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Coherent Interference Suppression
with Complementally

Transformed Adaptive Beamformer
Ta-Sung Lee and Tsui-Tsai Lin

Abstract—This paper proposes a beamforming scheme for
suppressing coherent interference with an array of arbitrary
geometry. The scheme first uses estimates of the source directions
to construct a transformation, which removes the desired signal
while retaining the coherent interference. Optimum beamforming
is then performed on the transformed data containing only
interference and noise to produce the maximum output signal-
to-interference-plus-noise ratio (SINR). Analysis and numerical
results demonstrate that the proposed complementally trans-
formed beamformer significantly outperforms the conventional
multiply constrained minimum variance (MCMV) beamformers.

Index Terms—Adaptive arrays.

I. INTRODUCTION

CONVENTIONAL adaptive beamformers are found to
achieve high output SINR as long as the interferers are

uncorrelated with the desired signal and the errors in the
steering vector (due to pointing or calibration inaccuracy) are
small [1]. In the presence of steering vector errors and/or
correlated interferers, these beamformers exhibit severe degra-
dation in performance. In some extreme cases, such as with
a large pointing error or coherent interference (e.g. multipath
interference), they break down as a result of desired signal
cancellation. Remedies have been proposed to lessen the effect
of desired signal cancellation [2]. In particular, the subtractive
preprocessor [2] proves effective in improving the robustness
against pointing errors for an adaptive beamformer operating
on a uniform array. In spite of the success in dealing with
a single correlated interferer, the subtraction preprocessed
beamformer cannot handle multiple correlated interferers in
general [3]. This is because that the array responses to the
interferers are distorted by the subtractive preprocessor such
that a mutual cancellation among the interferers cannot be
effectively performed. To avoid such degradation, the spatial
smoothing technique [4] can be incorporated as a means of
decorrelating the interfering signals before beamforming. This
ensures that the beamformer will effectively null each of the
interferers instead of performing a mutual cancellation.

A major restriction of the subtractive preprocessing and
spatial smoothing techniques is that they require a uniform
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array or an array consisting of several identical subarrays with
which to operate. For the cases in which such array configu-
rations cannot be obtained, other schemes must be employed
to decouple the desired signal and coherent interference. In
[5], a multiply constrained minimum variance (MCMV) beam-
former was proposed, which suppressed coherent interferers
by putting “hard nulls” in their hypothesized directions-of-
arrival (DOA’s). However, this approach is sensitive to errors
in the DOA estimates. As an alternative, one can perform
linear interpolation to convert a nonuniform array into a virtual
uniform array [6]. To achieve a good beamforming perfor-
mance, preliminary estimates of the source DOA’s are again
necessary for array interpolation. In general, the beamformer is
more sensitive to the errors in the DOA estimates if the virtual
array is more difficult to interpolate. That is, the success of
the interpolated beamformers lies in that the original array
must resemble some uniform array to a certain extent. Prior
knowledge about the DOA’s of the coherent interferers can
be obtained by nonadaptive beamforming or other estimation
methods [5] or by exploiting the geometrical features of the
environment. For example, for above-sea communications the
DOA of the multipath reflection can be estimated as the neg-
ative of the direct path DOA for a vertically deployed array.

This paper presents a new adaptive array processor for
suppressing coherent interference with improved robustness
to DOA estimation errors. The processor first employs a
transformation to remove the desired signal and retain the
coherent interference using the DOA estimates available. The
transformation is constructed so as to minimize the difference
between the original and transformed array data subject to the
aforementioned “complemental constraints.” The transformed
data, which contain only the interference and noise, are then
sent to a regular minimum variance distortionless response
(MVDR) beamformer to compute the weight vector yielding
the maximum output signal-to-interference-plus-noise ratio
(SINR). Since the desired signal has been removed with the
coherent interference retained, the optimum beamformer will
try to perform a mutual cancellation for the coherent interferers
solely. This is in contrast to the regular MVDR beamformer,
which performs a mutual cancellation between the desired
signal and coherent interferers. To verify the efficacy of
the proposed complementally transformed minimum variance
(CTMV) beamformer, a theoretical analysis is given to de-
scribe the behavior of the processor (including transformation
and beamformer) in the presence of DOA estimation errors.
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Simulations then follow to confirm the analysis results and
demonstrate the advantages of the CTMV beamformer over
the conventional MCMV beamformer.

II. DATA MODEL AND MCMV BEAMFORMER

Some notations are defined below.

(�)� Complex conjugate.
(�)T Transpose.
(�)H Complex conjugate transpose.
0n n � 1 zero vector.

A. Array Data Model

The scenario considered herein involves a single desired
source,J � 1 coherent interferers, andK uncorrelated inter-
ferers, all assumed to be narrowband with the same center
frequency. These sources are in the far field of an array
of M elements characterized by a known steering vector
structure. Adopting the complex envelop notation, the array
data obtained at a certain sampling instant can be put in the
M � 1 vector form

xxx =
JX

i=1

siaaa(�i) +
J+KX

i=J+1

siaaa(�i) + nnn

=AAAcsssc +AAAusssu + nnn (1)

where

AAAc = [aaa(�1); aaa(�2); � � � ; aaa(�J )]
AAAu = [aaa(�J+1); aaa(�J+2); � � � ; aaa(�J+K )] (2)

sssc = [s1; s2; � � � ; sJ ]T
sssu = [sJ+1; sJ+2; � � � ; sJ+K ]T : (3)

The random scalarssi, i = 1, � � �, J + K represent the
source signals received at the reference point of the array. It
is assumed that the first signal from direction�1 is the desired
one. TheM � 1 vectorsaaa(�i), i = 1, � � �, J +K are the array
steering vectors due to theJ +K sources. Finally, the vector
nnn is composed of the complex envelops of the noise present
at theM elements, which are assumed to be spatially white
with power�2

n
and uncorrelated with all source signals.

B. MCMV Beamformers

The design of an MCMV beamformer for the above sce-
nario involves minimizing the output power subject to the
constraints that the desired signal receives a unit gain and
the coherent interferers get rejected. Specifically, it deter-
mines the optimum weight vectorwww by solving the following
optimization problem [5]:

min
www

EfjwwwHxxxj2g � wwwHRRRxxwww

subject to: wwwHÂAAc = fffT (4)

whereEf�g denotes the expectation andRRRxx is theM �M
data correlation matrix defined by

RRRxx = EfxxxxxxHg = AAAcRRRscAAA
H

c
+AAAuRRRsuAAA

H

u
+ �2

n
III (5)

with RRRsc = EfssscsssHc g and RRRsu = EfsssusssHu g being the
source correlation matrices involving the coherent sources and
uncorrelated interferers, respectively. The noise correlation
matrix is given by�2nIII due to the spatial whiteness assumption,
where III is the M � M identity matrix. In the constraint
equation,ÂAAc is an estimate ofAAAc constructed with the DOA
estimates for the coherent sources�̂i, i = 1, � � �, J

ÂAAc = [aaa(�̂1); aaa(�̂2); � � � ; aaa(�̂J )] (6)

and

fff =

�
1

0J�1

�
: (7)

The solution to (4) is given by [5]

www = RRR�1
xx
ÂAAc(ÂAA

H

c
RRR�1
xx
ÂAAc)

�1fff : (8)

III. D EVELOPMENT OF NEW BEAMFORMER

The MCMV beamformer is generally sensitive to the errors
in �̂i ’s. To lessen the problem, high-order constraints can
be incorporated to broaden the effective angular region of
operation [5], [7]. Unfortunately, increasing the number of
constraints results in poorer SINR performance since the
effective degree of freedom for suppressing the uncorrelated
interference and noise is reduced. Recently, the projection
approach was proposed as a means of enhancing the SINR
performance of the MCMV beamformer [8]. However, this
type of beamformers can be applied only to uncorrelated
interference scenarios.

A. Complemental Transformation

The aforementioned problems prompt the development of
a beamformer, which does not require hard nulling for the
coherent interferers. To work without hard nulling constraints,
it is necessary to decouple the desired signal from other
coherent interferers in order to avoid a mutual cancellation.
By decoupling is meant that the desired signal is removed
from the array data with other coherent interferers unchanged.
This can be done with anM � M linear transformationTTT
satisfying

TTTaaa(�1) = 0M

TTTaaa(�i) = aaa(�i) i = 2; � � � ; J (9)

such that

TTTxxx =
JX
i=2

siaaa(�i) +
J+KX
i=J+1

siTTTaaa(�i) + TTTnnn: (10)

We refer toTTT as the complemental transformation since it per-
forms the complemental function of the optimum beamformer,
which removes the interferers with the desired signal retained.
The complemental transformation is similar in principle to the
subtractive preprocessor described in [2], which proved effec-
tive for alleviating desired signal cancellation. The restriction
of the subtractive preprocessor, however, is that it can only be
implemented on a uniform array.

Comparing (10) with (1) indicates that except for the desired
signal, the only difference between them is the term involving
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the uncorrelated interference and noise. Thus, it is natural to
see that in order for the beamformer to work properly with the
transformed dataTTTxxx, the remaining degree of freedom inTTT
should be exploited to minimize the error

EfkTTTxxx� xxxk2g � trf(TTT � III)RRRxx(TTT � III)Hg (11)

wherek � k and trf�g denote the vector two-norm and trace
operator, respectively. Incorporation of the linear constraints
of (9) in the minimization of (11) with�i ’s replaced by their
estimateŝ�i’s leads to the following constrained problem:

min
TTT

trf(TTT � III)RRRxx(TTT � III)Hg

subject to: TTTÂAAc = B̂c (12)

where

B̂BBc = [0M ; aaa(�̂2); � � � ; aaa(�̂J )]: (13)

B. Stability ofTTT

It is noteworthy that the cost function in (12) implies that we
are seeking a matrixTTT closest toIII in terms of the generalized
distance

dfXXX;YYY g =
q

trf(XXX � YYY )RRRxx(XXX � YYY )Hg (14)

under the constraints of (9). This makes sense because the
ideal transformation, which maps each data vector into itself, is
simplyIII. ForcingTTT to be close toIII also ensures better stability
in that the transformation will be more robust to the errors in
the DOA estimates for the coherent interferers(IIIaaa(�) = aaa(�)
for all �). However, stability problems can still arise ifRRRxx
is ill conditioned, which typically occurs in the presence of a
few strong sources. In this case, the distance in (14) becomes
degenerate and the optimumTTT may no longer approximateIII.
As a result, the transformation can be quite sensitive to the
errors in ÂAAc.

To remedy the sensitivity problem,RRRxx should be modified
into a better conditioned form. A simple method would be to
add an auxiliary term�III to decrease the effective signal-to-
noise ratio (SNR) inRRRxx. The parameter� should be chosen
to be large enough to make the modified correlation matrix

RRRxx = RRRxx + �III (15)

sufficiently well conditioned but not too large to override
the original signal/noise scenario inRRRxx. Detailed discussion
about the selection of� will be given shortly. ReplacingRRRxx
withRRRxx in (12) and using the method of Lagrange multipliers,
we obtain the minimizingTTT [9]

TTT = III � (ÂAAc � B̂BBc)(ÂAA
H

c
RRR�1
xx
ÂAAc)

�1ÂAAH
c
RRR�1
xx
: (16)

C. High-Order Constraints

Another approach to enhancing the robustness ofTTT against
DOA estimation errors is to incorporate high-order derivative
constraints in the directions of interest [7]. Specifically, with
a set of Lth order constraints incorporated, the constraint
equation in (12) can be extended to

TTTÂAA(m)
c

= B̂BB(m)
c

; m = 0; 1; � � � ; L (17)

where

ÂAA(m)
c

= [aaa(m)(�̂1); aaa
(m)(�̂2); � � � ; aaa(m)(�̂J )]

B̂BB(m)
c

= [0M ; aaa(m)(�̂2); � � � ; aaa(m)(�̂J )] (18)

with

aaa(m)(�̂i) =
@maaa(�)

@�m

����
�=�̂i

; i = 1; 2; � � � ; J: (19)

The expression ofTTT with high-order constraints is identical
to (16) except that̂AAAc andB̂BBc are replaced by the augmented
matrices[ÂAAc; � � � ; ÂAA(L)

c
] and [B̂BBc; � � � ; B̂BB(L)

c
], respectively.

The major advantage of incorporating high-order constraints
in the transformation stage instead of beamforming stage (as in
MCMV beamformer) is that these constraints will not consume
any degree of freedom of the optimum beamformer. Although
working with (17) does indeed reduce the degree of freedom
for minimizing the cost function in (12), it has relatively
insignificant effects on the beamformer performance, as can
be seen shortly in the simulation results.

D. Complementally Transformed Minimum
Variance Beamformer

The optimum beamforming weight vector is determined via
the MVDR criterion acting on the complementally transformed
(CT) dataTTTxxx

min
www

EfjwwwHTTTxxxj2g � wwwHTTTRRRxxTTT
Hwww

subject to: wwwHaaa(�̂1) = 1: (20)

Directly solving (20) raises two problems. First,TTT is not full
rank such that the CT correlation matrixTTTRRRxxTTT

H is singular.
Second, the noise component inTTTRRRxxTTT

H (which is�2
n
TTTTTTH)

is no longer the same as in the originalRRRxx (which is �2
n
III).

These suggest that the CT correlation matrix be modified into
a full rank matrix by replacing its noise part with�2

n
III

~RRRxx = TTTRRRxxTTT
H � �2

n
TTTTTTH + �2

n
III: (21)

ReplacingTTTRRRxxTTT
H by ~RRRxx and recognizing that (20) is a

singly constrained version of (4), we obtain the complemen-
tally transformed minimum variance (CTMV) weight vector

www =
1

aaaH(�̂1) ~RRR
�1
xx
aaa(�̂1)

~RRR�1
xx
aaa(�̂1): (22)

E. Estimation ofRRRxx and �2
n

In practice, the true correlation matrixRRRxx is usually
estimated by its sample average version formed with a certain
amount of data samples

R̂RRxx =
1

N

NX
n=1

xxx[n]xxxH [n] (23)

wherexxx[n] denotes thenth sample of the array data vector.
On the other hand, the noise power�2n used for constructing
~RRRxx can be estimateda priori by physical measurement or by
numerical techniques. A popular technique is to compute the
eigenvalues of̂RRRxx and identify those “smallest” eigenvalues
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[10]. The effects of working with a finite sample sizeN and
an erroneous estimatê�2

n
will be discussed shortly in the

simulation section.

F. Algorithm Summary for CTMV Beamformer

The overall procedure of the CTMV beamformer can be
summarized as below.

1) Obtain R̂RRxx and �̂2
n
.

2) Obtain DOA estimates for the desired source and coher-
ent interferers.

3) ComputeTTT according to (16) withRRRxx replaced bŷRRRxx
and � given.

4) Compute ~RRRxx according to (21) withRRRxx and �2
n

replaced byR̂RRxx and �̂2
n
, respectively.

5) Computewww according to (22).

IV. PERFORMANCE ANALYSIS

In this section, we present analysis results on the CT steering
vectors associated with the coherent sources and the output
SINR of the CTMV beamformer. The scenario is simplified
into that involving the desired source and a single coherent
interferer only, i.e.,J = 2 and K = 0. For the ease of
expressions, the following notations are defined:

�2
i
=Efjsij2g; 
i =

�2
i

�2
n

�i =
�2
i

�2
n
+ �

; i = 1; 2 (24)

aaai =aaa(�i); âaai = aaa(�̂i)

~aaai =TTTaaa(�i); i = 1; 2 (25)

� =
Efs1s�2g
�1�2

; � =
�2
�1

(26)

aaac =aaa1 + ���aaa2; ~aaac = TTTaaac (27)

�ik =
aaaH
i
aaak

M
; �̂ik =

âaaH
i
âaak

M

~�ik =
~aaaH
i
~aaak

M
; i; k = 1; 2; c

�̂ik =
âaaH
i
aaak

M
; ~�ik =

~aaaH
i
aaak

M

�ik =
~aaaH
i
âaak

M
; i; k = 1; 2; c: (28)

In (26)–(27),� denotes the correlation coefficient between the
two coherent sources satisfyingj�j = 1 and aaac represents
the corresponding “composite” steering vector. Note that it is
assumed that each of the array elements has an omnidirectional
unit gain such thatkaaa(�)k2 = M for all �.

Under the simplified scenario, the relevant quantities in (6),
(13), (15), and (21) become

ÂAAc = [aaa(�̂1); aaa(�̂2)]; B̂BBc = [0M ; aaa(�̂2)] (29)

RRRxx = �21aaacaaa
H

c
+ (�2

n
+ �)III; ~RRRxx = �21~aaac~aaa

H

c
+ �2

n
III: (30)

A. CT Steering-Vector Error Analysis

In the first part, the effects of DOA estimation errors on the
CT steering vectors~aaai, i = 1, 2, are analyzed. Only the main
results will be given due to space limitation.

Substituting (29)–(30) in (16) and using the matrix inversion
lemma, we obtain from (25) the CT steering vectors associated
with the desired source and coherent interferer

~aaa1 =aaa1 � �̂11 � �̂12�̂21
(1� j�̂12j2) âaa1 +

M�1
1 + �1�

�
�
�c1 � �̂11(�̂�1c � �̂21�̂

�

2c) + �̂21(�̂�2c � �̂12�̂
�

1c)

(1 � j�̂12j2)
�
âaa1

~aaa2 =aaa2 � �̂12 � �̂12�̂22
(1� j�̂12j2) âaa1 +

M�1
1 + �1�

�
�
�c2 � �̂12(�̂

�

1c � �̂21�̂
�

2c) + �̂22(�̂
�

2c � �̂12�̂
�

1c)

(1 � j�̂12j2)
�
âaa1

(31)

where

� =
M

1� j�̂12j2 (�cc + 2 Ref�̂21�̂1c�̂�2cg

� �ccj�̂12j2 � j�̂1cj2 � j�̂2cj2) (32)

with Ref�g denoting the real part. Two special cases�̂2 = �2
(âaa2 = aaa2) and �̂1 = �1 (âaa1 = aaa1) are considered below.

1) Perfect DOA Estimation for Coherent Interferer—âaa2 =
aaa2: In this case, we have from (28)̂�12 = �̂12, �̂21 = �21, and
�̂2c = �2c = �21 + ���. Substituting these in (31) along with
the identities�c1 = 1 + ���21, �cc = 1 + �2 + 2� Ref��21g,
and �̂1c = �̂11 + ����̂12, yields

~aaa1 =aaa1 � �̂11 � �21�̂12
(1 + �1�)(1 � j�̂12j2) âaa1

~aaa2 =aaa2: (33)

As expected, the steering vector associated with the coherent
interferer is perfectly retained according to (9).

In particular,~aaa1 reduces to

~aaa1 �
�
0M ; for �̂1 � �1 and�1 small
aaa1; for �1� � 1:

(34)

The first result follows from the facts that� is small,�̂11 � 1,
�̂12 � ��21, and âaa1 � aaa1 for �̂1 � �1. This says that
the transformation is robust to a small error in̂�1 if the
effective SNR�1 is small. The second result indicates that
the transformation fails to remove the desired source for a
large error in�̂1 (for which � is large) or a large�1, yielding
the trivial result of~RRRxx = RRRxx. We thus see that in order for
the transformation to work properly under a moderately small
DOA estimation error, we should choose� so that�1� is small
relative to one. Since� is no larger thanM , a conservative
guess would be� = M�21 such that�1< (1=M ).

2) Perfect DOA Estimation for Desired Source—âaa1 = aaa1:
In this case, we have from (28)̂�21 = �̂21, �̂12 = �12, and
�̂1c = �1c = 1+����12. Substituting these in (31), along with
the identities�c2 = �12 + ��, �cc = 1 + �2 + 2� Ref��21g,
and �̂2c = �̂21 + ����̂22, yields

~aaa1 = 0M

~aaa2 = aaa2 +
1

1 + �2�

�
�
p
�1�2� +

�̂�21�̂22 � �12
1� j�̂21j2

�
aaa1: (35)
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As expected, the steering vector associated with the desired
source is removed, according to (9).

In particular,~aaa2 reduces to

~aaa2 �
8<
:
aaa2; for �̂2 � �2 and�1�2 small

aaa2 +
1

���
aaa1 =

1

���
aaac; for �2� � 1:

(36)

The first result follows from the facts that� is small,�̂22 � 1,
and �̂�21 � �12 for �̂2 � �2. It says that the transformation is
robust to a small error in̂�2 if �1�2 is small. The second result
indicates that for a large error in̂�2 (for which � is large) or
a large�2, aaa2 is transformed back into the composite steering
vector in the absence ofaaa1, leading again to the trivial result
of ~RRRxx = RRRxx. In other words, the transformation performs a
null operation by lettingaaa1 reappear in~RRRxx. Finally, similar
to the previous argument, we find that an adequate value of�
for a reliable transformation is� = M�22.

B. CTMV Beamformer Output SINR Analysis

In the second part, we present some main results on the
analysis of the CTMV beamformer output SINR. The output
SINR (denoted as SINRo) is defined as the ratio of the output
signal powerPs to the output interference-plus-noise power
Pn. Since the interferer is coherent with the desired signal
and there is no uncorrelated interference, the effectivePs
and Pn are defined, respectively, asPs = �21jwwwHaaacj2 and
Pn = �2

n
wwwHwww [11].

Substituting (30) into (22) and using the matrix inversion
lemma give the expanded form of the beamforming weight
vector

www = âaa1 � M
1�c1
1 +M
1~�cc

~aaac (37)

where we have omitted the constant gain inwww since it does not
affect the output SINR. Taking the ratio ofPs to Pn with the
substitution of (37) yields the general expression for SINRo

SINRo =
Ps
Pn

= M
1

� j�̂1c +M
1(~�cc�̂1c � ~�cc��c1)j2
(1 +M
1~�cc)2 �M
1j�c1j2(2 +M
1~�cc)

(38)

where~�cc, ~�cc, and�c1 are calculated by substituting (31) in
(28). Again, two special cases are considered.

1) Perfect DOA Estimation for Coherent Interferer—âaa2 =
aaa2: In this case, SINRo is given by (38) with~�cc, ~�cc, and
�c1 calculated by substituting (33) in (28).

Under the condition that̂�1 � �1 and �1 small, we have
from (34) ~�cc � �2, ~�cc � �2 + ���21, and �c1 � ���̂�12
such that

SINRo �M
1
j�̂1c +M
2(�̂1c � �2c�̂12)j2

(1 +M
2)2 �M
2j�̂12j2(2 +M
2)
(39)

which is the output SINR achieved in the “reliable mode”
without severe desired signal cancellation. In particular, (39)

reduces to

SINRo �

8><
>:
M
1j�̂11j2; for �̂12 � 0

�M
1
j�̂11 � �21�̂12j2

1� j�̂12j2 ; for 
2 � 1

�M
1j�̂11 + ����̂12j2; for 
2 � 1:

(40)

The first result indicates that as long as the coherent interferer
is away from the mainlobe(�̂12 � 0), the CTMV beamformer
performs like the optimum quiescent beamformer with the
effect of pointing errors accounted for byj�̂11j. The second
and third results show the effects of a large and small
2,
respectively, when the coherent interferer is close to the
mainlobe(�̂12 � 1).

On the other hand, for�1� � 1; we have from (34)
~�cc � �cc, ~�cc � �cc, and�c1 � �̂�1c such that

SINRo �M
1
j�̂1cj2

1 +M
1(�cc � j�̂1cj2)(2 +M
1�cc)
(41)

which, as expected, is simply the output SINR achieved with
the MVDR beamformer in the presence of pointing errors. In
particular, (41) reduces to

SINRo � j�̂11j2

M

�
1 +


2

1

�
(
1 + 
2 � 
1j�̂11j2)

� 0 for �12 � 0 and 
i � 1; i = 1; 2 (42)

which says that desired signal cancellation occurs when the
coherent sources are strong and well separated(�12 � 0).

2) Perfect DOA Estimation for Desired Source—âaa1 = aaa1:
In this case, SINRo is given by (38) with�̂1c, ~�cc, ~�cc, and
�c1 calculated by substituting (35) in (28).

Under the condition that̂�2 � �2 and�1�2 small, we have
from (36) �̂1c = �1c, ~�cc � �2, ~�cc � �2 + ���21, and
�c1 � ����12. It follows by a straightforward comparison that
the corresponding SINRo, achieved without pointing errors, is
simply given by (39) with�̂1c and �̂12 replaced by�1c and
�12, respectively.

On the other hand, for�2� � 1, we have from (36)
�̂1c = �1c, ~�cc � �cc, ~�cc � �cc, and �c1 � ��1c. Again,
we see that the corresponding SINRo is given by (41) with
�̂1c replaced by�1c.

V. COMPUTER SIMULATIONS

Computer simulations were conducted to ascertain the per-
formance of the proposed CTMV beamformers. The array
employed was a 20-element nonuniform linear array with the
following interelement spacings (in terms of wavelength):

f0:19; 0:19� 1:1; 0:19� 1:12; � � � ; 0:19� 1:118g

which form a geometric sequence with the ratio 1.1. The
parameters were chosen such that the array aperture is equal
to 9.5 wavelengths corresponding to a uniform array with a
halfwavelength spacing. All elements were assumed identical
and omnidirectional with a unit gain. The scenario involved
a desired source at�1 = 0� with power �2

1
= 1, a coherent
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(a) (b)

(c) (d)

Fig. 1. Effects of�, �̂2n , �2 , and � on CTMV beamformer. (a) Output SINR versus�: �̂2n = �2n, �2 = 20�, � = 0. (b) Output SINR versuŝ�2n:
� = 20, �2 = 20�, � = 0. (c) Output SINR versus�2 : � = 20, �̂2n = �2n , � = 0. (d) Output SINR versus�: � = 20, �̂2n = �2n, �2 = 20�. Solid
line with asterisk: SNR= 20 dB, Ed = Ec = 0�; dashed line with asterisk: SNR= 20 dB, Ed = Ec = 2�; solid line: SNR= 0 dB, Ed = Ec = 0�;
dashed line: SNR= 0 dB, Ed = Ec = 2�; small circles: optimum SINR.

interferer at�2 (variable) with power�2
2
= 1, and an uncor-

related interferer at�3 = �45� with power�2
3
= 100 (SIR =

�20 dB).
Unless otherwise mentioned, the set of “standard parame-

ters”

� =M�2
1
= 20; �̂2n = �2n; �2 = 20�

� = ej� = 1; R̂RRxx = RRRxx (43)

will be used throughout the section. Also, for the ease of
presentation, the shorthand notations are defined

Ed =�̂1 � �1: error of DOA estimate for desired source

Ec =�̂2 � �2: error of DOA estimate for coherent interferer.

The simulations are organized in two parts. First, the general
behaviors of the CTMV beamformer are examined. Second,
the performance of the CTMV beamformer is compared with
the MCMV beamformer for cases of zeroth and second order
constraints. As an index of evaluation, the input SNR and
output SINR were defined as

SNR � 
1 =
�2
1

�2n

SINRo =
�2
1
jwwwHaaacj

2

�2
3
jwwwHaaa(�3)j2 + �2nwww

Hwww
:

A. Part 1—General Behaviors of CTMV Beamformer

In the first set of simulations, we investigate the effects of�,
�̂2n [noise-power estimate (NPE)],�2, and the phase� of the
correlation coefficient� on the output SINR performance of
the CTMV beamformer with SNR and(Ed; Ec) as parameters.
The results, obtained with the zeroth order(L = 0) constraints,
are given in Fig. 1. In each plot, four curves are shown. Those
with and without asterisks correspond to the results obtained
with SNR = 20 dB and SNR= 0 dB, respectively. On the
other hand, the solid lines and dashed lines represent the results
obtained with (Ed; Ec) = (0�, 0�), and (Ed; Ec) = (2�,
2�), respectively. The small circles on the right margin mark
the maximum SINR values achievable with the optimum
beamformer for SNR= 20 and0 dB. Note that in each case,
one of the parameters is varied and the others are fixed given
by the standard setting in (43).

First, Fig. 1(a) shows the output SINR versus�: It demon-
strates that without DOA estimation errors, the beamformer
performs reliably approaching the maximum SINR for a
moderately small�. In the presence of DOA estimation
errors, however, a proper choice of� is critical for the
beamformer. Note that the acceptable range in this case
is about 10<�< 100, which confirms our assertion that
a good choice is� = M�2

1
= 20. For a large�, the

beamformer suffers some degradation due to the fact that
the steering vector associated with the uncorrelated interferer
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(a) (b)

(c) (d)

Fig. 2. Comparison of output SINR versus(Ed; Ec) for MCMV and CTMV beamformers employing zeroth order constraints. (a) MCMV, SNR= 0 dB.
(b) CTMV, SNR = 0 dB. (c) MCMV, SNR = 20 dB. (d) CTMV, SNR= 20 dB.

was not successfully transformed. This is because that the
transformation put less emphasis on the uncorrelated interferer
when the “pseudo”noise power� was increased.

To investigate the effects of noise correlation replacement
in (21), the output SINR versus noise power estimate NPE
is shown in Fig. 1(b). The results indicate that a right choice
for �̂2n (0.01 for SNR= 20 dB and 1 for SNR= 0 dB) is
critical for the beamformer working in the presence of DOA
estimation errors. The severe degradation occurring with an
excessively largê�2n is, of course, due to the distortion of the
signal/noise scenario in~RRRxx.

Next, the DOA �2 of the coherent interferer is varied
from �30� to 30� and the corresponding output SINR values
are plotted in Fig. 1(c). We see that the CTMV beamformer
performs reliably as long as the coherent interferer is not too
close to the mainlobe. For�2 � �1 = 0�, the beamformer
breaks down even with perfect DOA estimates. This is because
that the null associated with the coherent interferer causes
severe distortion of the mainlobe such that the desired signal
cannot be effectively received.

Finally, Fig. 1(d) shows the output SINR versus the phase�

of the correlation coefficient� between the desired source and
coherent interferer. The results confirm that the CTMV beam-
former can always suppress the coherent interferer, regardless
of its phase relative to the desired source.

B. Part 2—Performance Comparison
with MCMV Beamformer

In the second set of simulations, the performance of the
CTMV beamformer is evaluated against DOA estimation
errors and sample sizeN with the zeroth or second order
(L = 2) constraints employed for both the desired source and

coherent interferer. For comparison, we also include the results
obtained with the MCMV beamformer for which the high
order constraints are chosen to be those with “conventional
beamformer response” [7]. The standard setting in (43) was
used for all cases except for the results in Fig. 4.

In Fig. 2, the three-dimensional plots of the output SINR
against (Ed; Ec) are given for SNR= 0 and 20 dB with
the zeroth order constraints employed. Clearly, the CTMV
beamformer is much more robust to DOA estimation errors
than the MCMV beamformer, especially at high SNR. The
MCMV beamformer is quite sensitive to DOA estimation
errors at high SNR due to severer desired signal cancellation.
This problem is greatly alleviated by using the second-order
constraints, as can be seen in Fig. 3. With the broader angular
region offered by the high-order constraints, both beamformers
gain improvements in the robustness against DOA estimation
errors. Nevertheless, the MCMV beamformer is still signifi-
cantly poorer than the CTMV beamformer in that the effective
angular region of tolerance is small at high SNR.

To investigate the convergence behaviors of the two beam-
formers, we use the sample correlation matrix defined in (23)
for computing the weight vectors and plot the output SINR
against the sample sizeN in Fig. 4 for the ideal case of
(Ed; Ec) = (0�, 0�). Again, both the zeroth- and second-
order constraints are tried. In each plot, the curves with and
without asterisks correspond to the results obtained with SNR
= 20 dB and SNR= 0 dB, respectively, and the solid lines and
dashed lines represent the results obtained with the CTMV and
MCMV beamformers, respectively. As expected, the output
SINR increases as the number of samples increases. For
both types of constraints, the CTMV beamformer converges
much faster than the MCMV beamformer approaching the
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(a) (b)

(c) (d)

Fig. 3. Comparison of output SINR versus(Ed; Ec) for MCMV and CTMV beamformers employing second-order constraints. (a) MCMV, SNR= 0
dB. (b) CTMV, SNR = 0 dB. (c) MCMV, SNR = 20 dB. (d) CTMV, SNR= 20 dB.

(a) (b)

Fig. 4. Comparison of convergence behaviors of CTMV and MCMV beamformers.Ed = Ec = 0�. (a) Zeroth-order constraints. (b) Second-order
constraints. Solid line with asterisk: CTMV, SNR= 20 dB. Dashed line with asterisk: MCMV, SNR= 20 dB. Solid line: CTMV, SNR= 0 dB.
Dashed line: MCMV, SNR= 0 dB. Small circles: optimum SINR.

optimum SINR (marked by small circles), especially at high
SNR. The poor performance of the MCMV beamformer with
insufficient data is mainly due to the desired signal cancellation
phenomenon, which, in turn, is incurred with the errors inR̂RRxx

[8]. Employing the second-order constraints does not seem
to help much. However, by working with a desired signal
suppressing transformation for the CTMV beamformer, this
problem is greatly alleviated.

Finally, to gain further insights, the directional gains (in
decibels) for the desired source, coherent interferer, and un-
correlated interferer, denoted asGd, Gc, andGu, respectively,
are listed in Table I for four different combinations of(Ed; Ec)
with SNR = 20 dB. The corresponding output SINR values
are also included for reference. Note that the optimum SINR
achievable in this case is 32.9 dB. First, observing the number

in (a) obtained with the zeroth-order constraints we see that
the CTMV beamformer achieves more reliable look direction
gain and better suppression for the coherent interferer than
the MCMV beamformer in the presence of DOA estimation
errors. The price paid is the poorer nulling for the uncor-
related interferer due to the error in the CT steering vector
~aaa(�3). Fortunately, the degradation does not affect the output
SINR. Except for the ideal case of(Ed; Ec) = (0�, 0�),
the MCMV beamformer breaks down due to desired signal
cancellation. Next, by using the second-order constraints, the
MCMV beamformer improves significantly to avoid perfor-
mance breakdown in the presence of DOA estimation errors,
though the output SINR values are still far from satisfactory.
On the other hand, the CTMV beamformer performs quite
reliably, with sufficient nulling for both interferers, regardless
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TABLE I
COMPARISON OFDIRECTIONAL GAINS (IN DECIBELS) FOR THE DESIRED SOURCE

(Gd), COHERENT INTERFERER(Gc) AND UNCORRELATED INTERFERER(Gu),
AND OUTPUT SINR (SINRo) ACHIEVED BY THE CTMV AND MCMV

BEAMFORMERS WITH (Ed; Ec) AS PARAMETERS. SNR= 20 dB.
(a) ZEROTH-ORDER CONSTRAINTS. (b) SECOND-ORDER CONSTRAINTS

(a)

(b)

of the DOA estimation errors. It is noteworthy that as opposed
to the degradation of the MCMV beamformer, the CTMV
beamformer achieves uniformly high output SINR for all four
cases.

VI. CONCLUSION

A new scheme of adaptive beamforming for combating
coherent interference was presented. The scheme was devel-
oped based on a complemental transformation which can be
applied to an arbitrary array configuration. The transformation,
together with a noise-power estimate, yields a correlation
matrix with the desired signal suppressed and the interference-
plus-noise component unchanged. This results in a beamformer
dealing only with the interference and noise such that the
maximum SINR can be achieved without the degradation due
to steering vector errors. The proposed beamformer (termed
the CTMV beamformer) is superior in sensitivity to the
conventional MCMV beamformer with hard nulls imposed
in the directions of coherent interferers. In particular, the
CTMV beamformer can be viewed as working with soft
constraints for the coherent interferers to prevent them from
mutually cancelling the desired signal. Performance analysis

and computer simulations confirm that the CTMV beamformer
exhibits much better robustness to the constraint errors and
faster convergence compared to the MCMV beamformer.
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