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Wavelet Packets for Fast Solution of
Electromagnetic Integral Equations

Wojciech L. Golik

Abstract—This paper considers the problem of wavelet sparsifi-
cation of matrices arising in numerical solution of electromagnetic
integral equations by the method of moments. Scattering of plane
waves from two-dimensional (2-D) cylinders is computed numer-
ically using a constant number of test functions per wavelength.
Discrete wavelet packet (DWP) similarity transformations and
thresholding are applied to system matrices to obtain sparsity.
If thresholds are selected to keep relative residual error constant
the matrix sparsity is of order O(Np) with p< 2. This stands in
contrast with O(N2) sparsities obtained with standard wavelet
transformations [1]. Numerical tests also show that the DWP
method yields faster matrix–vector multiplication than some fast
multipole algorithms.

Index Terms—Moment methods, wavelet transforms.

I. INTRODUCTION

NUMERICAL solutions for electromagnetic integral equa-
tions describing scattering from electrically large com-

plex objects continues to be a challenging problem. The
classical method of moments produces dense linear systems
with N unknowns, whereN grows with the electrical size
of the scattering object. Since any direct solvers for dense
systems haveO(N3) complexity, they become impractical for
largeN and iterative methods must be used. The cost of one
iteration for such methods is dominated by a matrix–vector
multiplication (MVM), the complexity of which is proportional
to the number of nonzero matrix elements.

In recent years, various approaches have been proposed to
decrease the complexity of MVM’s in numerical solution of
electromagnetic integral equations. In general, two avenues
for development of fast MVM’s are available: algorithms that
bypass the complete construction of the impedance matrix
and algorithms relying on matrix transformations. Among
the former is the fast multipole method (FMM) [2], [3]
and the adaptive integral method (AIM) [4]. The latter ap-
proaches include the impedance matrix localization method
(IML) [5] and various wavelet transformation methods [1],
[6]–[9]. Wavelet applications to electromagnetic integral equa-
tions were prompted by their success in numerical solutions
of integral equations with nonoscillatory kernels [10]. The
cited studies reported some sparsification of matrices, but only
[1] studied the complexity of the MVM as the function of
N . The study reported that matrix sparsification based on an
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orthogonal wavelet transform produced sparse matrices with
�N 2 nonzero entries, where� < 1. This compares unfavorably
with the FMM, AIM, and IML methods, all of which reduce
the complexity of MVM toO(Np) with p< 2.

This paper is concerned with the question whether dis-
crete wavelet packets are able to reduce the cost of MVM
in numerical solution of electromagnetic integral equations
to O(Np) with p< 2. The presentation assumes that initial
impedance matrices are generated at the cost ofO(N2). This
is potentially a severe computational bottleneck that must
be dealt with separately (see the conclusion section). The
investigations are restricted to the electromagnetic scattering
from two-dimensional (2-D) conducting cylinders with the
combined field integral equation (CFIE) discretized by the
method of moments. In the first section, we formulate the
CFIE, discuss its discretization with pulse basis functions, and
introduce the idea of sparsifying transformations. The next
section briefly presents the matrix formulation of periodic
Daubechies wavelet transform. Based on this construction,
we discuss wavelet packets and present an adaptive algorithm
for the selection of the near best basis transform. Numerical
examples suggestingO(N4=3) sparsity of the transformed
matrices and comparisons with other fast algorithms are given
next. The last section contains conclusions and suggestions
for future research.

II. SPARSIFICATION

Consider the problem of computing the scattering of a
TM(Ez) polarized electromagnetic wave from a 2-D con-
ducting cylinder with the boundary contourC. The far-field
scattering characteristics are obtained from the surface current
Jz excited by an incident waveEinc

z . In order to avoid
problems with resonance the surface current is computed from
the CFIE�
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whereH(1)
0 is the zero-order Hankel function of the first kind,

rrr = jxxx � xxx0j; xxx;xxx0 denote points onC; nx is the outer unit
normal at pointxxx, and� is the excitation wavelength.

The integral equation is discretized in a standard way
by subdividing contourC into N nonoverlapping contour
pieces of (roughly) equal length and applying point matching
(collocation) of pulse functions. In practical computationsN is
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proportional to the electric length of contourC: Discretization
reduces the CFIE to the linear system

Zj = e (2)

whereZ is a full nonsymmetric complex nonsingularN �N
matrix.

Since the direct solution of the full system has a compu-
tational cost ofO(N3), iterative methods must be used for
largeN . The cost of each iteration is dominated by a MVM,
anO(N2) operation for a dense matrix. The idea of sparsifying
transformations is to find nonsingular matricesT1 andT2 so
that the matrixZ0 = T1ZT2 of the new system

Z0j0 = e0; e0 = T1e; j = T2j
0 (3)

has numerous very small elements which can be neglected
(thresholded) without largely affecting the solutionj0. Note
that if T2 had a full set of eigenvectors as its columns and
T1 = T�1

2 , thenZ0 would be diagonal. Such a construction
is obviously impractical because of its computational costs.
Practical considerations require that matricesT1; T2 must
satisfy the following design criteria.

1) The matrixT1ZT2 must be (effectively) sparse.
2) Matrices T1; T2 must beO(N ) sparse, so that ma-

trix–matrix multiplications cost onlyO(N2).
3) The condition number ofZ0 is not much larger than that

of Z.

The last criterium is dictated by the fact that iterative meth-
ods converge more slowly for systems with larger condition
numbers. Ideally, the transformation couldimprovethe condi-
tion number serving as a preconditioner. Such transformations
are difficult to construct. On the other hand, if bothT1 andT2
are orthogonal, then the condition number of the new system
is unchanged.

Recently [1], transformations based on Daubechies wavelets
have been used to obtain sparsification ofZ. The resulting
transformation matrices were sparse, orthogonal, and produced
considerable sparsity inZ0. However, for a fixed solution ac-
curacy, the thresholded, wavelet-sparsified impedance matrices
had O(N2) nonzero elements, which seemed to disqual-
ify the wavelet based approach in the future development
of fast-solution algorithms. In next few sections, we de-
scribe a different algorithm (also using Daubechies wavelets),
which considerably reduces computational complexity of the
MVM’s. The algorithm is based on the idea of discrete wavelet
packets [11]) and is only slightly more expensive than the
traditional wavelet transform.

III. PERIODIC DAUBECHIES WAVELET TRANSFORM

In this section, we describe the discrete wavelet transform
of vectors and matrices. In our considerations we use periodic
Daubechies wavelets [12], but other wavelet constructions
could be used as well. Given an integerp, we denote by
fhkg

2p+2
1 the set of scaling coefficients. The corresponding

wavelet coefficients are defined bygk = (�1)kh2p�k+3. The

wavelets are said to havep vanishing moments if

2p+1X
k=1

gkk
j = 0; j = 0; � � � ; p:

For a vector s0 of size N = 2n, its periodic wavelet
decomposition can be described in matrix notation by defining
an N � N matrix Wn

Wn =

�
Hn

Gn

�
(4)

whereHn andGn are matrices of sizeN=2 � N called the
low- and high-pass filters, respectively. For example, the low-
pass filterHn for the periodic Daubechies wavelets with one
vanishing moment is given by

Hn =

2
66664
h1 h2 h3 h4 0 � � � 0
0 0 h1 h2 h3 h4 0 � � � 0

. . .
0 � � � 0 h1 h2 h3 h4
h3 h4 0 � � � 0 h1 h2

3
77775:

(5)

The high-pass filterGn has the same structure asHn but is
defined in terms of wavelet coefficientsgk. The scaling and
wavelet coefficients are defined in such a way that the matrix
Wn is orthogonal [12].

The productWns
0 is a decomposition of the vectors0 into

the “average” vectors1 and the “difference” vectord1

Wns
0 = [Hns

0; Gns
0]t = [s1; d1]t: (6)

Continuing the process of recursive decomposition of “aver-
age” vectorssj ; j = 1; � � � ; l � n � log2 2p + 2 + 1 one
obtains the discrete wavelet transform (DWT) of the vector
s0. In matrix notation, the DWT is described by matrixT
such that

Ts0 = Wn�l � � �Wn�1Wns
0 = [sl; dl; � � � ; d1]t (7)

where matricesWn�j are block-diagonal matrices of the form

Wn�j =

"�
Hn�j

Gn�j

�
IN�N=2j

#
(8)

and IN�N=2j is the identity matrix of rankN � N=2j . The
discrete wavelet transformT is orthogonal(T is a product of
orthogonal matrices). The reconstruction of vectors0 from its
decomposition is obtained from

s0 = T t[sl; dl; � � � ; d1]t: (9)

Wavelet transformations of an arbitrary matrixA are ef-
fected by the productTAT t. Note that the productTA
results in the wavelet decomposition of columns ofA. This is
followed by the multiplication byT t resulting in the wavelet
decomposition of rows ofTA.

Suppose that elements ofs0 are the values of a smooth
periodic function with the sampling rate proportional toN =
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Fig. 1. Level 3 binary tree structure for the wavelet transform.

2n, for example,s0(k) = sin(2�k=2n), k = 1, � � � ; 2n.
Given p, such a vectors0 can be well approximated by

T t[sl; 0; � � � ; 0]t (10)

for any sufficiently largeN . Since l is proportional ton, sl

has constant length, sos0 can be approximated by a short
vector of constant size. This property have been used effec-
tively in compression of matrices arising in discretization of
integral operators with nonoscillatory kernels [10]. However,
the situation changes when the elements ofs0 come from an
oscillatory function sampled with a fixed number of points per
period. This occurs, for example, whens0(k) = sin(�k=8),
k = 1; � � � ; 2n. For increasingN = 2n it is necessary to retain
an increasing number of high-pass sequencesdj to accurately
compressS0 in this case. This is due to the spatial localization
of the wavelets used. In such cases the windowed Fourier
transform gives better compression. We will argue that the
discrete wavelet packets (DWP) can be used to accommodate
both cases. Thus, the DWP can be used in sparsification
of matrices arising in discretization of integral equations of
electromagnetics, especially in cases when the resolution of
discretization is constant.

IV. WAVELET PACKET TRANSFORM

Returning to the decomposition of vectors0 into the low-
pass components1 and the high-pass componentd1 we note
that the DWT proceeds at the next step to decompose further
only s1. However, at this decomposition level two other
approaches are possible. Either boths1 and d1 or only d1

(and nots1) can be decomposed. In matrix notation the first
option gives

Ts0 =

2
64
�
Hn�1

Gn�1

�
�
Hn�1

Gn�1

�
3
75�Hn
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Hn�1Gns
0

Gn�1Gns
0

3
75: (11)

Fig. 2. Level 3 binary tree structure for a wavelet packet transform.

Fig. 3. Level 3 binary tree structure for the complete level decomposition
transform.

The second approach results in the following description:

Ts0 =

2
4[IN=2] �

Hn�1

Gn�1

�35�Hn

Gn

�
s0
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2
4 Hns

0

Hn�1Gns
0
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0

3
5: (12)

Note that the transformationT in either case is orthogonal. If
this process is repeated recursively withl levels it results in a
binary tree structure of more than 22l possible decompositions
of a vector. Figs. 1–3 present different decompositions of a
vector with three levels of recursion: the wavelet transform, a
wavelet packet, and the complete level transform.

The selection of the best basis from the wavelet packet
should be made with respect to the maximum sparsity of the
thresholded matrix for a prescribed solution error tolerance.
This is a very difficult criterion to satisfy from both analytical
and computational standpoints. The analytical difficulty lies
in defining an appropriate information cost function (see [11])
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Fig. 4. Geometry of the L-shape contour and the incidence directions.

precisely related to the the error tolerance of the sparse system.
The computational bottleneck stems from the fact that given
any cost function, the best basis algorithm has complexity
O(N log(N )) when applied to anN vector andO(N2 log(N ))
when applied to a square matrix.

However, it is possible to propose a viableO(N log(N ))
best basis selection algorithm using an approach similar to that
introduced in [9]. Starting with the incident wave vectore as
the top node of the decomposition tree, a decision whether
to continue decomposition at any given node is based on a
comparison of norms of vectors at the parent and children
nodes. The information cost function used as a criterion is

C(x) =
X
i

jxij; x = [x1; � � � ; xM ]t

wherex is a vector of decomposition coefficients related to
the node, andM = 2r for some positive integerr. If the
norm of the parent node vector is smaller than the norm of its
two children, that part of the tree is not decomposed further.
It is easily observed that if the initial data is of lengthN , the
selection algorithm stops afterO(N log(N )) operations.

Once the tree structure has been determined, the orthogonal
transformationT is known and it is applied to matrixZ to
obtainZ0 = TZT t. The transformed matrixZ0 is then thresh-
olded and the resulting system solved for an approximation of
the solution vectorj0.

The above adaptive construction of the transformation ma-
trix T can be extended to problems with many excitation
vectors (in the case of RCS computations). Given a block
of m column vectorsE = [e1; � � � ; em], the adaptive algo-
rithm decomposesE instead of a singleei using a modified
information cost function

C(x) =
X
j

X
i

jx
(j)
i j; x =

2
64
x
(1)
1 � � � x

(m)
1

...
...

x
(1)
M � � � x

(m)
M

3
75:

Fig. 5. Magnitude of the surface current density along the L-shaped contour
induced by a plane wave incident at 45� into the concave corner. The scatterer
has length25:6� and is discretized withN = 256.

The cost of the tree selection changes toO(mN log(N )). In
the next section, the adaptive wavelet packet algorithm with a
block of incidence vectors with evenly spaced angles is applied
to scattering from two cylinders.

V. MATRIX SPARSITY—NUMERICAL EXAMPLES

In this section, the results of a study of matrix sparsity as a
function of the problem size are presented. Scattering of plane
waves from 2-D cylinders is computed numerically using a
constant number of test functions per wavelength. The surface
currents induced on a 2-D conducting cylinder by planar waves
are described by the integral equation (1). The incident waves
are given by

Einc
z (xxx) = exp(ikkk � xxx); kkk = 2�ddd=� (13)

whereddd is the incidence direction unit vector. Two different
cylinder contours were considered: a circle and an L-shape (see
Fig. 4 for the geometry of the latter contour). Equation (1) was
discretized with pulse functions and point matching. The sup-
port of pulse functions was�=10 throughout all experiments.
For both contours, we computed the scattering for increasing
incident frequency (or equivalently, for the increasing electri-
cal cylinder size), adjusting the threshold level� to maintain
the relative residual errorke0�Z0j0compk=ke

0k of (1�0:01)%,
where j0comp is the solution computed using the thresholded
sparse matrixZ0. This level of solution accuracy produces
approximate solutions visually indistinguishable from those
obtained from the full systems. We noted that� had to be
decreased as the problem size grew to maintain the accuracy of
the solution of the sparse system. Fig. 5 shows the magnitude
of the current density along the perimeter of the L-shape
domain induced by the planar wave incident at 45� (i.e., into
the concave corner of the contour). Here the perimeter length
is 25.6� and the current was computed with the dense and the
sparse matrices. The curves practically overlap.
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Fig. 6. DWT and DWP matrix sparsity as a function of sizeN for the
circular cylinder. Periodic Daubechies wavelets with eight vanishing moments
used. Threshold levels adjusted to maintain relative errors of(1� 0:01)%.

Fig. 7. Tree structure for the L-shaped domainN = 512.

The system sizes studied ranged fromN = 256 (contour
length of 25.6�) toN = 4096 (contour length of409:6�). The
sparsity results for the circular cylinder are presented in Fig. 6.
The wavelet packet tree was computed from a single planar
incident wave. It can be seen that the DWP produces much
higher sparsity than does the DWT. Moreover, the sparsity of
DWP transformed matrices does not level off for largeN , but
continues to decrease. Specifically, for the circular cylinder
the DWT produced the sparsities ranging from 10.7% for
N = 256 to 6.7% for N = 4096. The sparsities obtained
from the DWP ranged from 7.4% forN = 256 to 1.1% for
N = 4096.

Similar results were obtained for the L-shaped contour. In
this case, the wavelet packet tree for the L-shaped contour
was computed from a block of eight right-hand side vectors
obtained from planar waves with different incident angles
as shown in Fig. 4. This was done to show that the DWP
produces good sparsification with many different excitation

Fig. 8. Tree structure for the L-shaped domainN = 1024.

Fig. 9. DWT and DWP matrix sparsity as a function of sizeN for the
L-shaped cylinder. Periodic Daubechies wavelets with eight vanishing
moments used. Threshold levels adjusted to maintain relative errors of
(1 � 0:01)%.

vectors. Figs. 7 and 8 give the tree diagrams for the basis
selection in case ofN = 512 and N = 1024. Note that
first two levels of decomposition in both cases are identical to
the standard DWT. The additional sparsity obtained in DWP
comes from decomposition at levelsl > 2. Since all excitations
vectors play a role in the construction of the wavelet packet
tree, the tree construction is based more on the geometry of
the scatterer and less on the relation between the excitation
and solution vectors.

The DWT and DWP sparsity results for the L-shaped
cylinder are presented in Fig. 9. As in the case of the circle,
the DWP produces higher sparsity than the DWT and the
DWP-produced sparsity changes faster as the problem scales.
Specifically, the DWT sparsities range from 20.3% forN =
256 to 8.3% forN = 4096. The sparsities obtained from the
DWP ranged from 17.7% forN = 256 to 4.2% forN = 4096.
Since the relative importance of the contour corners diminishes
with the increase ofN , the sparsities will eventually approach



GOLIK: WAVELET PACKETS FOR FAST SOLUTION OF ELECTROMAGNETIC INTEGRAL EQUATIONS 623

Fig. 10. CPU times for one matrix–vector multiplication as a function of
size N for a circular cylinder.

those of the circular cylinder. This means that DWT-produced
sparsities will level off (as suggested in [1]), whereas the
percentage of nonzero elements in DWP-based matrices will
continue to decrease.

Fig. 10 compares the CPU times required for a single
MVM as a function N using the DWP, DWT, and the
ray propagation fast-multipole algorithm (RPFMA) [3]. The
RPFMA was shown to reduce MVM time toO(N4=3) (for
constant relative residual error). The times for RPFMA and
DWT were obtained from [1] and refer to computations on a
SUNSPARC10 workstation. The DWP and DWT algorithms
were coded in MATLAB and run on a SUNSPARC1000. To
make the comparison it was necessary to scale the DWP CPU
times. Since the CPU time for one MVM is proportional
to the number of nonzero matrix elements, the times for
DWP algorithm were computed by scaling the DWT times
by the ratio of sparsities of DWP and DWT matrices. As
it was observed in [1] the slope for the DWT algorithm is
roughly the same to that for computations with dense matrices
indicating that DWT is aO(N2) method. The RPFMA-based
matrix–vector multiply is slower than the DWT-based multiply
for small N , but for N > 5000 it will always be faster due
to its O(N4=3) complexity. The DWP-based matrix–vector
multiply is fastest of all—the complexity seems to grow at
about the same rate as for the RPFMA algorithm, but with a
much smaller leading constant. Fig. 11 shows that the number
of nonzero elements in impedance matrices for circular and L-
shaped cylinders sparsified by the DWP algorithm is roughly
of orderO(N4=3) (the slopes are nearly parallel to a line with
slope 4/3).

It is important to emphasize that a comparison of CPU times
for a single MVM can not be used as a sole indicator of the
competitiveness of a method. Other factors such as the cost of
generating of initial matrix, the cost of matrix transformations,
or the number of iterations required for convergence need to
be taken into the account. Some of these issues we discuss
in the following section. However, the comparisons given
here indicate that if these obstacles are overcome the DWP

Fig. 11. Number of nonzero elements as a function of sizeN for circular and
L-shaped cylinders; DWP sparsification. Threshold levels adjusted to maintain
relative errors of(1 � 0:01)%.

transformations could be developed into an attractive and
practical technique.

VI. CONCLUSIONS

In this paper, we described an application of the DWP
transformations, which reduce the complexity of matrix–vector
multiplications in iterative solutions of discretized 2-D CFIE
roughly equal toO(N4=3). This reduction of complexity is
obtained assuming a fixed number of basis functions per
incident wavelength. The order of the complexity is similar to
that of the RPFMA method, but the DWP-based matrix–vector
multiplication is much faster due to a smaller complexity
constant.

Many of the ideas presented here need further development,
most notably the problems of generating the initial matrix
in less thanO(N2) time and the extension of the DWP
approach to three-dimensional (3-D) surfaces. It is possible
to overcome the first problem by initially grouping the basis
functions and representing the group interactions via some
approximations. This approach is very much as the one in
the FMM method and results in an approximation to the
dense matrix inO(Np); p< 2 operations. This can be followed
by DWP transformations of each of the blocks representing
interactions between two groups resulting in further sparsity
of the global matrix. It can be shown that a matrix repre-
sented byO(Np); p< 2 elements can be DWP transformed in
O(Np log(N )); p< 2 time. This extra cost can be offset by a
higher sparsity of the transformed matrix.

Clearly, in the block setting the periodic wavelets should
not be used for construction of DWP trees since none of the
blocks correspond to a periodic surface structure. However,
there exist wavelets defined on intervals [13], which seem to
be well suited for the task. The interval wavelets may also be
used in extending the DWP approach to 3-D surfaces. Here,
as in two dimensions, the block approximations will produce
an approximation of the initial matrix in less thanO(N2) time
and the block DWP is used to produce further sparsity. If a
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block represents interactions of basis functions supported on
a rough part of the surface, the DWP is simply not be applied
to that block.

In summary, the above-described use of discrete wavelet
packet transformations for the solution of electromagnetic inte-
gral equations appears to reduce the computational complexity
of matrix–vector multiplications. Its further development (pos-
sibly in conjunction with other fast methods) may contribute
to the improvement of the existing fast codes.
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