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Recursive T-Matrix Methods for Scattering
from Multiple Dielectric and Metallic Objects

Adnan Sahin and Eric L. Miller,Member, IEEE

Abstract—We present an efficient, stable, recursive T-matrix y Receiver Array
algorithm to calculate the scattered field from a heterogeneous s = O0—6—=—© = X
collection of spatially separated objects. The algorithm is based on g T %
the use of higher order multipole expansions than those typically e (&,:9,) y el

Incident

employed in recursive T-matrix techniques. The use of these R
~_ Plane wave

expansions introduces instability in the recursions developed in
[5] and [6], specifically in the case of near-field computations.
By modifying the original recursive algorithm to avoid these
instabilities, we arrive at a flexible and efficient forward solver
appropriate for a variety of scattering calculations. The algorithm
can be applied when the objects are dielectric, metallic, or a mix-
ture of both. We verify this method for cases where the scatterers
are electrically small (fraction of a wavelength) or relatively large
(12X). While developed for near-field calculation, this approach is
applicable for far-field problems as well. Finally, we demonstrate
that the computational complexity of this approach compares
favorably with comparable recursive algorithms.

Index Terms—Electromagnetic scattering.
Fig. 1. Near-field geometry and translation matrices.

I. INTRODUCTION

ALCULATION of scattered electromagnetic fields istyPe problems and can be used alternatively as a fast forward
Cof interest in many application areas. For example, s®lver. Finite-difference techniques are also frequently used as
important component of the solution to many inverse scatterifgfward solvers and like MoM rely on a full-space discretiza-
problems is the efficient computation of the scattered fiel#®n- Although the resulting matrices are sparse, one still faces
produced by a collection of scatterers when illuminated by &€ delicate task of specifying an absorbing boundary condition
electromagnetic source. The choice of technique for computit®yterminate the computational grid.
these fields is often driven by a variety of factors, including Here we consider the solution of scattering problems using
computational complexity and the flexibility to handle easil{fansition matrix (T-matrix) methods [3]-[6]. Unlike finite-

a wide range of configurations of scatterers. In practice, tHéference techniques, the T-matrix approach does not require
objects of interest can be dielectric, metallic, or mixtures @0 absorbing boundary condition and substitutes the dis-
both. Their sizes can range from subwavelength to a fetketization of space with harmonic expansions of the fields,
multiples of a wavelength. Therefore, one desires an efficidfiereby reducing the number of unknowns for a wide range of
flexible forward solver that is useful both for analysis and th&roblems. Chewvet al. have pioneered the development of a
can be incorporated into signal processing algorithms. number of fast recursive T-matrix algorithms for determining
The most popular forward solver for these and relatdfie scattered fields in a variety of scenarios [6]-[12]. These
complex scattering problems—the method of moments (MoNy)ethods basically function by tessellating electrically large
[1]—is based on a fine discretization of the region of intere§Pjects into small subscatterers whose individual T-matrices
and requires the inversion of a large dense matrix to calcul&®@n be well represented using low-order harmonic expansions.
the scattered field. As this task requi@$N?) calculations A recursive formula then is used to aggregate the effects of
where N is the number of grid points, MoM is known to beall the subscatterers to compute the fields.
computationally quite intensive. The fast-multipole technique The motivation for the algorithm in this paper is the desire to

[2] developed recently can reduce the complexity of Molsolve scattering problems in the near field for the linear array
geometry shown in Fig. 1. Specifically, we are interested in the
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ders) are located in an infinite medium of constant complex Theoretically, the matricesx, B, and T are of infinite
permittivity. Rather than decomposing each full scatterer inthmension. T-matrix algorithms truncate these matrices with
a large number of small subobjects, the goal here is to devefopte valuesN and M such that the residual error is below

a recursion based on higher order harmonic expansions for the machine precision or acceptable levels. Hafegpresents
individual large objects. The result is an algorithm comprisegtie number of harmonics used to expand the fields at the
of a small number of high-dimensional T-matrix computationscattering originO; (Fig. 1) and M represents the number
rather than a large number of low-dimensional recursions with harmonics used to expand the fields in the objects’ local
the idea that the former approach will be more efficient than tikeordinate system®; (Fig. 1),¢ =1, 2, ---, L. The number
latter. For the near-field calculations however, we show thatharmonicsV andM are related to the distances of scatterers
the higher order expansions result in instabilities in the originkbm the scattering origin and the radii of the scatterers,
recursions developed by Chew. By modifying these recursiomsspectively. As the distances between scatterers and the
we obtain a stable algorithm that avoids these instabilities aschattering origin increasey needs to be increased and as
is capable of both near and far-field computations. Finallthe radii of scatterers increasi needs to be increased [6].
we demonstrate that this approach retains the low asymptotic

computational complexity of the method in [6], but in practice [II. A M ODIFIED RECURSIVE T-MATRIX METHOD

requires far fewer floating point operations.

The remainder of this paper is organized as follows. |
Section Il we briefly review the recursive T-matrix algorith
for multiple scatterers. In Section Ill, we discuss how T-matri
techniques can be applied to near-field measurement probl
and the modification in the recursive algorithm. In Section |
we will discuss the results and show examples. Finally,
Section V, we will draw conclusions and suggest future Worlﬁel

In this paper we desire the scattered field from a collection
spatially separated objects in the near field of a receiver
rray. While one could tessellate the objects and employ the
thethod of [6] using low-ordefM < 2) harmonic expansions,
large number of subscatterers makes such an approach
computationally intensive. Rather, we seek an algorithm based
high-order (largél/) harmonic expansions for the scattered
ds associated with each separate large object. The under-
lying assumption, shown to be true in Section IV, is that the
small number of higher dimensional T-matrix recursions is
Il. RECURSIVE T-MATRIX ALGORITHM less costly than a large number of low-order computations.
8 this section, we show that the use of largé results
an instability in a particular formula upon which the
0r|g|nal recursive T-matrix algorithm in (2) and (3) is based,
I specifically when near-field computations are required. We
PSR (r) = Z T(r VT(1,Bi 02 (1) then present a modl_f|ed recursion Whl_ch bypasses this addl_tlon
B - formula and results in a stable and efficient method for solving
the problem of interest.

In the recursive T matrix approach of [6] the total scatteré
field ¢**(r) arising from L scatterers is [6]

with
A. Determination of Scattering Origin

Toti(nenBnsin For the geometries we are interested in this paper, the
—1 scattered field is desired in the near or intermediate field.
I-T, 0 Z 1T B0 ni Because of the requirements on the loci of observation points
imposed by the harmonic expansion in (1), the scattering origin

] (x4, ys) relative to global origirD, must be selected such that

)

i=1

there must be at least one circle centere@aty; ), encircling

all objects, with no receivers inside it. The dashed circle in
Fig. 1 depicts such a circle. Assuming a linear receiver array,
and the condition to choose the scattering coordinate system is

i=1

X Thpyi(n) [ﬁnw o+ Zan-H i Lin)Bio

Titn4)Bi0 = Tim)Bio+Titn)Bio®ont1 Trsi(ne)Bnsi o R. = ie{?l;?)f Ly {\/(aeg —x;)” + (g —yi)” + ai} < s

3 4)
where the triple{z;, v;; a;) representg andy coordinates of
wheren = 1,2,---, L, i = 1,2, --- n, Ty, is the T- the center and radius of th¢h circular object relative to the
matrix for the zth object in the presence oi scatterers, global origin O,. This condition must be met by individual
B, and « are translation matrices [4], [5] used to translatebjects as well as by all objects collectively. Therefore, we
T-matrices between different reference coordinate systeg@&n rewrite the condition in (4) as the intersection of regions
denoted by their subscripts (Fig. 13,is a known constant as follows:
coefficient vector,i)(r;) is a column vector comprised of {
(,y)

Hankel functions and complex exponentials, andis the (z,y;) €
location vector for theth scatterer. The recursion starts with
the individual T-matricesT;,), of the scatterers. (5)

m VEe—2)2+y—-u)? <y —a }

i=1
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show the convergence fgr= 0.1z, § = 0.25r,,, and$§ = 0.57,,.
Fig. 2. Scattering origin regions.

In fact, each term under the intersection sign in (5) defin@éderer,, = |r,,le™%re =, —r andr, = |r;le™ %, i=p,
the region under an upside-down parabola. Fig. 2 depicts thelhis truncated sum does not converge,if= r,, + ¢ where
parabolic regions for three scatterers in a particular near-figfd is small as compared t¢r,| and |r,| and if m — m'
example. Any point inside the shaded area representing thed large numbe(—M < m < M and —M < m' < M).
intersection of all three parabolic regions can be selected 8- 3 shows the convergence of the series in (7) for the corner
the scattering origin. Note that any choice (af,, y,) with entries of (6) forM =5, i.e., max{rm —m'} = 10. Here we
y, ~ —oo will always satisfy the condition in (4). However,have three curves, showing the convergenceéfer 0.1r,,
the order of harmonics used in the T-matrix algorithm & = 0.25r, and¢é = 0.5r,. M > 5 andé < 0.1r, are
proportional to the distance between the scattering origin appical parameter choices for the problems of interest in this
object centers [6]. Therefore, the optimum scattering origR@per. It is clear from this figure that as the magnitudes
should be within this shaded area and as close as possifidhe two vectors get closer, the convergence rate slows.
to the objects to minimizeéV. As we show in Section IlI-B, Chew et al [10] suggested a windowed addition theorem
with this choice of(x,, y,), the distances between the objediwhich is originally developed fof{. polarized scattering) to
centers and the scattering origin can be very close, whigiercome this problem, but the implementation of this method
causes convergence problems in the addition formulas of mtroduces two new variables to set the width and shape of
matrix algorithm for the largeM used in our higher order the window. In addition, the windowed summation introduces
expansions. In Section IlI-C, we describe a modification i@rrors in the sum for vectors for which the convergence is not
the recursive T-matrix algorithm that lets us use the algorithéh problem.
with optimum choice of scattering origin. It should be noted that not all valid scattering origins
for a given problem give rise to this convergence problem.
Indeed, trial and error will quickly demonstrate that, for a
given collection of scatterers, there exist scattering origins
The convergence problems alluded to earlier can be traGgHere the original T-matrix recursions work just fine. These
to the fact that (2) uses the identity points are typically far from the scatterers, thereby requiring
large N in the recursions and moreover there does not appear
g = Bpoc,, if |z, [ > |z, | (6) to be an easy means & priori determining whether a
chosen origin will or will not give rise to a convergence
which, in turn, requires the ordering of the objects such thaffficulty. Thus, in the following sections we introduce a
Iri| < |zo| < -+ < |zp|. By using definitions ok, 4, 3,0, modified recursion that bypasses the convergence issue for
ande , [4], [5], we can write the(m, m’)th entry[e, ], all valid scattering origins, thereby allowing us to use the

B. Problems with Higher Order Harmonic Expansions

as closest valid origin (i.e., smallesi) to solve the prob-
) e’y lem.
Hm_m'(k|qu|)e J rq
N
= ngnm Jm_n(k|gp|)e‘7(m—”)(¢f‘+”) C. Modified Recursive T-matrix Algorithm
n=—N

' , To eliminate the need for the use of (6), we go one step
X Hff_)m,(/c|fq|)e—f(”—m bq (7) back in the derivation of recursion formulas and write (2) as



SAHIN AND MILLER: RECURSIVE T-MATRIX METHODS FOR SCATTERING

Incident
Planewave

154

12 T T T T T

Square root of G,(¢)

i ; i L N
0 20 40 60 80 100 120 140 160

180
Observation angle, ¢
(b)

Fig. 4. Comparison of echo width with [14] for two equal dielectric cylin
ders. (a) Scattering geometry. (b) Normalized echo width for geometry

(a).

[6, Egs. (7), (8)I:

Tn+1(n+1)ﬁn+1 .0

7

1
I-T, 1) Z an+1,iT7:(n)0ti,n+1]

i=1

i=1

X Thpyi(n) lﬁn+1,0 + Z an,+1,iT7ﬁ(:n)ﬂi,0‘| 8)
and (3) as

Titmt1)Bio = Ti(n)[ﬂi,o + g Tn+1(n+1)ﬁn+1,o] 9)
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where3; o is M x N, By, is N x M, and (10) holds as
long asN > M, which is always true as long as objects

are not overlapping. By using (8)—(10), the modified recursion
equations are

Tn—H (n+1 )ﬁn-{—l,O

. —1
I-T, .y Z an+1,z’Ti(n)ﬁz’,Oﬁo,iai,nH]

i=1

X Thii(1) [ﬁn+1,0 + Z an+1,z’Ti(n)ﬁi,0] (11)

i=1
and

Tint1)Bio
=TimBi0 + Titn)Bi0B0,i i ns1 Trgi(nr1)Brs1,0-
(12)

The recursion is still over the same blo#k,,,,3; o, but since
(6) is eliminated, these new recursion equations do not suffer
from convergence problems.

It is easily shown that the complexity of modified recursive
algorithm is (like that of the originalD(L*>M?N) with a
slightly larger constant in front o2 N resulting from extra
multiplications to obtainT;,,y from T;.,)3; 0. Despite this
small increase, we show in the next section that the risel in
associated with the lack of tessellation of the individual large
scatterers is more than offset by the corresponding reduction
in L—the number of scatterers used in the recursive compu-
tation—thereby resulting in large computational savings.

IV. DISCUSSION AND EXAMPLES

We first verify our new scattering algorithm against pub-
lished results and then provide a collection of examples that
are relevant for near-field applications. As most previously
published results for scattering problems involve far-field com-
putations, in verifying our approach we also demonstrate its
ability to handle far-zone calculations. Where appropriate, we
‘compare the computational cost of our higher order modified
recursive algorithm (HO-MRA) against two alternate T-matrix
approaches. First, we implement the lower order original
recursive algorithm (LO-ORA) of [6] for near- and far-field
problems. For far-zone problems with mixed dielectric and
metallic scatterers, we consider high-order (i.e., large
forms of the original recursions (HO-ORA) (2) and (3), where,
because of the far-field assumption, the instability problem is
not an issue.

Before we proceed, we define the normalized echo width
as [14]

2
2mr

on(9) = -

r—00

Tty
,l/)inc(t)

where ) is the wavelength in the medium of propagation.

(13)

without using (6). Since (6) is not used in (8) and (9), we can IWiI first (ialcudla_tedf the scattered f'ﬁld _c:;:e t? PNO c;|_ellecttr|_c
base a new recursion on these two equations and the idenﬁ}é{}n €rs placed in iree space, each with reiative dielectric

Biobo;=1 (10)

stant of2.6 and radius of0.5A. The distance between
the cylinders is3A [Fig. 4(a)]. An E, polarized plane wave
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Fig. 5. Comparison of echo width with [14] for two cylinders, one lossy (®)
dielectric, and one metallic. (a) Scattering geometry. (b) Normalized echkig. 6. Scattered electric field from three dielectric objects. (a) Near-field
width for geometry of (a). geometry, all dielectric objects. (b) Scattered field observed along the receivers

for geometry of (a).

is incident from 0. Fig. 4(b) shows the square root of the
echo width calculated using the HO-MRA of this paper (solificident from 90 [see Fig. 6(a)]. We first find the scattered
line), the LO-ORA of [6] (dashed line) and results in [14field from three dielectric objects with diameters 7.5 cm, as
(circles). Since HO-ORA produced essentially the same fiel@8own in Fig. 6(a). All objects have a relative permittivity
as HO-MRA, the results of this approach is not shown her@f 2.5. The scattering origin has to be placed far away from
Fig. 5(b) shows a similar comparison for a mixed object ca$ee receiver arrayd, = 0.5 m, y, = —1.25 m), because
depicted in Fig. 5(a), i.e., one cylinder is metallic and thi€ objects are close to the receivers, which, in turn, requires
other is lossy dielectric with, = 4—5. In this example, to @ large value (120) forV. For this case, we calculated the
calculate the scattered field using LO-ORA, the conductirfgattered field using both the LO-ORA and HO-MRA defined
scatterers have to be tessellated along their perimeters.iNnSections Il and lI-C, respectively. Fig. 6(b) shows the
[11] and [12], Girel et al. use metallic strips and patcheshormalized scattered fields observed along the receiver array
whose individual T-matrices are found via MoM, with LO-using the HO-MRA (solid line) and the LO-ORA (circles).
ORA. Adapting their approach, one can tessellate conductitigs clear from this figure that both approaches yield very
scatterers with flat or curved metallic strips in the examplesimilar fields.
Alternatively, [13] uses small subcylinders along the perimeter The second near-field example depicts a mixed-object case
of conducting scatterers for tessellation. We have used t$igce the objects at the sides are metallic and the object at
second approach with LO-ORA to calculate the scattered fidhi center is dielectric with a relative dielectric constant of 2.5
since it does not require the use of MoM. As in the previod&ig. 7(a)]. The locations of the objects are the same as the pre-
example, the square root of the echo width obtained using tieus example and the scattering origin is stilla & 0.5 m,
modified algorithm, LO-ORA, and that reported in [14] are,, = —1.25 m). As a resultV = 120 and since the object
very close. radii are relatively small\/ = 12. The normalized scattered
Now, we present scattering examples that are representafieéd observed along the receiver array for mixed-object case
of near-field applications. All objects are assumed to lie inia shown in Fig. 7(b). As in the far-field example, for LO-
homogeneous lossy background & 6¢y, o, = 5 x 102  ORA implementation, metallic objects are tessellated using
S/m); the operating frequency is 1 GHz and a plane wavetige approach in [13].



SAHIN AND MILLER: RECURSIVE T-MATRIX METHODS FOR SCATTERING

677

Incident TABLE 11
Iy Planewave V/\/J'\/;\/\\/\? PARAMETER LIST FOR TABLE |
A & \wj X
Receiver Array HO-MRA LO-ORA HO-ORA
Fig.4 | L=2,M=7,N=23 | L=398,M=1,N=23 | L=2,M=7,N=28
15cm (zsv ys):(ovo) (ms, ys):(0,0) (3757 ys):(070-3)\ )
44444444444 Fig. 5 | L=2,M=10,N=40 | L=249,M=1,N=40 | L=2,M=10,N=44
7.5cm 0= (xsvys):(ovo) (zsv ys):(0,0) (:L‘s, 93)2(0-3)‘70)
”””””” ’ / Fig. 6 | L=3,M=12,N=120 | L=93,M=2,N=120 c/p
A : (5, 95)=(0.5,-1.25) | (z5,y5)=(0.5,-1.25)
; : Fig. 7 | L=3,M=12,N=120 | L=63,M=2,N=120 c/p

(2s5,95)=(0.5,1.25)

(24, ¥5)=(0.5,-1.25)

. 50cm

HO-ORA. The reason behind this large cost is that numerous
subscatterers are required for each cylinder. One would expect
the computational complexity of HO-ORA to be less than that
of HO-MRA since the latter needs extra multiplications to
obtain T;,,, from T;.,,3; 0. However, since the scattering
origin is placed at a different location in HO-ORA to prevent
the convergence problem, the number of harmoiichas to

be increased accordingly, which increases the flops required
for HO-ORA considerably.

The last two rows of Table | show the flops needed to
find the scattered field for near-field examples and Table I
shows the number of scatterers, harmonics, and the locus of
the scattering origin used in these examples. Unlike previous
examples, these geometries require measuring the scattered
field in the near field with a linear receiver array, which
restricts the regions where the scattering origin can be placed.
As we have shown in Section Ill, the choice of optimum

(b) scattering origin results in convergence problems in HO-ORA
Fig. 7. Scattered electric field from two metallic and a dielectric obje(:t;fﬂ.)r near-field geometries. Alternatively, LO-ORA can be used
(a) Near-field geometry, mixed objects. (b) Scattered field observed along thethese problems, however, one has to spend approximately
receivers for geometry of (). 45 and 21 times more flops than it is needed for HO-MRA for
examples in Figs. 6 and 7, respectively.

Normalized magnitude of scattered electric field

o ; ; ; ;

. i
4 0.1 0.2 0.3 0.4 0.5 0.

) 6 Q.7 08 0.9 1
x coordinate, (m)

TABLE |
CosT COMPARISON FORRECURSIVE ALGORITHMS. ALL NUMBERS IN FLOPS/16
AND C/P MeaNs CONVERGENCE PROBLEMS IN NEAR FIELD CALCULATIONS

HO-MRA | LO-ORA | HO-ORA V. CONCLUSION
g%g- ‘; ?-g 1716? 01-694 In this paper, we present a new recursive T-matrix algorithm
ins 501 557 C/'p specifically designed for the efficient solution of near-field
Tig. 7| 18.95 393 o/p scattering problems involving heterogeneous collections of

metallic and dielectric objects. We have verified this algorithm
against previously published results, thereby demonstrating
We now compare computational costs of the HO-MRA, LOis utility for far-field computations and indicated its use
ORA, and HO-ORA. To ensure a fair comparison whenevésr near-field scattering problems. For near- and far-field
a tessellation is required, we set the density of subscatterdislectric scattering problems, this algorithm is significantly
to be close to that used in [6]. Performance of each approadlre efficient than the subscatterer method in [6]. For far-
is measured by the floating point operations (flops) requiréieéld computations, the technique in this paper is slightly more
to calculate the scattered field. Table | shows the flop cowtstly than the use of higher order expansions in the original
of all three recursive T-matrix algorithms that can be usedcursive formulas.
to find the scattered fields from multiple, spatially separated Even though the forward model in this paper does not take
cylinders. Table Il shows the number of scatterBrsmumber the air—earth interface into account, near-field measurement
of harmonicsM, N, and the location of the scattering origingeometries similar to Figs. 6 and 7 can be used to assess
(zs,ys) used in these examples. performance of algorithms tailored for processing ground
The first two rows of Tables | and Il correspond to examplggenetrating radar (GPR) data. The forward solver presented in
from the 2-D scattering literature. For these cases, all obsertiais paper, when used in an inversion scheme, would represent
tion points are in the far field so that the convergence probleadvancement over what is currently used in the literature
alluded to earlier is not an issue. As seen from Table | LQ15]-[17] in that it solves the near-field multiple scattering
ORA'’s flop count is quite large as compared to HO-MRA angdroblem thoroughly and handles the lossy background.
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In terms of genuinely modeling the GPR forward-scattering3] A. Sahin and E. L. Miller, “Recursive T-matrix algorithm for multiple

problem, we are looking to T-matrix-type methods that might g‘&)‘agigscymgerfé;’g"’;icmwave Opt. Technol. Leftvol. 15, no. 6, pp.
allow modeling the air—earth interface relevant in these s6ga; m. ouda, M. Hussein, and A. Sebak, “Multiple scattering by dielectric

narios without destroying the computational efficiency of the cylinders using a multi-filament current moded” Electromagn. Waves

; i i _fi _Applicat, vol. 7, no. 2, pp. 215-234, 1993.
scattering model. Fma”y' applylng the near-field comput 5] J. E. Molyneux and A. Witten, “Diffraction tomographic imaging in

tional abilities of this approach to other application areas " a monostatic measurement geometrfEEE Trans. Geosci. Remote
would be quite interesting. Sensing vol. 31, pp. 507-511, Mar. 1993. _
[16] A.J.Witten and J. E. Molyneux, “Ground penetrating radar tomography:
Algorithms and case studiedEEE Trans. Geosci. Remote Sensingl.
ACKNOWLEDGMENT 32, pp. 461-467, Mar. 1994.
) . [17] R.W. Deming and A. J. Devaney, “A filtered backpropagation algorithm
The authors would like to thank the reviewers for their ~ for GPR,” J. Environmental Eng. Geophysol. 0, no. 2, pp. 113-123,

suggestions, which have significantly improved the clarity of Jan. 1996.
this manuscript.
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