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Recursive T-Matrix Methods for Scattering
from Multiple Dielectric and Metallic Objects

Adnan Şahin and Eric L. Miller,Member, IEEE

Abstract—We present an efficient, stable, recursive T-matrix
algorithm to calculate the scattered field from a heterogeneous
collection of spatially separated objects. The algorithm is based on
the use of higher order multipole expansions than those typically
employed in recursive T-matrix techniques. The use of these
expansions introduces instability in the recursions developed in
[5] and [6], specifically in the case of near-field computations.
By modifying the original recursive algorithm to avoid these
instabilities, we arrive at a flexible and efficient forward solver
appropriate for a variety of scattering calculations. The algorithm
can be applied when the objects are dielectric, metallic, or a mix-
ture of both. We verify this method for cases where the scatterers
are electrically small (fraction of a wavelength) or relatively large
( 12�). While developed for near-field calculation, this approach is
applicable for far-field problems as well. Finally, we demonstrate
that the computational complexity of this approach compares
favorably with comparable recursive algorithms.

Index Terms—Electromagnetic scattering.

I. INTRODUCTION

CALCULATION of scattered electromagnetic fields is
of interest in many application areas. For example, an

important component of the solution to many inverse scattering
problems is the efficient computation of the scattered fields
produced by a collection of scatterers when illuminated by an
electromagnetic source. The choice of technique for computing
these fields is often driven by a variety of factors, including
computational complexity and the flexibility to handle easily
a wide range of configurations of scatterers. In practice, the
objects of interest can be dielectric, metallic, or mixtures of
both. Their sizes can range from subwavelength to a few
multiples of a wavelength. Therefore, one desires an efficient
flexible forward solver that is useful both for analysis and that
can be incorporated into signal processing algorithms.

The most popular forward solver for these and related
complex scattering problems—the method of moments (MoM)
[1]—is based on a fine discretization of the region of interest
and requires the inversion of a large dense matrix to calculate
the scattered field. As this task requiresO(N3) calculations
whereN is the number of grid points, MoM is known to be
computationally quite intensive. The fast-multipole technique
[2] developed recently can reduce the complexity of MoM-
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Fig. 1. Near-field geometry and translation matrices.

type problems and can be used alternatively as a fast forward
solver. Finite-difference techniques are also frequently used as
forward solvers and like MoM rely on a full-space discretiza-
tion. Although the resulting matrices are sparse, one still faces
the delicate task of specifying an absorbing boundary condition
to terminate the computational grid.

Here we consider the solution of scattering problems using
transition matrix (T-matrix) methods [3]–[6]. Unlike finite-
difference techniques, the T-matrix approach does not require
an absorbing boundary condition and substitutes the dis-
cretization of space with harmonic expansions of the fields,
thereby reducing the number of unknowns for a wide range of
problems. Chewet al. have pioneered the development of a
number of fast recursive T-matrix algorithms for determining
the scattered fields in a variety of scenarios [6]–[12]. These
methods basically function by tessellating electrically large
objects into small subscatterers whose individual T-matrices
can be well represented using low-order harmonic expansions.
A recursive formula then is used to aggregate the effects of
all the subscatterers to compute the fields.

The motivation for the algorithm in this paper is the desire to
solve scattering problems in the near field for the linear array
geometry shown in Fig. 1. Specifically, we are interested in the
development and verification of a recursive algorithm capable
of computing scattered fields from multiple dielectric and/or
metallic objects in the near field. For simplicity, we considered
an Ez polarized plane wave incident on a two-dimensional
(2-D) problem geometry in which multiple scatterers each
possessing a circular cross section (i.e., infinite circular cylin-
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ders) are located in an infinite medium of constant complex
permittivity. Rather than decomposing each full scatterer into
a large number of small subobjects, the goal here is to develop
a recursion based on higher order harmonic expansions for the
individual large objects. The result is an algorithm comprised
of a small number of high-dimensional T-matrix computations
rather than a large number of low-dimensional recursions with
the idea that the former approach will be more efficient than the
latter. For the near-field calculations however, we show that
the higher order expansions result in instabilities in the original
recursions developed by Chew. By modifying these recursions,
we obtain a stable algorithm that avoids these instabilities and
is capable of both near and far-field computations. Finally,
we demonstrate that this approach retains the low asymptotic
computational complexity of the method in [6], but in practice
requires far fewer floating point operations.

The remainder of this paper is organized as follows. In
Section II we briefly review the recursive T-matrix algorithm
for multiple scatterers. In Section III, we discuss how T-matrix
techniques can be applied to near-field measurement problems
and the modification in the recursive algorithm. In Section IV,
we will discuss the results and show examples. Finally, in
Section V, we will draw conclusions and suggest future work.

II. RECURSIVE T-MATRIX ALGORITHM

In the recursive T matrix approach of [6] the total scattered
field  sca(r) arising fromL scatterers is [6]

 sca(r) =
LX

i=1

 T (ri)Ti(L)�i;0a (1)

with

Tn+1(n+1)�n+1;0

=

"
I �Tn+1(1)

nX
i=1

�n+1;iTi(n)�i;0�0;n+1

#�1

� Tn+1(1)

"
�n+1;0 +

nX
i=1

�n+1;iTi(n)�i;0

#
(2)

and

Ti(n+1)�i;0=Ti(n)�i;0+Ti(n)�i;0�0;n+1Tn+1(n+1)�n+1;0

(3)

where n = 1; 2; � � � ; L; i = 1; 2; � � � ; n; Ti(n) is the T-
matrix for the ith object in the presence ofn scatterers,
�, and� are translation matrices [4], [5] used to translate
T-matrices between different reference coordinate systems
denoted by their subscripts (Fig. 1),a is a known constant
coefficient vector, (ri) is a column vector comprised of
Hankel functions and complex exponentials, andri is the
location vector for theith scatterer. The recursion starts with
the individual T-matrices,Ti(1), of the scatterers.

Theoretically, the matrices�, �, and T are of infinite
dimension. T-matrix algorithms truncate these matrices with
finite valuesN andM such that the residual error is below
the machine precision or acceptable levels. Here,N represents
the number of harmonics used to expand the fields at the
scattering originOs (Fig. 1) andM represents the number
of harmonics used to expand the fields in the objects’ local
coordinate systemsOi (Fig. 1), i = 1; 2; � � � ; L. The number
of harmonicsN andM are related to the distances of scatterers
from the scattering origin and the radii of the scatterers,
respectively. As the distances between scatterers and the
scattering origin increase,N needs to be increased and as
the radii of scatterers increase,M needs to be increased [6].

III. A M ODIFIED RECURSIVE T-MATRIX METHOD

In this paper we desire the scattered field from a collection
of spatially separated objects in the near field of a receiver
array. While one could tessellate the objects and employ the
method of [6] using low-order(M < 2) harmonic expansions,
the large number of subscatterers makes such an approach
computationally intensive. Rather, we seek an algorithm based
on high-order (largeM ) harmonic expansions for the scattered
fields associated with each separate large object. The under-
lying assumption, shown to be true in Section IV, is that the
small number of higher dimensional T-matrix recursions is
less costly than a large number of low-order computations.
In this section, we show that the use of largeM results
in an instability in a particular formula upon which the
original recursive T-matrix algorithm in (2) and (3) is based,
specifically when near-field computations are required. We
then present a modified recursion which bypasses this addition
formula and results in a stable and efficient method for solving
the problem of interest.

A. Determination of Scattering Origin

For the geometries we are interested in this paper, the
scattered field is desired in the near or intermediate field.
Because of the requirements on the loci of observation points
imposed by the harmonic expansion in (1), the scattering origin
(xs; ys) relative to global originOg must be selected such that
there must be at least one circle centered at(xs; ys), encircling
all objects, with no receivers inside it. The dashed circle in
Fig. 1 depicts such a circle. Assuming a linear receiver array,
the condition to choose the scattering coordinate system is

Rc = max
i2f1;2;���;Lg

np
(xs � xi)2 + (ys � yi)2 + ai

o
< jysj

(4)
where the triplet(xi; yi; ai) representsx andy coordinates of
the center and radius of theith circular object relative to the
global originOg. This condition must be met by individual
objects as well as by all objects collectively. Therefore, we
can rewrite the condition in (4) as the intersection of regions
as follows:

(xs; ys) 2

(
(x; y)

�����
L\
i=1

p
(x� xi)2 + (y � yi)2 < jyj � ai

)
:

(5)
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Fig. 2. Scattering origin regions.

In fact, each term under the intersection sign in (5) defines
the region under an upside-down parabola. Fig. 2 depicts the
parabolic regions for three scatterers in a particular near-field
example. Any point inside the shaded area representing the
intersection of all three parabolic regions can be selected as
the scattering origin. Note that any choice of(xs; ys) with
ys � �1 will always satisfy the condition in (4). However,
the order of harmonics used in the T-matrix algorithm is
proportional to the distance between the scattering origin and
object centers [6]. Therefore, the optimum scattering origin
should be within this shaded area and as close as possible
to the objects to minimizeN . As we show in Section III-B,
with this choice of(xs; ys), the distances between the object
centers and the scattering origin can be very close, which
causes convergence problems in the addition formulas of T-
matrix algorithm for the largeM used in our higher order
expansions. In Section III-C, we describe a modification in
the recursive T-matrix algorithm that lets us use the algorithm
with optimum choice of scattering origin.

B. Problems with Higher Order Harmonic Expansions

The convergence problems alluded to earlier can be traced
to the fact that (2) uses the identity

�p;q = �p;0�0;q; if jrq j � jrpj (6)

which, in turn, requires the ordering of the objects such that
jr1j � jr2j � � � � � jrLj. By using definitions of�p;q, �p;0,
and�0;q [4], [5], we can write the(m;m0)th entry[�p;q]m;m0

as

H
(2)
m�m0 (kjrpqj)e

�j(m�m0)�pq

= lim
N!1

NX

n=�N

Jm�n(kjrpj)e
�j(m�n)(�p+�)

�H
(2)
n�m0(kjrq j)e

�j(n�m0)�q (7)

Fig. 3. Convergence pattern of the truncated sum in (7) forM = 5. Curves
show the convergence for� = 0:1r

p
, � = 0:25r

p
, and� = 0:5r

p
.

whererpq = jrpq je
�j�pq = rq � rp andri = jrije

�j�i , i = p,
q. This truncated sum does not converge ifrq = rp+ � where
j�j is small as compared tojrpj and jrqj and if m � m0

is a large number(�M � m � M and�M � m0 � M ).
Fig. 3 shows the convergence of the series in (7) for the corner
entries of (6) forM = 5, i.e.,maxfm �m0g = 10. Here we
have three curves, showing the convergence for� = 0:1rp,
� = 0:25rp and � = 0:5rp. M � 5 and � < 0:1rp are
typical parameter choices for the problems of interest in this
paper. It is clear from this figure that as the magnitudes
of the two vectors get closer, the convergence rate slows.
Chew et al. [10] suggested a windowed addition theorem
(which is originally developed forHz polarized scattering) to
overcome this problem, but the implementation of this method
introduces two new variables to set the width and shape of
the window. In addition, the windowed summation introduces
errors in the sum for vectors for which the convergence is not
a problem.

It should be noted that not all valid scattering origins
for a given problem give rise to this convergence problem.
Indeed, trial and error will quickly demonstrate that, for a
given collection of scatterers, there exist scattering origins
where the original T-matrix recursions work just fine. These
points are typically far from the scatterers, thereby requiring
largeN in the recursions and moreover there does not appear
to be an easy means ofa priori determining whether a
chosen origin will or will not give rise to a convergence
difficulty. Thus, in the following sections we introduce a
modified recursion that bypasses the convergence issue for
all valid scattering origins, thereby allowing us to use the
closest valid origin (i.e., smallestN ) to solve the prob-
lem.

C. Modified Recursive T-matrix Algorithm

To eliminate the need for the use of (6), we go one step
back in the derivation of recursion formulas and write (2) as
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(a)

(b)

Fig. 4. Comparison of echo width with [14] for two equal dielectric cylin-
ders. (a) Scattering geometry. (b) Normalized echo width for geometry of
(a).

[6, Eqs. (7), (8)]:

Tn+1(n+1)�n+1;0

=

"
I� Tn+1(1)

nX
i=1

�n+1;iTi(n)�i;n+1

#
�1

� Tn+1(1)

"
�n+1;0 +

nX
i=1

�n+1;iTi(n)�i;0

#
(8)

and (3) as

Ti(n+1)�i;0 = Ti(n)[�i;0 +�i;n+1Tn+1(n+1)�n+1;0] (9)

without using (6). Since (6) is not used in (8) and (9), we can
base a new recursion on these two equations and the identity

�i;0�0;i = I (10)

where�i;0 is M � N , �0;i is N � M , and (10) holds as
long asN > M , which is always true as long as objects
are not overlapping. By using (8)–(10), the modified recursion
equations are

Tn+1(n+1)�n+1;0

=

"
I� Tn+1(1)

nX
i=1

�n+1;iTi(n)�i;0�0;i�i;n+1
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and

Ti(n+1)�i;0

= Ti(n)�i;0 +Ti(n)�i;0�0;i�i;n+1Tn+1(n+1)�n+1;0:

(12)

The recursion is still over the same blockTi(n)�i;0, but since
(6) is eliminated, these new recursion equations do not suffer
from convergence problems.

It is easily shown that the complexity of modified recursive
algorithm is (like that of the original)O(L2M2N ) with a
slightly larger constant in front ofM2N resulting from extra
multiplications to obtainTi(n) from Ti(n)�i;0. Despite this
small increase, we show in the next section that the rise inM

associated with the lack of tessellation of the individual large
scatterers is more than offset by the corresponding reduction
in L—the number of scatterers used in the recursive compu-
tation—thereby resulting in large computational savings.

IV. DISCUSSION AND EXAMPLES

We first verify our new scattering algorithm against pub-
lished results and then provide a collection of examples that
are relevant for near-field applications. As most previously
published results for scattering problems involve far-field com-
putations, in verifying our approach we also demonstrate its
ability to handle far-zone calculations. Where appropriate, we
compare the computational cost of our higher order modified
recursive algorithm (HO-MRA) against two alternate T-matrix
approaches. First, we implement the lower order original
recursive algorithm (LO-ORA) of [6] for near- and far-field
problems. For far-zone problems with mixed dielectric and
metallic scatterers, we consider high-order (i.e., largeM )
forms of the original recursions (HO-ORA) (2) and (3), where,
because of the far-field assumption, the instability problem is
not an issue.

Before we proceed, we define the normalized echo width
as [14]

�n(�) = lim
r!1

2�r

�

���� sca(r)

 inc(r)

����
2

(13)

where� is the wavelength in the medium of propagation.
We first calculated the scattered field due to two dielectric

cylinders placed in free space, each with relative dielectric
constant of2:6 and radius of0:5�. The distance between
the cylinders is3� [Fig. 4(a)]. AnEz polarized plane wave
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(a)

(b)

Fig. 5. Comparison of echo width with [14] for two cylinders, one lossy
dielectric, and one metallic. (a) Scattering geometry. (b) Normalized echo
width for geometry of (a).

is incident from 0�. Fig. 4(b) shows the square root of the
echo width calculated using the HO-MRA of this paper (solid
line), the LO-ORA of [6] (dashed line) and results in [14]
(circles). Since HO-ORA produced essentially the same fields
as HO-MRA, the results of this approach is not shown here.
Fig. 5(b) shows a similar comparison for a mixed object case
depicted in Fig. 5(a), i.e., one cylinder is metallic and the
other is lossy dielectric with�r = 4–j5. In this example, to
calculate the scattered field using LO-ORA, the conducting
scatterers have to be tessellated along their perimeters. In
[11] and [12], Gürel et al. use metallic strips and patches,
whose individual T-matrices are found via MoM, with LO-
ORA. Adapting their approach, one can tessellate conducting
scatterers with flat or curved metallic strips in the examples.
Alternatively, [13] uses small subcylinders along the perimeter
of conducting scatterers for tessellation. We have used the
second approach with LO-ORA to calculate the scattered field
since it does not require the use of MoM. As in the previous
example, the square root of the echo width obtained using the
modified algorithm, LO-ORA, and that reported in [14] are
very close.

Now, we present scattering examples that are representative
of near-field applications. All objects are assumed to lie in a
homogeneous lossy background (�b = 6�0, �b = 5 � 10�2

S/m); the operating frequency is 1 GHz and a plane wave is

(a)

(b)

Fig. 6. Scattered electric field from three dielectric objects. (a) Near-field
geometry, all dielectric objects. (b) Scattered field observed along the receivers
for geometry of (a).

incident from 90� [see Fig. 6(a)]. We first find the scattered
field from three dielectric objects with diameters 7.5 cm, as
shown in Fig. 6(a). All objects have a relative permittivity
of 2.5. The scattering origin has to be placed far away from
the receiver array (xs = 0:5 m, ys = �1:25 m), because
the objects are close to the receivers, which, in turn, requires
a large value (120) forN . For this case, we calculated the
scattered field using both the LO-ORA and HO-MRA defined
in Sections II and III-C, respectively. Fig. 6(b) shows the
normalized scattered fields observed along the receiver array
using the HO-MRA (solid line) and the LO-ORA (circles).
It is clear from this figure that both approaches yield very
similar fields.

The second near-field example depicts a mixed-object case
since the objects at the sides are metallic and the object at
the center is dielectric with a relative dielectric constant of 2.5
[Fig. 7(a)]. The locations of the objects are the same as the pre-
vious example and the scattering origin is still at (xs = 0:5 m,
ys = �1:25 m). As a resultN = 120 and since the object
radii are relatively smallM = 12. The normalized scattered
field observed along the receiver array for mixed-object case
is shown in Fig. 7(b). As in the far-field example, for LO-
ORA implementation, metallic objects are tessellated using
the approach in [13].
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(a)

(b)

Fig. 7. Scattered electric field from two metallic and a dielectric objects.
(a) Near-field geometry, mixed objects. (b) Scattered field observed along the
receivers for geometry of (a).

TABLE I
COST COMPARISON FORRECURSIVEALGORITHMS. ALL NUMBERS IN FLOPS/106

AND C/P MEANS CONVERGENCEPROBLEMS IN NEAR FIELD CALCULATIONS

We now compare computational costs of the HO-MRA, LO-
ORA, and HO-ORA. To ensure a fair comparison whenever
a tessellation is required, we set the density of subscatterers
to be close to that used in [6]. Performance of each approach
is measured by the floating point operations (flops) required
to calculate the scattered field. Table I shows the flop count
of all three recursive T-matrix algorithms that can be used
to find the scattered fields from multiple, spatially separated
cylinders. Table II shows the number of scatterersL, number
of harmonicsM , N , and the location of the scattering origin
(xs; ys) used in these examples.

The first two rows of Tables I and II correspond to examples
from the 2-D scattering literature. For these cases, all observa-
tion points are in the far field so that the convergence problem
alluded to earlier is not an issue. As seen from Table I LO-
ORA’s flop count is quite large as compared to HO-MRA and

TABLE II
PARAMETER LIST FOR TABLE I

HO-ORA. The reason behind this large cost is that numerous
subscatterers are required for each cylinder. One would expect
the computational complexity of HO-ORA to be less than that
of HO-MRA since the latter needs extra multiplications to
obtain Ti(n) from Ti(n)�i;0. However, since the scattering
origin is placed at a different location in HO-ORA to prevent
the convergence problem, the number of harmonicsN has to
be increased accordingly, which increases the flops required
for HO-ORA considerably.

The last two rows of Table I show the flops needed to
find the scattered field for near-field examples and Table II
shows the number of scatterers, harmonics, and the locus of
the scattering origin used in these examples. Unlike previous
examples, these geometries require measuring the scattered
field in the near field with a linear receiver array, which
restricts the regions where the scattering origin can be placed.
As we have shown in Section III, the choice of optimum
scattering origin results in convergence problems in HO-ORA
for near-field geometries. Alternatively, LO-ORA can be used
in these problems, however, one has to spend approximately
45 and 21 times more flops than it is needed for HO-MRA for
examples in Figs. 6 and 7, respectively.

V. CONCLUSION

In this paper, we present a new recursive T-matrix algorithm
specifically designed for the efficient solution of near-field
scattering problems involving heterogeneous collections of
metallic and dielectric objects. We have verified this algorithm
against previously published results, thereby demonstrating
its utility for far-field computations and indicated its use
for near-field scattering problems. For near- and far-field
dielectric scattering problems, this algorithm is significantly
more efficient than the subscatterer method in [6]. For far-
field computations, the technique in this paper is slightly more
costly than the use of higher order expansions in the original
recursive formulas.

Even though the forward model in this paper does not take
the air–earth interface into account, near-field measurement
geometries similar to Figs. 6 and 7 can be used to assess
performance of algorithms tailored for processing ground
penetrating radar (GPR) data. The forward solver presented in
this paper, when used in an inversion scheme, would represent
advancement over what is currently used in the literature
[15]–[17] in that it solves the near-field multiple scattering
problem thoroughly and handles the lossy background.
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In terms of genuinely modeling the GPR forward-scattering
problem, we are looking to T-matrix-type methods that might
allow modeling the air–earth interface relevant in these sce-
narios without destroying the computational efficiency of the
scattering model. Finally, applying the near-field computa-
tional abilities of this approach to other application areas
would be quite interesting.
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