problem:

Minimize WHRRRW

Subject to WHA(�1) = 1 and W 2 rangefGGGrg:

(6)

The optimal solution for (6) is given by

Wo = �GGGr(GGG
H
r RRRGGGr)

�1GGGH
r A(�1) (7)

where� denotes the normalization constant. Note that the ob-
jective functionWHRRRW of (6) can be replaced byWH�nW
if the characteristics of the noise vectorN (t) are knowna
priori since the optimal weight must be such a solution that
the resulting ESB adaptive interference canceller provides zero
gain for all interferers and unit gain for the desired signal.
Hence, the solution given by (7) becomes

Wo = �GGGr(GGG
H
r �nGGGr)

�1GGG
H
r A(�1): (8)

After some necessary algebraic manipulations, an equivalent
expression for (8) is given by

Wo = �(��1
n ���1

n GGGj(GGG
H
j �

�1
n GGGj)

�1GGGHj �
�1
n )A(�1): (9)

We note that(GGGHj �
�1
n GGGj)�1 is the inverse of aJ � J matrix

and (GGGHr �nGGGr)�1 is the inverse of an (M -J ) � (M -J)
matrix. Therefore, finding the optimal weight vector from (9)
requires much less computational complexity than from (8) if
M � J . Moreover, (9) can be further reduced to

Wo = �0(IIIM �GGGj(GGG
H
j GGGj)

�1GGG
H
j )A(�1) (10)

if the sensor noises are spatially white, i.e.,�n = �nIIIM ,
whereIIIM denotes the identity matrix with sizeM�M , �n the
noise variance, and�0 the resulting normalization constant. As
shown in [5], the performance of an ESB adaptive interference
canceller is usually evaluated in terms of its output signal-to-
interference plus noise ratio (SINR) which is given by

SINR =
�1jW

H
o A(�1)j

2

WH
o (AAAj	jAAA

H
j + �n)Wo

(11)

where	j denotes the correlation matrix of the interfererssi(t)
for i = 2; 3; � � � ; P .

III. COMPUTATION OF INTERFERENCE

SUBSPACE BY OVERLAPPED SUBARRAYS

Let the originalM -element array be partitioned intoK
subarrays. Assume that thekth subarray hasMk (Mk >J)
array elements beginning with the(M�

k
+1)th sensor element

and ending with theM+

k
th sensor element. Hence,M+

k
�

M�

k
=Mk. Construct a row selecting matrixJJJk as follows:

JJJk = [u
M
�

k
+1
; u

M
�

k
+2
; � � �u

M
+

k

]T (12)

whereum denotes themth column vector ofIIIM . Then, the
data vectorXk(t) of sizeMk� 1 received by thekth subarray
can be expressed as

Xk(t) = JJJkX(t) = AAAskS(t) + Nk(t) (13)

whereAAAsk = JJJkAAAs is the response matrix andNk(t) =
JJJkN (t) is the noise vector associated with thekth sub-
array, respectively. LetAAAdk = [Ak(�1)] and AAAjk =
[Ak(�2); � � � ; Ak(�P )] represent the response matrices of the
kth subarray due to the desired signal and the interferers,
respectively, whereAk(�i) = JJJkA(�i). Consider the case that
the two submatrices which contain the firstJ rows and the
last J rows ofAAAjk, respectively, are full rank. (This is called
the unambiguity condition.) Assume that the basis matrices of
the the IS and ISC spanned byXk(t) are designated as the
full rank matricesGGGjk and GGGrk, respectively. Accordingly,
we have

rangefGGGjkg = rangefAAAjkg; and GGGHrkAAAjk = 0: (14)

It follows from (14):
Lemma 1: RangefJJJTkGGGrkg � rangefGGGrg.
This lemma states that the vectors ofJJJTkGGGrk are contained

in the ISC ofX(t). As a result, a basis matrix which spans
the same subspace as that spanned byGGGr can be established
by finding the (M -J ) linearly independent vectors from the
matricesJJJTkGGGrk for k = 1; 2; � � � ;K. To develop a method
for constructing this basis matrix, we present a theorem as
follows.
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Theorem 1: Let the partition of the original array satisfy
the following conditions:

DDD1: M�

1 =0 and M+

1 =M1

DDD2: Mk >J and
KX
k=1

(Mk � J) =M � J

DDD3: M�

k
=M+

k�1
� J and

M+

k =M�

k +Mk; i:e:; M
+

k =M+

k�1 +Mk � J:

Then, a full rank matrix constructed by

GGGr = [JJJT1GGGr1; JJJ
T
2GGGr2; � � �JJJ

T
KGGGrK ] (15)

spans the ISC associated with the data correlation matrixRRR

of (3).
Proof: First, let HHHk1 and HHHk2 be two row-selecting

matrices, which contain the firstJ and the lastMk�J rows of
theMk �Mk identity matrix, respectively. We then construct
two matrices fromAAAjk as follows:

AAAjk1 = HHHk1AAAjk and AAAjk2 = HHHk2AAAjk: (16)

Similarly, two matrices are constructed fromGGGrk as follows:

GGGrk1 = HHHk1GGGrk and GGGrk2 =HHHk2GGGrk: (17)

Next, using the facts thatAAAHjkGGGrk = 0 and the assumption that
AAAjk1 is full rank, we can easily show from (16) and (17) that

GGGrk1 = �AAA�H
jk1AAA

H
jk2GGGrk2: (18)

Equation (18) reveals that each of the row vectors ofGGGrk1

can be obtained from a linear combination of the row vectors
of GGGrk2. This leads to that bothGGGrk andGGGrk2 have the same
rank equal toMk�J . Using the conditionsDDD1,DDD2, andDDD3,
the matrixGGGr of (15) can be expressed as follows:

GGGr =

2
6666666664

GGGr11

GGGr12 GGGr21 0
GGGr22

. . .

. . .
0 GGGr(K�1)1

GGGr(K�1)2 GGGrK1

GGGrK2

3
7777777775

: (19)

The corresponding lower block triangular matrix of (19) has
diagonal block matricesGGGrk2. It has been shown in [7] that
the rank of a block triangular matrix is at least equal to the
sum of the ranks of its diagonal block matrices. Since each
of GGGrk2 is full rank equal toMk � J , thus, the lower block
triangular matrix ofGGGr has rank given byM �J which is the
sum ofMk � J for k = 1; 2; � � � ;K. Hence, the rank ofGGGr

is also equal toM � J . Therefore, it follows from Lemma 1
that the space spanned by the matrixGGGr is equal to the ISC
spanned byX(t). This completes the proof.

Similar to (16), we can construct two matrices fromGGGjk

as follows:

GGGjk1 = HHHk1GGGjk and GGGjk2 =HHHk2GGGjk: (20)

Moreover, letHHHk3 be a row-selecting matrix that contains
the lastJ rows of theMk �Mk identity matrix. One more
submatrix is constructed fromGGGjk as follows:

GGGjk3 = HHHk3GGGjk: (21)

From (20) and (21), we construct a matrix as follows:

QQQj =

2
66666664

GGGH
j13 0

�GGGH
j21 GGGH

j23

�GGGH
j31

. . .

. . . GGGH
j(K�1)3

0 �GGGH
jK1

3
77777775
: (22)

Due to the unambiguity condition, all ofGGGjk1 andGGGjk3 in
(22) are full rank square matrices. As a result,QQQj is also full
rank. Based on the above results, we present a technique for
finding the IS spanned byX(t) as follows.

The Interference Subspace Reconstruction (ISR) Technique

Theorem 2: Let TTT j be a full rankKJ � J matrix which
satisfies the relationship ofTTTHj QQQj = 0. Consider thatTTT j is
partitioned as follows:

TTT j = [TTTTj1 TTTTj2 � � � TTTTjK ]
T (23)

where TTT jk are J � J matrices fork = 1; 2; � � � ;K. Then
a basis matrix that spans the IS associated with the original
array is given by

GGGj = [(GGGj1TTT j1)
T (GGGj22TTT j2)

T � � � (GGGjK2TTT jK)
T ]T :

(24)

Proof: From (21) and (22), we have

GGGjk3TTT jk = GGGj(k+1)1TTT j(k+1): (25)

Substituting (25) into (24), we can easily show thatGGGH
r GGGj = 0

whereGGGr is given by (19). From Theorem 1, we note thatGGGr

spans the ISC associated with the original array. Therefore,
the full-rank matrixGGGj of (24) spans the IS associated with
the original array. This completes the proof.

After findingGGGj , the ISC basis matrixGGGr required by (7)
can be computed as follows:

GGGr = [(�GGG�H1 GGGH
2 )

T IIIM�J ]
T (26)

whereGGG1 andGGG2 contains the firstJ and the lastM �J rows
of GGGj, respectively.

Next, consider the computational complexity required by
using the proposed ISR technique. Letf(Mk ; J) denote the
number of complex multiplications (CM) required for comput-
ing each of the basis matricesGGGjk for k = 1; 2; � � � ;K. Due
to the block-banded structure of (22), the matrixTTT j can be
computed with computing cost about 11KJ3=3 CM. Comput-
ing the matrixGGGj of (24) costs aboutJ3 + �Kk=1J

2(Mk �
J) CM. Hence, the total number of CM required by the



LEE AND LEE: EFFICIENT TECHNIQUE FOR EIGENSPACE-BASED ADAPTIVE INTERFERENCE CANCELLATION 697

proposed technique for computing the IS spanned byX(t)
is approximately given by

KX
k=1

f(Mk ; J) +MJ2 + 11
3 KJ

3: (27)

IV. M ODIFICATIONS OF THEPROPOSEDISR TECHNIQUE

In this section, we consider the modifications of the pro-
posed ISR technique under different situations including dif-
ferent array configurations and signal characteristics. The
received sensor noises are assumed to be spatially white with
unit power. Accordingly, the corresponding optimal weight
vector of an ESB adaptive interference canceller can be
computed from (10).

A. ESB-AIC Using a Uniform Linear Array

Consider the case of ESB-AIC using a ULA based on the
work presented in [4]. The desired signal is blocked from the
received data by utilizing a suitable signal blocking matrix.
Assume that there exists only partial correlation between any
two of theP signals. Fig. 1 depicts the subarray partitioning
scheme used for this case. Following the proposed ISR tech-
nique presented in Section III, we input thekth augmented
data vector[XT

x (t) xM+

k
+1(t)]

T or [xM�

k

(t) XT
k (t)]

T to
the kth blocking matrixBBBk and then take the correlation
matrix of the output data vector. Let the correlation matrix
of the kth augmented data vector be denoted asRRRbk. Then
it is easy to show that the correlation matrix of the data
vector at the output ofBBBk is given byBBBH

k RRRbkBBBk and the
corresponding noise correlation matrix is given by�nBBB

H
k BBBk.

Therefore, the output data vector fromBBBk can be whitened
by applying it to the operator(BBBH

k BBBk)�1=2. Accordingly,
the whitened data vector has correlation matrix given by
(BBBH

k BBBk)
�1=2BBBH

k RRRbkBBBk(BBB
H
k BBBk)

�1=2 and its EVD can be
expressed as

(BBBH
k BBBk)

�1=2(BBBH
k RRRbkBBBk)(BBB

H
k BBBk)

�1=2

= UUUk�kUUU
H
k + �nVVV kVVV

H
k (28)

whereUUUk and �k contain theJ principle eigenvectors and
eigenvalues, whileVVV k contains the other eigenvectors with
eigenvalues equal to�n: Using (28), we can construct an
Mk � J basis matrix which spans the IS associated with the
received data vectorXk(t) as follows:

GGGjk = (BBBH
k BBBk)

1=2UUUk (29)

for k = 1; 2; � � � ;K. Then, the IS’s obtained by (29) are used
to construct the original IS spanned by the received data vector
X(t) using the proposed ISR technique. Note from (29) that no
degrees of freedom are lost in computing theGGGjk and, hence,
the resulting ISGGGj of the original array still has a dimension
equal toM � J . It follows from (10) that the optimal weight
vector will have a dimension equal toM� 1. In contrast, it has
been shown that the optimal weight vector obtained by using
the method of [4] only has a dimension equal to(M �1)� 1.

Next, consider the case of coherent signal sources. We
can employ the spatial smoothing scheme presented in [9]

Fig. 1. The diagram of the proposed method under ULA.

on each subarray and, hence, the correlation matrixRRRbk

must be replaced by the spatially averaged correlation matrix
in order to restore the rank ofRRRbk. Assume that some
I of the P signal sources are coherent, whereI is not
greater thanP . We can take thekth augmented data vector
formed by [XT

k (t) xM+

k
+1(t) xM+

k
+2(t) � � �xM+

k
+1(t)]

T or

[xM�

k
�I+1(t) xM�

k
�I+2(t) � � �xM�

k

(t) XT
k (t)]

T and partition
it into I subvectors withMk sensor elements overlapped
for two consecutive subvectors. Then, the average of theI
correlation matrices associated with theseI subvectors is of
size (Mk + 1)� (Mk + 1) and used to replace theRRRbk. It is
clear that we do not lose the degrees of freedom according
to the proposed technique. However, the method of [4] will
loseI more degrees of freedom when dealing withI coherent
signal sources.

Finally, the computational complexity required by using the
proposed technique is evaluated. Utilizing the method of [8]
to perform the EVD on (28) requires12M3

k CM. Additional
2M3

k CM are required in order to whiten the data vector
at the output ofBBBk. The cost required for computing (29)
is aboutM2

kJ CM. Thus, the number of CM required for
finding the ISGGGj spanned byX(t) is approximately given by
14 �Kk=1 M

3
k + J �Kk=1 M

2
k +MJ2 + 11

3
KJ3: MJ2 more

CM are required to obtain the optimal weight vector from
(10) after obtaining the ISGGGj. Therefore, the total number of
CM required for performing the ESB-AIC using the proposed
technique is about

14
KX
k=1

M3
k + J

KX
k=1

M2
k + 2MJ2 + 11

3 KJ
3: (30)

If M � Mk � J , then the last three terms of (30) can be
neglected. Hence, (30) is approximately equal to 14�Kk=1 M

3
k .

In contrast, the computational burden required by the method
of [4] for obtaining the optimal weight vector is about 14M 3

CM, which is much more than (30).

B. ESB-AIC Using a Nonuniform Linear Array

In this situation, we consider two cases where the desired
signal and interferers are uncorrelated and partially correlated,
respectively.

1) Desired Signal Uncorrelated with Interferers:Let ~Xk(t)
denote the data vector received by theP consecutive
sensor elements starting from the(M+

k + 1)th (or the
(M�

k � P + 1)th) sensor element to the(M+
k + P )th (or the

M�

k th) sensor element. The corresponding response matrices
for the desired signal, interferers, and all incident signal
sources are designated as~AAAdk, ~AAAjk, and ~AAAsk, respectively.
Hence, the cross-correlation matrix betweenXk(t) and ~Xk(t)
is given by

EfXk(t) ~X
H
k (t)g = AAAdk	d

~AAAH
dk +AAAjk	j

~AAAH
jk (31)



698 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 5, MAY 1998

where 	d and 	j are the full rank correlation matrices
associated with the desired signal and interferers, respectively.
Under the assumption of unambiguity condition, it is easy
to show that these exists such a full-rankP � J matrix ~CCCk

that ~CCCk
H ~AAAdk = 0 and ~CCCH

k
~AAAjk is a full-rank square matrix.

Multiplying both sides of (31) by~CCCk yields

EfXk(t) ~X
H
k (t)g~CCCk = AAAjk	j

~AAAH
jk
~CCCk: (32)

Examining (32), we note that the product of	j
~AAAH
jk
~CCCk rep-

resents a square matrix with full rank. Moreover, (32) spans
the IS of thekth subarray fork = 1;2; � � � ;K. Then, the
interference subspaces obtained by (32) are used to construct
the original IS spanned by the received data vectorX(t) using
the proposed technique.

Based on the above description, we note that thef(Mk; J)
becomes aboutJ2Mk. It follows from (27) that the total
number of CM for finding the basis matrix which spans the
IS associated with the original array is about�Kk=1 J

2Mk +
MJ2+11KJ3=3. Moreover,MJ2 CM are required for find-
ing the optimal weight vector from (10). Therefore, performing
the ESB-AIC based on the proposed technique requires about
3MJ2 + 14KJ3=3 CM.

2) Desired Signal Partially Correlated with Interferers:
First, let HHHk1 and HHHk2 be two row selecting matrices
containing the firstP rows and the lastMk � P rows of the
Mk � Mk identity matrix, respectively. Then, we construct
two matrices fromGGGsk as follows:

GGGsk1 = HHHk1GGGsk and GGGsk2 = HHHk2GGGsk: (33)

Similarly, two matrices are constructed fromGGGjk as follows:

GGGjk1 = HHHk1GGGjk and GGGjk2 =HHHk2GGGjk: (34)

Next, we present the following theorem.
Theorem 3: If GGGsk1 is invertible, then

GGGjk2 = Gsk2GGG
�1
sk1GGGjk1: (35)

Proof: Similar to (33), the response matrix associated
with the desired signal for thekth subarray can be partitioned
as follows:

AAAdk = [AAATdk1 AAATdk2]
T (36)

where AAAdk1 = HHHk1AAAdk and AAAdk2 = HHHk2AAAdk. Since the
signal sources are not coherent, we note that the matrices
[AAAdkGGGjk] and GGGsk both span the same SS associated with
the kth subarray. Hence, there exists a unique transformation
matrix �k such that�

AAAdk1 GGGjk1

AAAdk2 GGGjk2

�
=

�
GGGsk1

GGGsk2

�
�k: (37)

It follows from (37) that

�k = GGG�1sk1[AAAdk1 GGGjk1]: (38)

Substituting (38) into (37), we obtain the result as shown by
(35). This completes the proof.

From Theorem 3, we note thatGGGj12 can be easily found
from (35) onceGGGj11 is available. If we partition the original ar-
ray in such a way that there areP sensor elements overlapped
between any two consecutive subarrays, thenGGGjk2 is equal
to GGGj(k+1)1 and, hence,GGGj(k+1)2 can be easily computed
using Theorem 3 fork = 1; 2; � � � ;K. Accordingly, a basis

Fig. 2. The subarray partitioning configuration for simulation example.

matrix spanning the IS associated with the original array can
be constructed as follows:

GGGj = [GGGT
j11 GGGT

j12 GGGT
j22 � � � GGGT

jK2]
T : (39)

Finally, we evaluate the computational complexity required
for this case. Computing each ofGGGsk for k = 1; 2; � � � ;K re-
quires12M3

k CM based on the method of [8]. ComputingGGGjk2

from (35) costs about [2P 3=3 + 2JP 2 + (Mk � P )PJ ] CM.
Therefore, the total number of CM required for performing the
ESB-AIC in this case by using the proposed technique is about

12
KX
k=1

M3
k + 2MJ2 + 8

3KP 3: (40)

V. SIMULATION EXAMPLE AND COMPARISON

In this section, a simulation example for illustration and
comparison is presented. For this example, each simulation
result is the average of 100 independent runs with independent
noise samples and independent signal samples for each run.

Example: Here, we evaluate the performance of the ESB-
AIC using an eight-element ULA with interelement spacing
equal to�=2 (half wavelength). The received sensor noise
is assumed to be spatially white with unit power. There are
two interferers with INR= 10 dB are impinging on the
array from�32� and �38� off broadside, while a desired
signal with signal-to-noise ratio (SNR)= 6 dB is impinging
on the array from the broadside. The correlation coefficients
between these three partially correlated signal sources are
given by �12 = 0:3 exp(0:5j), �13 = 0:3 exp(0:9j), and
�23 = 0:2 exp(0:1j), respectively. Fig. 2 shows the partitioned
subarrays for this example. The array output SINR versus the
number of snapshots is depicted in Fig. 3(a). In addition to
the result of using the proposed technique, the result of using
the method of [4] is also presented for comparison. It can be
seen that the proposed technique is more effective than the
method of [4] as expected since the degrees of freedom are
not lost by using the proposed technique. The corresponding
array output beampatterns obtained after 600 data snapshots
are plotted in Fig. 3(b). For comparison, we also show the
beampattern of using the conventional adaptive beamforming
technique with a unit-gain constraint in the desired signal
direction like that of [10]. Both the proposed technique and
the method of [4] provide very deep nulls in the interference
directions. However, the mainlobe by using the method of [4]
is wider than that by using the proposed technique. Although
the conventional technique of [10] can produce almost the
same mainlobe as the proposed technique, it cannot effectively
suppress the interference.

VI. CONCLUSION

This paper has presented an efficient technique for
eigenspace-based (ESB) adaptive interference cancellation
(AIC). To save computational complexity and avoid the loss
of degrees of freedom in suppressing undesired signals, we
have proposed a technique for constructing the interference
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(a)

(b)

Fig. 3. The results of theExample. Solid line: the proposed method. Dash
line: the method of [4]. Dash-dotted line: the conventional technique of
[10]. (a) The output SINR versus the number of snapshots. (b) The output
beampatterns.

subspace spanned by the received array data vector from the
subarray subspaces. These subarray subspaces are spanned by
the data vectors received by the subarrays which are obtained
from the partition of the original array. In theory, it has been
shown that the proposed technique can alleviate the drawbacks
like loss of degrees of freedom and heavy computational
burden when using existing ESB adaptive interference
cancellers with a uniform linear array. Modifications for the
proposed technique have also been presented for dealing with

the case of using a nonuniform linear array in the environment
of partially correlated signals. Computer simulations have
demonstrated the effectiveness of the proposed technique.
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