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Application of Finite-Integral Technique to
Electromagnetic Scattering by Two-Dimensional
Cavity-Backed Aperture in a Ground Plane
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Abstract—In this work, we analyze the electromagnetic scat- thus facilitating the specification of an inhomogeneous region.
tering by a cavity-backed two-dimensional (2-D) aperture in a Further, the unknown vector electric and magnetic fields
ground plane illuminated by either a TE or TM plane wave. 4.0 annroximated by specially designed basis functions with

The analysis is based on the well-known generalized network K fficients. Th basis functi let fi
formulation. To obtain the admittance matrix of the cavity, the unknown - COetlicients. ese basis functions let us satisfy

cavity is modeled by triangular cylinders. Also, in order to specify !l the required continuity conditions of the electric and
inhomogeneous materials, a separate and ¢ may be assigned magnetic fields at every material boundary. Some of the major

to each cylinder. Further, the cavity is analyzed applying the advantages of the FIT approach may be listed as follows.

finite_—integral technique_ (FIT), which results in spurio_us-free 1) Th ¢ h . inimal i tor-

solution. Finally, numerical examples are presented to illustrate ) € presen apprqac requires mlnlma computer stor

the applicability of the method. age, thereby enabling us to solve electrically large prob-
lems.

2) Modeling of various materials is very simple.

3) User-defined basis function provides a better control on

|. INTRODUCTION the algorithm and enables us to satisfy all the boundary

HE problem of electromagnetic field penetration into  @nd continuity conditions accurately. _

an arbitrarily shaped cavity backing an aperture in ad The_usage of the_mtegral form of Maxwell’s eq_uat|0ns
ground plane has received considerable attention because of Provide a smoothing effect on the solution obtained.
the applications in aerospace and communications industry®) SPurious solutions are not observed in the present for-
Traditionally, these type of problems have been analyzed using Mulation; the absence of spurious solutions may be due
the mode matching [1] and the modal solutions via method of  t© the usage of specially developed basis functions.
moments [2]. Unfortunately, these methods are applicable toThe paper is organized as follows. In the next section, a
rectangular cavities only which is quite restrictive. Recentlyletailed mathematical formulation of the FIT scheme for the
however, the finite-element (FE) method received increas€l case is provided. Here, we describe specially designed
attention for the the field penetration problem because: R§sis functions to approximate the unknown electric and
the FE approach generates a h|gh|y sparse System matrix g}ﬁgnetic fields. FUrther, we prOVide the detailed mathematical
2) modeling inhomogeneous regions and arbitrary geometriégscription of the application of the FIT to the problem under
is straightforward. In fact, the two-dimensional (2-D) cavityconsideration. In Section Ill, we discuss the application of
backed aperture problem using FE method was already solV@d to the TM problem. Numerical examples are presented
[3], [4]. However, the main disadvantage of the FE method i8 Section IV to demonstrate the validity of the FIT approach.
the presence of spurious solutions, which sometimes leadd-tBally, some important conclusions are drawn from this study

Index Terms—Electromagnetic scattering, numerical analysis.

inaccurate and oscillatory solutions. are presented in Section V.
In this work, we present an alternate approach to solve
the electromagnetic field penetration into a cavity backing an II. TRANSVERSE ELECTRIC CASE

infinitely long slot. The approach is termed as finite-integral ~qnsider a cavity-backed 2-D slit (as shown in Fig. 1)
technique (FIT) [5]-[7]. The FIT uses the integral form ofy,minated by an incident plane wave given by

Maxwell's equations applied to a discrete conformal grid. , , ,

The cavity volume is subdivided into triangular cylinders and H' = Hye/tmcosdtusindly, 1)

constitutive material parameters are assigned to each cylinder, . . L. .
P 9 y where H; is the incident magnetic field plane wavejs the

wavenumber, ang is the angle of arrival of the plane wave.
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Fig. 1. Cavity-backed slit. l

Fig. 3. The area of integratio$i with the normal vecton in thez direction.
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Fig. 2. Equivalent problems.

cavity problem as shown in Fig. 2. For the radiation and A

cavity problems, an equivalent magnetic surface curMdnt

M (z)a, and it's negative are attached on the exterior and
the_mte_rlor side of the close(_j aperture. D|_V|d|ng the apertur:@g‘ 4. The area of integratioss with the normal vectom in the zy
region intoN equal subdomains and following the procedurggansverse) plane. The valie is the length ofS along the= direction.

described in [3], we have

Y + YNV = [1]. (2) utilizing the fact thatH = H,a, yields
The evaluation ofY 7] and[/] is straight forward and well ]{Ef dl = —JW/NHZ ds + M, (5)

presented in [3]. The admittance matfix“] is the admittance ! s

of the cavity. In this work, the matrix elements pf¢] are wherel is the closed path about the surfaseE; is the TE

obtained by applying the FIT method as discussed in tfield, and 4. is the magnetic field in the direction.
following subsection. Next, consider (4). For this equation, define the surfsce
such that the normal vectex, lies in thexy plane, as shown

A. Evaluation ofY“] Using FIT Formulation in Fig. 4. Again, applying Stoke’s theorem to (4) yields

The FIT directly applies the Maxwell equations in integral ]{H dl = _]w/GE -a, ds. (6)
form to a discrete grid. Maxwell's equations in the integral I 5
form are given by In (6), the path of integration is along the contourfas
shown in Fig. 4. This path lies along segmeAt8, BC', C'D,
/(V x E)-a, ds = _J“/F‘H s, ds+ / M-a,ds (3) andDA. Also, note that along path$B andC'D, H-dl = 0,
. ’ ’ sincedl is perpendicular ta.. Thus, we have
/(VXH)~and5:jw/eE~ands 4
s s ]{H.dlz (H!P — HPO), (7
whereH is the magnetic fieldE is the electric field¢ is the !
permittivity, andy is the permeability of the region boundedvhere HA” and H?¢ are the magnetic fields atD and BC,
by the surfaces. Also, M = My6(p — p')a, is the magnetic respectively, and, is the length ofS along thez direction.
current exciting the cavity. Further, for the 2-D TE case, theurther, noting that all field quantities are invariant with
magnetic field is along the direction and the electric field is we have
confined to the transverse planey(plane).
First, consider (3). Applying Stoke’s theorem to an arbitrar” / ¢E-a, ds = ju / /IGEt Ay dlde = jwl, /IGEt -y dl.
closed surface in thecy plane (as shown in Fig. 3) and ’ o ‘ (8)
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Fig. 5. A 2-D cavity represented by triangular cylinders.

Finally, using (7) and (8), (4) may be written as

H?D_HfCIJW/EEt'andl. (9)
1

B. Description of Basis Functions

In the FIT scheme, the 2-D cavity is approximated by (b)
triangular cylinders as shown in Fig. 5. Lat, N;, and Ng Fig. 6. (a) Pulse functiofl;. (b) A basis function.
represent the number of vertices, faces, and edges, respec-
tively, in the grid scheme. Next, we define two sets of basis

functions as follows.

Referring to Fig. 6(a), we define the first set of function&ere HJ’ and E; represent the unknown coeff|(:|ent_s to be
I, (p) as determined. Note that;(p) x a, represents a vector directed
J

along the length of the edde This representation allows us to
10, peT; enforce the continuity of tangential electric fields at material
.0, i

L; (p) = {0.0, otherwise (10) boundaries.

where 1} represents the region on fage C. Numerical Analvsis
Next, referring to Fig. 6(b) we define another set of func-" Y

tions, the rooftop functions developed by Rebal. [9] for The next step in the FIT procedure is to determine a discrete
each edge as expression for the integral form of Maxwell's equations, which
will be used to generate the FIT global matrix. This is accom-
plished by using the basis functions as defined in (12) and
(13) to provide approximations for the TE and axial magnetic
fields in (5) and (9). The resulting simplified equations will
whereA = l’j—E andh is the height of the free vertex in theDe combined to eliminate the TE field unknowns, resulting
K in a system of equations in terms of the magnetic field

triangle7;" from edgek. A is defined identically on triangle ynknowns only. This is accomplished as follows by referring

Ne(p), peT

Ni(p) = {0.0, otherwise (11)

Ty, with variable superscript—) instead of+. to a triangular patcly, as shown in Fig. 7.

Utilizing these basis functions, the total electric fidld Now, consider the left-hand side of (5). The integral is
and magnetic fieldd. existing in the discretized space capjefined over a closed path which can be defined around
be expressed as the three edges composing each fac&his yields

Ng

H, = H; 11, 12
2 il (e) (12) ]{Et~dlz/ Et~d1—|—/ E, dl
4 1 edge#i edge#2

Nk
E, = B (A a, 13 —+ E, -dlL 14
zk: KAk (p) X a,) (13) /edge#g (14)
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Now, let us consider the left-hand side of (9). Referring to
Fig. 7 and applying thdl; function defined in (11) for an
edgek, £ = 1, 2, and 3 yields

H!P — HPY = H; — Hj» (19)

where f{; and i« are the unknown magnetic field quantities
at the centroids of the triangles connected to eklge

Last, consider the right-hand side of (9). Applying the
rooftop function defined in (11), we have

c jw/eEt -a, dl
k

= wEjk / (Ar(p) X a,)-a,dl
k

Edge k
g ;‘7 :wajk |:/ Gj/\k(p)~d1—|—/Ejk/\jk(p).dl]
k k
I
5Lk [e;m; €Mk
U J 3 VY]
=kl [ —:|
,’ 736 | Ay Ajx
'l = JwlrEn (20)
/
wherem; andm;: are the median lengths from the opposite
vertex to the edger and A; and A;» are the areas of the
triangles connected to edde
Patch J Thus, using (19) and (20), we can write (9) as
(b) 1
Fig. 7. A triangular face/ with adjacent triangles. By = Jwéin [Hj — Hjx]. (21)

Applying the rooftop function defined in (11) for an indi- Finally, substituting (21) into (18), we have fgth patch
vidual edgek, ¥ = 1, 2, and3 in (14) yields

/kEt ~dl = /(/\]»k(p) xa,)-dl Z[ij — Hj] 3

k k=1 J

twip A Hy = —gwMy  (22)

Ejk/k/\jk(P) rap dl=Ejropdin (15)  \yhere now the unknowns are exclusively in terms of the

' unknown magnetic field coefficients. Applying (22) for each
where o;» = 1.0 if A;x and a, are in the same direction, triangular patch in the grid scheme, a gobal FIT matrix may
otherwise—1.0, and ;» is the length of the edgé. Thus, pe generated that is sparse with, at most, four nonzero entries
using (15), we can rewrite (14) as per row. By inverting this matrix and multiplying with the

3 excitation vector, the magnetic field coefficients throughout

%Et .dl = ZE],kg].kljk, (16) the cavity region may be calculated. However, we need the

! k=1 magnetic field only at the aperture, which may be obtained
as follows.

Next, consider the right-hand side of (5). Substituting thé

o . . . :
II; function defined by (10) for the magnetic field yields for The elements of,, are_olita;ned byjelacmlg_a unit magnznc
face j curre_n_t source at,, q = 1,2, .- N, solving (22), an
obtaining the corresponding magnetic fieldagt p = 1, 2,
g .-+, V. This, in effect, implies the evaluation pfith element
_jw/s”HZ ds Mo = —gop; HiAj + Mo (17) of the inverted FIT matrix.

A close examination of (22) reveals that it is, in fact, the
finite-difference equation for the triangular grid. Also, it is
very easy to derive the traditional finite-difference equation
applied to a square grid by following the numerical procedure
narrated in this section.

wherey; is the permeability associated with fageA; is the
area of facg, andH; is the unknown magnetic field quantity,
defined at the centroid of facg

Thus, using (16) and (17), (5) may be written as

3 Finally, we mention here that although not attempted in the
Z Ejvopxlin = —gwp; Hy Ay + M. (18) present work, the frontal solution employed in [3] can also be
b= employed in the FIT scheme.
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I1l. TRANSVERSE MAGNETIC CASE

Consider again the cavity-backed 2-D slit shown in Fig. 1,

illuminated by a TM incident plane wave given by

Ei — Eoejk[xcos¢+y sin d))az. (23)

By using the generalized network formulation [8], again,

683
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the problem at hand may be separated into three subproblems,
viz.: 1) radiation problem; 2) short-circuit problem; and 3)

cavity problem as shown in Fig. 2. For the radiation and

cavity problems, an equivalent magnetic surface curMdnt

M (z)a, and its negative are attached on the exterior and the Pt
interior side of the closed aperture, respectively. Further, these |
problems are coupled and may be described by the following

equation given by

[+ [YIv] = (1. (24)

The evaluation of Y #] and[I] is straightforward and well
presented in [4]. The admittance matfix“] is the admittance
of the cavity. In the following subsection, we present the °
evaluation of matrix elements ¢¥'“] by applying the FIT

method.

A. Evaluation of(Y“] Using FIT Formulation

centroid

Vertex i midpoint

Fig. 8. Pulse functiorl;.

Thus, using (27)—(29), (26) may be written as
BC

z

= —]W/Bt ca, dl+ Myl /6(p— Pa, -a, dl. (30)
I I

AD

B. Description of Basis Functions
The next step in the numerical scheme is to approximate

First, consider (4). Applying the Stokes theorem to afhe 2-D cavity by triangular cylinders, as shown in Fig. 5. Let
arbitrary closed surface in they plane (as shown in Fig. 3) Ny, N;, and Nk represent the number of vertices, triangular

and utilizing the fact thaEl = E.a, yields

B
]{—t~d1:jw/eEzds
M s

where! is the closed path about the surfageB; is the TM
flux density andF. is the electric field in the: direction.
Next, consider (3). Note that for the TM casBl =

(25)

Myé(p — p')a,, i.e., along the transverse plane to the axis

faces, and edges, respectively, in the grid scheme. Alsd/det
represent the number of vertices on the cavity walls. Next, we
look at the basis functions.

Referring to Fig. 8, we define the a set of functions termed
as the pulse functionH;(p) as

1.0 pel;

i(p) = {0.0 otherwise (31)

of the slot. For this equation, define the surface as Shownv%ereﬂ represents the region obtained by assembling all the

Fig. 4 and apply the Stokes theorem to obtain

]{E~d1:—jw/B~ands—|—/M~ands. (26)
1 3 3

In (26), the path of integration is along the contourSpfas
shown in Fig. 4. This path lies along the segme#t3, BC',
CD, andDA. Note that along pathd B andC'D,E-dl =0
sincedl is perpendicular te. Thus, we have

L%E~d1:(EfD——EfCﬂZ

i

(27)

where EA” and EP¢ are the electric fields at.D and BC,
respectively, and, is the length ofS along thez direction.
Further, noting that all field quantities are invariant withve

have
—jw/B~and5:—]w//Bt -a, dldz
3 z JI
= —jwl, /Bt -a, dl (28)
I
and
/M -a, ds = Myl, /6(p— Pa, -a, dl. (29)
3 1

triangles connected to vertéxand joining the centroids of each
triangle to the midpoints of each edge connected to vertex
Note that eaclT; represents a closed contour, provided vertex
¢ IS not a boundary vertex.

Next, the total electric field?. and magnetic flux density
B, existing in the discretized space can be expressed as

Np
E, = Z 1L (p) (32)

Nk
k
where E; and B, represent the unknown coefficients to be
determined. Note that; (p), defined in (11), has a continuous
normal component along each edge. This property is important
in enforcing continuity of the magnetic flux density at material
boundaries.

C. Numerical Analysis

~ Consider an interior vertex, as shown in Fig. 9. Vertices
¢ =1, 2,---, I" connect the edges’ = 1, 2, ---, K’ to
the vertexi, andj* = 1, 2, ---, J* represent the triangles
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connected to vertex Using this notation, we will derive the
finite-integral discretized form of (25) and (30).

Consider the left-hand side of (25). Substituting the rooftop
function defined in (11) we have

}[— dl = ZB’“]{ Api(

k=1

+

5l i omyy m,;
_ Z Bkz k k+ +— k_
ki=1 pEAL AL
K
= Z Bkzl/kz (34)

k=1

WhereTjE are the triangles connected to edgem are the
median Iengths from the opposite vertex to the eéfgeand
A%, are the areas of the triangl6%

Next, let us look at the right-hand side of (25). Substitutingig. 9. A vertex: with associated vertices, edgesk’, and triangles' . In
the 1I; basis function defined by (31) for the electric fieldhis case, the local variablds = K* = J* = 6.
yields, for any vertex

TE
w/eEz ds = _](.UE/ EL(p)ds Case
R T, Lambda = 1.667 Meters
i 4.0 T T T — Real - FD
A —- Imag - FD
= Jwk; Z T (35) ° o © Real - FIT
- 3 © Imag - FIT
= 20 ’\Q.A—W!mm_o/.-
. co
where 97" is the contour of thell;(p) subdomain and;:
and 4;: are the permittivity and area, respectively, associated oo | o _ 1
with face j°. = PR LN
Substituting (34) and (35) into (25) yields 20 I° a|
K* J! A
Z Bk’”kl I_](.UE7 Z Ejz—]. (36)
X 3 -40 ! . L
kt=1 3= 1.0 0.5 0.0 05 1.0
Next, consider left-hand side of (30). Referring to Fig. 9 x (meters)
and applylng thdl function to a vertex yields for any edge Fig. 10. Equivalent magnetic current on a rectangular cavity-backed slit
ko= 1,2, ., K' connected to vertex we have illuminated by a normal incident TE plane wave.
AD BC _ . _
BT - BT =B - B (37) where now the unknowns are exclusively in terms of the
For the right-hand side of (30), we have unknown electric field coefficients. By solving (40) for a given
) excitation, we obtain electric field at each vertex. Next, we
_]w/Bt ~a, dl+ Mos(p —p') use (39) to obtain the magnetic field coefficients. Thus, the
! elements oﬁ/fé are obtained by placing the magnetic current
= —jwB;x //\ik(p) ca, dl+ M, source att,, ¢ = 1, 2, - - -, N and obtaining the corresponding
! magnetic field atz,, p = 1, 2, ---, N. Note thatz, andz,
= —gwB;r okl + My cost (38)

are located along the slot width.

whereo,;x = 1.0 if A;x anda, are in the same direction and

l;x is the length of the edgé. Also, ¢ is the angle between the V. NUMERICAL RESULTS

normal vector to the edge, and the direction of the current | this section, we present the numerical results obtained
a,. Thus, using (37) and (38), we can write (30) as by the FIT scheme presented in Sections Il and IIl. Although,

E; — By = —gwBsn o lix + My cos 0. (39) we have reproduced most of the results presented in [3], [4],

for the sake of brevity, we present only rectangular cavity
Using (39) and (36) to eliminate the magnetic field coefﬁa 2X x 0.8)) here.

cients, we have In Figs. 10 and 11, we present the equivalent magnetic

K K current induced on the aperture as function of slot width for
B, — Ey Mg cos vy, o -
— JwkE; g €i = g ——— normally incident TE and TM plane waves, respectively. The
—jwak,lk, —jwoyilyi A . . .
Fiz=i Fiz=i slot region is divided into 24 equal segments. The cavity region

(40) is divided into 24 x 16 squares. By joining the diagonals,
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TM Case [4] S. K. Jeng and S. T. Tzeng, “Scattering from a cavity-backed slit in a
ground plane—TM case/EEE Trans. Antennas Propagatol. 39, pp.
Lambda = 1.667 Meters 661-663, May 1991.
4.0 T T ’ ~= Real -FD [5] U.van Rienen and T. Weiland, “Triangular discretization method for the
=~ Imag-FD evaluation of rf-fields in cylindrically symmetric cavitiedEEE Trans.
© Real - FIT Magn, vol. M-21, pp. 2317-2320, Nov. 1985.

@ Imag - FIT [6] J. E. Lebaric and D. Kaijfez, “Analysis of dielectric resonator cavities
using the finite integration techniqgue EEE Trans. Microwave Theory
Tech, vol. 37, pp. 1740-1748, Nov. 1989.

[7] J. E. wheeler lll, “Formulation and investigation of finite integral
techniques for computing electromagnetic fields in the presence of
arbitrary inhomogeneous objects,” Ph.D. dissertation, Univ. Houston,
Houston, TX, 1991.

20 - 7 [8] R. F. Harrington and J. R. Mautz, “A generalized network for formu-
lation for aperture problems,/EEE Trans. Antennas Propagatvol.
AP-24, pp. 870-873, Nov. 1976.

-M(x)/eta

40 . . . [9] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
-1.0 0.5 0.0 0.5 1.0 by surfaces of arbitrary shapelEEE Trans. Antennas Propagatzol.
x (meters) AP-30, pp. 409-418, May 1982.

Fig. 11. Equivalent magnetic current on a rectangular cavity-backed slit
illuminated by a normal incident TM plane wave.
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Thus, FIT may be considered as an alternate method to FE

solution. Presently, work is in progress to apply the FIT

method to three-dimensional problems.
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