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Wavelet Packets for Fast Solution of

Electromagnetic

Wojciech

Abstract—This paper considers the problem of wavelet sparsifi-
cation of matrices arising in numerical solution of electromagnetic
integral equations by the method of moments. Scattering of plane
waves from two-dimensional (2-D) cylinders is computed numer-
ically using a constant number of test functions per wavelength.
Discrete wavelet packet (DWP) similarity transformations and
thresholding are applied to system matrices to obtain sparsity.
If thresholds are selected to keep relative residual error constant
the matrix sparsity is of order O(N?) with p < 2. This stands in
contrast with O(N?) sparsities obtained with standard wavelet
transformations [1]. Numerical tests also show that the DWP
method yields faster matrix—vector multiplication than some fast
multipole algorithms.

Index Terms—Moment methods, wavelet transforms.

I. INTRODUCTION

Integral Equations

L. Golik

orthogonal wavelet transform produced sparse matrices with
BN? nonzero entries, wherg< 1. This compares unfavorably
with the FMM, AIM, and IML methods, all of which reduce
the complexity of MVM toO(N?) with p < 2.

This paper is concerned with the question whether dis-
crete wavelet packets are able to reduce the cost of MVM
in numerical solution of electromagnetic integral equations
to O(N?) with p<2. The presentation assumes that initial
impedance matrices are generated at the coét(df?). This
is potentially a severe computational bottleneck that must
be dealt with separately (see the conclusion section). The
investigations are restricted to the electromagnetic scattering
from two-dimensional (2-D) conducting cylinders with the
combined field integral equation (CFIE) discretized by the
method of moments. In the first section, we formulate the

UMERICAL solutions for electromagnetic integral equaCFIE, discuss its discretization with pulse basis functions, and
tions describing scattering from electrically large comintroduce the idea of sparsifying transformations. The next

plex objects continues to be a challenging problem. Tig&ction briefly presents the matrix formulation of periodic
classical method of moments produces dense linear Syst&wbechies wavelet transform. Based on this Construction,
with N unknowns, whereV grows with the electrical size We discuss wavelet packets and present an adaptive algorithm
of the Scattering Object_ Since any direct solvers for dengé’ the selection of the near best basis transform. Numerical
systems havé(N'*) complexity, they become impractical foréxamples suggesting(N*/?) sparsity of the transformed
large N and iterative methods must be used. The cost of ofgatrices and comparisons with other fast algorithms are given
iteration for such methods is dominated by a matrix—vect§eXt. The last section contains conclusions and suggestions
multiplication (MVM), the complexity of which is proportional for future research.
to the number of nonzero matrix elements.

In recent years, various approaches have been proposed to
decrease the complexity of MVM’s in numerical solution of
electromagnetic integral equations. In general, two aven

for development of fast MVM's are available: algorithms tha ucting cylinder with the boundary contodt. The far-field

bypass the complete construction of the impedance matfix . - .
. : . : SCattering characteristics are obtained from the surface current
and algorithms relying on matrix transformations. Amon

the former is the fast multipole method (FMM) [2], [3]92 excited by an incident wave'™™. In order to avoid

and the adaptive integral method (AIM) [4]. The latter aptr_Jr:ob(I:e;Té with resonance the surface current is computed from
proaches include the impedance matrix localization methode

Consider the problem of computing the scattering of a
(E,) polarized electromagnetic wave from a 2-D con-

SPARSIFICATION

(IML) [5] and various wavelet transformation methods [1], (1 n ﬂ) Einc(ﬂ';‘)

[6]-[9]. Wavelet applications to electromagnetic integral equa- on, ) °

tions were prompted by their success in numerical solutions Wito d ) , ,

of integral equations with nonoscillatory kernels [10]. The T(l + %) /pHo (2mAr)J(2') di(z) (1)

cited studies reported some sparsification of matrices, but only

[1] studied the complexity of the MVM as the function ofwhere 7" is the zero-order Hankel function of the first kind,
N. The study reported that matrix sparsification based on an— |¢ — /|, 2,2 denote points orC, n, is the outer unit
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bé/ subdividing contourC' into N nonoverlapping contour
(bleces of (roughly) equal length and applying point matching
(collocation) of pulse functions. In practical computatigngs
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proportional to the electric length of contolir Discretization wavelets are said to hayevanishing moments if

reduces the CFIE to the linear system _—

. gkkaoa jIOJJp
Zj=e (2) ;

where 7 is a full nonsymmetric complex nonsingulaf x N For a vectors” of size N = 27, its periodic wavelet

matrix. decomposition can be described in matrix notation by defining
Since the direct solution of the full system has a comp@n &V x N matrix ¥,

tational cost ofO(N?), iterative methods must be used for H

large N. The cost of each iteration is dominated by a MVM, W, = [G”]

anO(N?) operation for a dense matrix. The idea of sparsifying "

transformations is to find nonsingular matricBsand 7> so where H,, and (5, are matrices of sizéV/2 x N called the

(4)

(thresholded) without largely affecting the solutigh Note
that if 75 had a full set of eigenvectors as its columns and 7 —

that the matrixZ’ = 71 Z1> of the new system low- and high-pass filters, respectively. For example, the low-
pass filterH,, for the periodic Daubechies wavelets with one
2 =€, ¢ =Te j=Th§ (3) vanishing moment is given by
_ hi hy hs hy O -0
has numerous very small elements which can be neglected 0 0 hy hy hy hs 0 - 0

0 Rhi hy hy hy

Ty = Ty ', thenZ’ would be diagonal. Such a construction 0 -
is obviously impractical because of its computational costs. hs ha 0 o 0 h hy
Practical considerations require that matricBs 7> must (5)

satisfy the following design criteria.

1) The matrix7y ZT> must be (effectively) sparse.

2) Matrices 77,7, must be O(N) sparse, so that ma
trix—matrix multiplications cost onlyD(N?).

3) The condition number of’ is not much larger than that

The high-pass filters,, has the same structure &5, but is
defined in terms of wavelet coefficienys. The scaling and
“wavelet coefficients are defined in such a way that the matrix
W, is orthogonal [12].
The product?,, s° is a decomposition of the vectef into

of Z. S ) ) the “average” vectos! and the “difference” vectod*
The last criterium is dictated by the fact that iterative meth-
ods converge more slowly for systems with larger condition W,s" = [H,s",G,s"]" = [s',d']". (6)

numbers. ldeally, the transformation cotudprovethe condi-

tion number serving as a preconditioner. Such transformatigagntinuing the process of recursive decomposition of “aver-

are difficult to construct. On the other hand, if bdthand7, age” vectorss’, j = 1,---,1 < n—log,2p+2+ 1 one

are orthogonal, then the condition number of the new systétatains the discrete wavelet transform (DWT) of the vector

is unchanged. s". In matrix notation, the DWT is described by matrix
Recently [1], transformations based on Daubechies wavelgtich that

have been used to obtain sparsificationZof The resulting 0 0 L 1

transformation matrices were sparse, orthogonal, and produced Ts'=Woor - WooiWas' = [, d', - d] )

(8)

considerable sparsity i". However, fo_r a fi?<ed solution ac \where matricedV,,_; are block-diagonal matrices of the form
curacy, the thresholded, wavelet-sparsified impedance matrices
had O(N?) nonzero elements, which seemed to disqual- Hy,_;
ify the wavelet based approach in the future development Wo; = [|Grj ]
of fast-solution algorithms. In next few sections, we de- In_nyoi
scribe a different algorithm (also using Daubechies wavelets), _ ) ) _ :
which considerably reduces computational complexity of tl?epd In_wyoi IS the |dent|ty_matr|x of rankN_ — N/2. The
MVM'’s. The algorithm is based on the idea of discrete wavel screte Wavele'g transford is orthogor_laI(T IS a product_ of
packets [11]) and is only slightly more expensive than tr%rthogonal_ rnatr_lces). '!'he reconstruction of vectbfrom its
traditional wavelet transform. decomposition is obtained from

SOITt[SlelJ"'Jdl]t' (9)

IIl. PERIODIC DAUBECHIES WAVELET TRANSFORM Wavelet transformations of an arbitrary matrix are ef-
In this section, we describe the discrete wavelet transfofiected by the product’AT*. Note that the producfl'4

of vectors and matrices. In our considerations we use period&sults in the wavelet decomposition of columns4fThis is

Daubechies wavelets [12], but other wavelet constructiofmlowed by the multiplication byl™ resulting in the wavelet

could be used as well. Given an integer we denote by decomposition of rows of A.

{hk}?’” the set of scaling coefficients. The corresponding Suppose that elements ef are the values of a smooth

wavelet coefficients are defined gy = (—1)* ko, _;,3. The periodic function with the sampling rate proportional Xo=
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Fig. 1. Level 3 binary tree structure for the wavelet transform. Fig. 2. Level 3 binary tree structure for a wavelet packet transform.

27, for example,s®(k) = sin(27k/2"), k =1, --- 2"
Given p, such a vectos” can be well approximated by

T [Sla 0; o .Jo]t (10)

for any sufficiently largeN. Sincel is proportional ton, s’
has constant length, sé can be approximated by a short
vector of constant size. This property have been used effec-
tively in compression of matrices arising in discretization of
integral operators with nonoscillatory kernels [10]. However,
the situation changes when the elements‘otome from an
oscillatory function sampled with a fixed number of points pe
period. This occurs, for example, wheh(k) = sin(7k/8),

=

/
/
/

k=1,---, 2" ForincreasingV = 2" itis necessary to retain
an increasing number of high-pass sequerket® accurately / /
compresss” in this case. This is due to the spatial localization @ (1) (12) 1)

of the wavelets used. In such cases the windowed Fourjer

transform gives better compression. We will argue that the _ .
. ig. 3. Level 3 binary tree structure for the complete level decomposition

discrete wavelet packets (DWP) can be used to accommo form.

both cases. Thus, the DWP can be used in sparsification

of matrices arising in discretization of integral equations olt . . Lo
. . : . hfe second approach results in the following description:
electromagnetics, especially in cases when the resolution o

discretization is constant. [Iny2) I
TsY = H [ " :| s°
n—1 G
IV. WAVELET PACKET TRANSFORM i [Gn_l] "
Returning to the decomposition of vectgr into the low- [ H,s°
pass component' and the high-pass componeft we note = [H,1Gs” |, 12)
that the DWT proceeds at the next step to decompose further |Gro1Grs”

only s'. However, at this decomposition level two othe
approaches are possible. Either baethand d' or only d'
(and nots') can be decomposed. In matrix notation the fir

Note that the transformatiofi in either case is orthogonal. If

this process is repeated recursively witlevels it results in a
. 1 . e

%mary tree structure of more thaf Jossible decompositions

option gives of a vector. Figs. 1-3 present different decompositions of a
_|:Hn—1:| vector with three levels of recursion: the wavelet transform, a
Ts0 — Gn-1 [Hn ] 0 wavelet packet, and the complete level transform.
Hn—1] Gn The selection of the best basis from the wavelet packet
L Ghn should be made with respect to the maximum sparsity of the

0 thresholded matrix for a prescribed solution error tolerance.

_ |G Hs” (11) This is a very difficult criterion to satisfy from both analytical
ol and computational standpoints. The analytical difficulty lies
LGn_1Gps” in defining an appropriate information cost function (see [11])
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precisely related to the the error tolerance of the sparse systdfi¢ cost of the tree selection changesiion N log(V)). In
The computational bottleneck stems from the fact that givéfe next section, the adaptive wavelet packet algorithm with a
any cost function, the best basis algorithm has complexijock of incidence vectors with evenly spaced angles is applied
O(N log(N)) when applied to atV vector and)(N?log(N)) to scattering from two cylinders.
when applied to a square matrix.

However, it is possible to propose a vialll§ N log(N))
best basis selection algorithm using an approach similar to that
introduced in [9]. Starting with the incident wave vectoas N this section, the results of a study of matrix sparsity as a
the top node of the decomposition tree, a decision whetHipction of the problem size are presented. Scattering of plane
to continue decomposition at any given node is based ovgves from 2-D cylinders is computed numerically using a
comparison of norms of vectors at the parent and childré/nstant number of test functions per wavelength. The surface
nodes. The information cost function used as a criterion is currents induced on a 2-D conducting cylinder by planar waves

are described by the integral equation (1). The incident waves

Cla)y=>lul,  w=[er, en) are given by

2

V. MATRIX SPARSITY—NUMERICAL EXAMPLES

_ N o EL“C(Z) = exp(ik - ), k=2nd/) (13)
where z is a vector of decomposition coefficients related to

the node, andV = 2 for some positive integer. If the 3{\/hered is the incidence direction unit vector. Two different
norm of the parent node vector is smaller than the norm of its

. ; cylinder contours were considered: a circle and an L-shape (see
two children, that part of the tree is not decomposed furth ig. 4 for the geometry of the latter contour). Equation (1) was
It is easily observed that if the initial data is of length the g 9 Y =

selection algorithm stops afté( A log(V)) operations. discretized with pulse functions and point matching. The sup-

: i 1 i .
Once the tree structure has been determined, the orthog %‘rf of pulse functions was/10 throughout all experiments

: . i . . of both contours, we computed the scattering for increasing
transformation’’ is known and it is applied to matrix to incident frequency (or equivalently, for the increasing electri-
obtainz’ = 7Z7T". The transformed matrix’ is then thresh- 9 y d Y, 9

. ..~ cal cylinder size), adjusting the threshold leveto maintain
olded and the resulting system solved for an approximation . . Sy )
) . the relative residual errdfe’ — 27 j. ... |I/ll¢’|| of (1£0.01)%,
the solution vector;’. P

where j.,...,, is the solution computed using the thresholded

The above adaptive construction of the transformation ma- o, ) .
sparse matrixZ’. This level of solution accuracy produces

trix 7" can be extended to problems with many excitatio proximate solutions visually indistinguishable from those

vectors (in the case of RC1S comequtatlons). G|yen a bIo% tained from the full systems. We noted thathad to be
of m column vectorsE = [e',---,e™], the adaptive algo-

: . . : .~ decreased as the problem size grew to maintain the accuracy of
rithm decompose#’ instead of a single; using a modified . : :
. : ; the solution of the sparse system. Fig. 5 shows the magnitude
information cost function . .
of the current density along the perimeter of the L-shape
20 pm) domain induced by the planar wave incident at 4., into
1 1 .
O(z) = Z Z |x(j)| JR I . the concave corner of the contour). Here the perimeter length
L T (:1) (;n) ’ is 25.6\ and the current was computed with the dense and the
r Ty 0 Ty sparse matrices. The curves practically overlap.
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CIRCULAR CYLINDER

—o- wavelet transform

-*— wavelet packet

% nonzero elements
[22)
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L | | | ) | : )
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matrix size N

Fig. 6. DWT and DWP matrix sparsity as a function of sixe for the Fig. 8.
circular cylinder. Periodic Daubechies wavelets with eight vanishing moments
used. Threshold levels adjusted to maintain relative errofd ef 0.01)%.

Tree structure for the L-shaped domain= 1024.

L_SHAPED CYLINDER B

—o- wavelet transform

-*— wavelet packet

@
T

% nonzero elements
S

0 ) | | ; L L : 1
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matrix size N

Fig. 9. DWT and DWP matrix sparsity as a function of sixe for the
L-shaped cylinder. Periodic Daubechies wavelets with eight vanishing
Fig. 7. Tree structure for the L-shaped domain= 512. moments used. Threshold levels adjusted to maintain relative errors of
(1 +£0.01)%.

The system sizes studied ranged fréfn= 256 (contour
length of 25.8) to NV = 4096 (contour length oft09.61). The
sparsity results for the circular cylinder are presented in Fig.

_Th? wavelet packet tree was computed from a single plar}% standard DWT. The additional sparsity obtained in DWP
|n_C|dent wave. It can be seen that the DWP produces _mu(%‘mes from decomposition at levéls 2. Since all excitations
higher sparsity than do_es the DWT. Moreover, the sparsity 9 -¢rg play a role in the construction of the wavelet packet
DWP transformed matrices does not level off for laf§ebut e the tree construction is based more on the geometry of
continues to decrease. Specifically, for the circular cylindgfe scatterer and less on the relation between the excitation
the DWT produced the sparsities ranging from 10.7% fQjnq solution vectors.
N = 256 to 6.7% for N = 4096. The sparsities obtained The DWT and DWP sparsity results for the L-shaped
from the DWP ranged from 7.4% faoV = 256 to 1.1% for cylinder are presented in Fig. 9. As in the case of the circle,
N = 4096. the DWP produces higher sparsity than the DWT and the
Similar results were obtained for the L-shaped contour. DWP-produced sparsity changes faster as the problem scales.
this case, the wavelet packet tree for the L-shaped cont®fecifically, the DWT sparsities range from 20.3% for=
was computed from a block of eight right-hand side vectog$6 to 8.3% for N = 4096. The sparsities obtained from the
obtained from planar waves with different incident angleBWP ranged from 17.7% falV = 256 to 4.2% forN = 4096.
as shown in Fig. 4. This was done to show that the DW®ince the relative importance of the contour corners diminishes
produces good sparsification with many different excitationith the increase ofV, the sparsities will eventually approach

vectors. Figs. 7 and 8 give the tree diagrams for the basis
election in case ofV = 512 and N = 1024. Note that



GOLIK: WAVELET PACKETS FOR FAST SOLUTION OF ELECTROMAGNETIC INTEGRAL EQUATIONS 623

—+- no sparsification
—x—- RPFMA —*-~ L-SHAPE
—-o— DWT
~*~ DWP

-o- CIRCLE

—— NA@4/3)

=)
o
T

o
N

CPU time (sec)
=)
number of nonzero elements

3 4

10 10° 10 10 10 10

matrix size N matrix size N

Fig. 10. CPU times for one matrix—vector multiplication as a function ofig. 11. Number of nonzero elements as a function of Bizeer circular and
size N for a circular cylinder. L-shaped cylinders; DWP sparsification. Threshold levels adjusted to maintain
relative errors of(1 &+ 0.01)%.

those of the circular cylinder. This means that DWT-produced _ ) )
sparsities will level off (as suggested in [1]), whereas tﬁéansformanons_ could be developed into an attractive and
percentage of nonzero elements in DWP-based matrices Wiigctical technique.
continue to decrease.

Fig. 10 compares the CPU times required for a single VI. CONCLUSIONS

MVM as a function N using the DWP, DWT, and the |, s paper, we described an application of the DWP
ray propagation fast-multipole algorithm (RPFMf}l [3]- Th&ransformations, which reduce the complexity of matrix—vector
RPFMA was shown to reduce MVM time t0(N*?) (for jtiplications in iterative solutions of discretized 2-D CFIE
constant relative residual error). The times for RPFMA a%ughly equal toO(N*/3). This reduction of complexity is

DWT were obtained from [1] and refer to computations on ghained assuming a fixed number of basis functions per
SUNSPARC10 workstation. The DWP and DWT algorithmg,cigent wavelength. The order of the complexity is similar to
were coded in MATLAB and run on a SUNSPARC1000. Tenat of the RPFMA method, but the DWP-based matrix—vector
make the comparison it was necessary to scale the DWP Chlitiplication is much faster due to a smaller complexity
times. Since the CPU time for one MVM is proportionalqnstant.
to the number of nonzero matrix elements, the times for \jany of the ideas presented here need further development,
DWP algorithm were computed by scaling the DWT timegost notably the problems of generating the initial matrix
by the ratio of sparsities of DWP and DWT matrices. Afy |ess thanO(N?) time and the extension of the DWP
it was observed in [1] the slope for the DWT algorithm igpproach to three-dimensional (3-D) surfaces. It is possible
roughly the same to that for computations with dense matricgsSovercome the first problem by initially grouping the basis
indicating that DWT is a)(N*) method. The RPFMA-basedfunctions and representing the group interactions via some
matrix—vector multiply is slower than the DWT-based mU"[iP')approximations. This approach is very much as the one in
for small N, but for N >5000 it will always be faster due the FMM method and results in an approximation to the
to its O(N*/?) complexity. The DWP-based matrix-vectoidense matrix irO(N”), p < 2 operations. This can be followed
multiply is fastest of all—the complexity seems to grow ahy DWP transformations of each of the blocks representing
about the same rate as for the RPFMA algorithm, but withjgteractions between two groups resulting in further sparsity
much smaller leading constant. Fig. 11 shows that the numbgrihe global matrix. It can be shown that a matrix repre-
of nonzero elements in impedance matrices for circular and ¢ented byO(N?), p < 2 elements can be DWP transformed in
shaped cylinders sparsified by the DWP algorithm is rough{y(N? log(N)), p < 2 time. This extra cost can be offset by a
of orderO(N*/%) (the slopes are nearly parallel to a line wittigher sparsity of the transformed matrix.
slope 4/3). Clearly, in the block setting the periodic wavelets should
Itis important to emphasize that a comparison of CPU time®t be used for construction of DWP trees since none of the
for a single MVM can not be used as a sole indicator of thslocks correspond to a periodic surface structure. However,
competitiveness of a method. Other factors such as the costh#re exist wavelets defined on intervals [13], which seem to
generating of initial matrix, the cost of matrix transformationse well suited for the task. The interval wavelets may also be
or the number of iterations required for convergence needused in extending the DWP approach to 3-D surfaces. Here,
be taken into the account. Some of these issues we discassn two dimensions, the block approximations will produce
in the following section. However, the comparisons givean approximation of the initial matrix in less thar{ N'?) time
here indicate that if these obstacles are overcome the DWiRd the block DWP is used to produce further sparsity. If a
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block represents interactions of basis functions supported gé| D. S. Wang and G. Welland, “Modeling of electromagnetic scattering us-
a rough part of the surface, the DWP is simply not be applied ing wavelet techniques for geometry modeling and expansion functions,”
in URSI Radio Sci. Meet. DigDetroit, Ml, June 1992, p. 277.
to that block. [7]1 H. Kim and H. Ling, “On the application of fast wavelet transform
In summary, the above-described use of discrete wavelet to integral equation solution of electromagnetic scattering problems,”

packet transformations for the solution of electromagnetic inte[;8 Microwave Opt. Technol. Leftvol. 8, no. 3, pp. 168-173, 1993.

. . 18] G. Wang, “A hybrid wavelet expansion and boundary element analysis
gral equations appears to reduce the computational complexity of electromagnetic scattering from conducting object&EE Trans.

of matrix—vector multiplications. Its further development (pos-  Antennas Propagatvol. 43, pp. 170-178, Feb. 1995.

. . . . . . ] Z. Baharav and Y. Leviatan, “Impedance matrix compression using
sibly in conjunction with other fast methods) may contribute adaptively constructed basis functiondZEE Trans. Antennas Prop-

to the improvement of the existing fast codes. agat, vol. 44, pp. 1231-1238, Sept. 1996.
[10] G. Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transforms and
numerical algorithms,” Communicat. Pure Appl. Mathvol. XLIV,
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