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Application of Finite-Integral Technique to
Electromagnetic Scattering by Two-Dimensional

Cavity-Backed Aperture in a Ground Plane
Sadasiva M. Rao,Senior Member, IEEE, Griffin K. Gothard, and Donald R. Wilton,Fellow, IEEE

Abstract—In this work, we analyze the electromagnetic scat-
tering by a cavity-backed two-dimensional (2-D) aperture in a
ground plane illuminated by either a TE or TM plane wave.
The analysis is based on the well-known generalized network
formulation. To obtain the admittance matrix of the cavity, the
cavity is modeled by triangular cylinders. Also, in order to specify
inhomogeneous materials, a separate� and � may be assigned
to each cylinder. Further, the cavity is analyzed applying the
finite-integral technique (FIT), which results in spurious-free
solution. Finally, numerical examples are presented to illustrate
the applicability of the method.

Index Terms—Electromagnetic scattering, numerical analysis.

I. INTRODUCTION

T HE problem of electromagnetic field penetration into
an arbitrarily shaped cavity backing an aperture in a

ground plane has received considerable attention because of
the applications in aerospace and communications industry.
Traditionally, these type of problems have been analyzed using
the mode matching [1] and the modal solutions via method of
moments [2]. Unfortunately, these methods are applicable to
rectangular cavities only which is quite restrictive. Recently,
however, the finite-element (FE) method received increased
attention for the the field penetration problem because: 1)
the FE approach generates a highly sparse system matrix and
2) modeling inhomogeneous regions and arbitrary geometries
is straightforward. In fact, the two-dimensional (2-D) cavity-
backed aperture problem using FE method was already solved
[3], [4]. However, the main disadvantage of the FE method is
the presence of spurious solutions, which sometimes leads to
inaccurate and oscillatory solutions.

In this work, we present an alternate approach to solve
the electromagnetic field penetration into a cavity backing an
infinitely long slot. The approach is termed as finite-integral
technique (FIT) [5]–[7]. The FIT uses the integral form of
Maxwell’s equations applied to a discrete conformal grid.
The cavity volume is subdivided into triangular cylinders and
constitutive material parameters are assigned to each cylinder,
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thus facilitating the specification of an inhomogeneous region.
Further, the unknown vector electric and magnetic fields
are approximated by specially designed basis functions with
unknown coefficients. These basis functions let us satisfy
all the required continuity conditions of the electric and
magnetic fields at every material boundary. Some of the major
advantages of the FIT approach may be listed as follows.

1) The present approach requires minimal computer stor-
age, thereby enabling us to solve electrically large prob-
lems.

2) Modeling of various materials is very simple.
3) User-defined basis function provides a better control on

the algorithm and enables us to satisfy all the boundary
and continuity conditions accurately.

4) The usage of the integral form of Maxwell’s equations
provide a smoothing effect on the solution obtained.

5) Spurious solutions are not observed in the present for-
mulation; the absence of spurious solutions may be due
to the usage of specially developed basis functions.

The paper is organized as follows. In the next section, a
detailed mathematical formulation of the FIT scheme for the
TE case is provided. Here, we describe specially designed
basis functions to approximate the unknown electric and
magnetic fields. Further, we provide the detailed mathematical
description of the application of the FIT to the problem under
consideration. In Section III, we discuss the application of
FIT to the TM problem. Numerical examples are presented
in Section IV to demonstrate the validity of the FIT approach.
Finally, some important conclusions are drawn from this study
are presented in Section V.

II. TRANSVERSE ELECTRIC CASE

Consider a cavity-backed 2-D slit (as shown in Fig. 1)
illuminated by an incident plane wave given by

H
i = H0e

jk(x cos�+y sin �)
az (1)

whereHi is the incident magnetic field plane wave,k is the
wavenumber, and� is the angle of arrival of the plane wave.
By the TE assumption, the incident as well as the scattered
magnetic field is in thez direction and the electric field is in
the xy plane.

By using the generalized network formulation [8], the
problem at hand may be separated into three subproblems,
viz.: 1) radiation problem; 2) short-circuit problem; and 3)
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Fig. 1. Cavity-backed slit.

(a) (b) (c)

Fig. 2. Equivalent problems.

cavity problem as shown in Fig. 2. For the radiation and
cavity problems, an equivalent magnetic surface currentM =
M (x)az and it’s negative are attached on the exterior and
the interior side of the closed aperture. Dividing the aperture
region intoN equal subdomains and following the procedures
described in [3], we have

[[Y R] + [Y C ]][V ] = [I]: (2)

The evaluation of[Y R] and [I] is straight forward and well
presented in [3]. The admittance matrix[Y C ] is the admittance
of the cavity. In this work, the matrix elements of[Y C ] are
obtained by applying the FIT method as discussed in the
following subsection.

A. Evaluation of[Y C ] Using FIT Formulation

The FIT directly applies the Maxwell equations in integral
form to a discrete grid. Maxwell’s equations in the integral
form are given byZ
s

(r� E) � an ds = �|!

Z
s

�H � an ds+

Z
s

M � an ds (3)
Z
s

(r�H) � an ds = |!

Z
s

�E � an ds (4)

whereH is the magnetic field,E is the electric field,� is the
permittivity, and� is the permeability of the region bounded
by the surfaceS. Also,M = M0�(�� �

0)az is the magnetic
current exciting the cavity. Further, for the 2-D TE case, the
magnetic field is along thez direction and the electric field is
confined to the transverse plane (xy plane).

First, consider (3). Applying Stoke’s theorem to an arbitrary
closed surface in thexy plane (as shown in Fig. 3) and

Fig. 3. The area of integrationS with the normal vectorn in thez direction.

Fig. 4. The area of integrationS with the normal vectorn in the xy

(transverse) plane. The valuelz is the length ofS along thez direction.

utilizing the fact thatH = Hzaz yieldsI
l

Et � dl = �|!

Z
s

�Hz ds+M0 (5)

where l is the closed path about the surfaceS, Et is the TE
field, andHz is the magnetic field in thez direction.

Next, consider (4). For this equation, define the surfaceS

such that the normal vectoran lies in thexy plane, as shown
in Fig. 4. Again, applying Stoke’s theorem to (4) yieldsI

l

H � dl = |!

Z
s

�E � an ds: (6)

In (6), the path of integration is along the contour ofS as
shown in Fig. 4. This path lies along segmentsAB, BC, CD,
andDA. Also, note that along pathsAB andCD, H �dl = 0,
sincedl is perpendicular toz. Thus, we haveI

l

H � dl =
�
HAD

z
�HBC

z

�
lz (7)

whereHAD

z
andHBC

z
are the magnetic fields atAD andBC,

respectively, andlz is the length ofS along thez direction.
Further, noting that all field quantities are invariant withz,
we have

|!

Z
s

�E �an ds = |!

Z
z

Z
l

�Et �an dl dz = |!lz

Z
l

�Et �an dl:

(8)
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Fig. 5. A 2-D cavity represented by triangular cylinders.

Finally, using (7) and (8), (4) may be written as

HAD
z �HBC

z = |!

Z
l

�Et � an dl: (9)

B. Description of Basis Functions

In the FIT scheme, the 2-D cavity is approximated by
triangular cylinders as shown in Fig. 5. LetNI , NJ , andNK

represent the number of vertices, faces, and edges, respec-
tively, in the grid scheme. Next, we define two sets of basis
functions as follows.

Referring to Fig. 6(a), we define the first set of functions
�j(�) as

�j(�) =

�
1:0; � 2 Tj
0:0; otherwise

(10)

whereTj represents the region on facej.
Next, referring to Fig. 6(b) we define another set of func-

tions, the rooftop functions developed by Raoet al. [9] for
each edge as

^k(�) =

�
^
�

k
(�); � 2 T�

k

0:0; otherwise
(11)

where^+k =
�
+

k

h
+

k

andh+k is the height of the free vertex in the

triangleT+k from edgek. ^�
k

is defined identically on triangle
T
�

k
with variable superscript(�) instead of+.

Utilizing these basis functions, the total electric fieldEt

and magnetic fieldHz existing in the discretized space can
be expressed as

Hz =
NJX

j

Hj�j(�) (12)

Et =
NKX

k

Ek(^k(�)� az) (13)

(a)

(b)

Fig. 6. (a) Pulse function�i. (b) ^ basis function.

whereHj andEk represent the unknown coefficients to be
determined. Note that̂k(�)� az represents a vector directed
along the length of the edgek. This representation allows us to
enforce the continuity of tangential electric fields at material
boundaries.

C. Numerical Analysis

The next step in the FIT procedure is to determine a discrete
expression for the integral form of Maxwell’s equations, which
will be used to generate the FIT global matrix. This is accom-
plished by using the basis functions as defined in (12) and
(13) to provide approximations for the TE and axial magnetic
fields in (5) and (9). The resulting simplified equations will
be combined to eliminate the TE field unknowns, resulting
in a system of equations in terms of the magnetic field
unknowns only. This is accomplished as follows by referring
to a triangular patchj, as shown in Fig. 7.

Now, consider the left-hand side of (5). The integral is
defined over a closed pathl, which can be defined around
the three edges composing each facej. This yields

I
l

Et � dl =

Z
edge#1

Et � dl+

Z
edge#2

Et � dl

+

Z
edge#3

Et � dl: (14)
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(a)

(b)

Fig. 7. A triangular facej with adjacent triangles.

Applying the rooftop function defined in (11) for an indi-
vidual edgek, k = 1, 2, and3 in (14) yieldsZ

k

Et � dl = Ejk

Z
k

(^jk(�) � az) � dl

= Ejk

Z
k

^jk(�) � an dl = Ejk�jkljk (15)

where �jk = 1:0 if ^jk and an are in the same direction,
otherwise�1:0, and ljk is the length of the edgek. Thus,
using (15), we can rewrite (14) as

I
l

Et � dl =
3X

k=1

Ejk�jkljk : (16)

Next, consider the right-hand side of (5). Substituting the
�j function defined by (10) for the magnetic field yields for
face j

�|!

Z
s

�Hz ds+M0 = �|!�jHjAj +M0 (17)

where�j is the permeability associated with facej, Aj is the
area of facej, andHj is the unknown magnetic field quantity,
defined at the centroid of facej.

Thus, using (16) and (17), (5) may be written as

3X
k=1

Ejk�jkljk = �|!�jHjAj +M0: (18)

Now, let us consider the left-hand side of (9). Referring to
Fig. 7 and applying the�j function defined in (11) for an
edgek, k = 1, 2, and 3 yields

HAD
z �HBC

z = Hj �Hjk (19)

whereHj andHjk are the unknown magnetic field quantities
at the centroids of the triangles connected to edgek.

Last, consider the right-hand side of (9). Applying the
rooftop function defined in (11), we have

|!

Z
k

�Et � an dl

= |!Ejk

Z
k

�(^k(�) � az) � an dl

= |!Ejk

�Z
k

�j^k(�) � dl+

Z
k

�jk^jk(�) � dl

�

= |!Ejk
5ljk

36

�
�jmj

Aj

+
�jkmjk

Ajk

�

= |!Ejk�jk (20)

wheremj andmjk are the median lengths from the opposite
vertex to the edgek and Aj and Ajk are the areas of the
triangles connected to edgek.

Thus, using (19) and (20), we can write (9) as

Ejk =
1

|!�jk
[Hj �Hjk]: (21)

Finally, substituting (21) into (18), we have forjth patch

3X
k=1

[Hjk �Hj]
�jkljk

�jk
+ !2�jAjHj = �|!M0 (22)

where now the unknowns are exclusively in terms of the
unknown magnetic field coefficients. Applying (22) for each
triangular patch in the grid scheme, a gobal FIT matrix may
be generated that is sparse with, at most, four nonzero entries
per row. By inverting this matrix and multiplying with the
excitation vector, the magnetic field coefficients throughout
the cavity region may be calculated. However, we need the
magnetic field only at the aperture, which may be obtained
as follows.

The elements ofY C
pq are obtained by placing a unit magnetic

current source atxq, q = 1, 2, � � �, N , solving (22), and
obtaining the corresponding magnetic field atxp, p = 1, 2,
� � �, N . This, in effect, implies the evaluation ofpqth element
of the inverted FIT matrix.

A close examination of (22) reveals that it is, in fact, the
finite-difference equation for the triangular grid. Also, it is
very easy to derive the traditional finite-difference equation
applied to a square grid by following the numerical procedure
narrated in this section.

Finally, we mention here that although not attempted in the
present work, the frontal solution employed in [3] can also be
employed in the FIT scheme.
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III. T RANSVERSE MAGNETIC CASE

Consider again the cavity-backed 2-D slit shown in Fig. 1,
illuminated by a TM incident plane wave given by

E
i = E0e

jk(x cos�+y sin �)
az: (23)

By using the generalized network formulation [8], again,
the problem at hand may be separated into three subproblems,
viz.: 1) radiation problem; 2) short-circuit problem; and 3)
cavity problem as shown in Fig. 2. For the radiation and
cavity problems, an equivalent magnetic surface currentM =
M (x)ax and its negative are attached on the exterior and the
interior side of the closed aperture, respectively. Further, these
problems are coupled and may be described by the following
equation given by

[[Y R] + [Y C ]][V ] = [I]: (24)

The evaluation of[Y R] and [I] is straightforward and well
presented in [4]. The admittance matrix[Y C ] is the admittance
of the cavity. In the following subsection, we present the
evaluation of matrix elements of[Y C ] by applying the FIT
method.

A. Evaluation of[Y C ] Using FIT Formulation

First, consider (4). Applying the Stokes theorem to an
arbitrary closed surface in thexy plane (as shown in Fig. 3)
and utilizing the fact thatE = Ezaz yieldsI

l

Bt

�
� dl = |!

Z
s

�Ez ds (25)

wherel is the closed path about the surfaceS, Bt is the TM
flux density andEz is the electric field in thez direction.

Next, consider (3). Note that for the TM case,M =
M0�(� � �

0)ax, i.e., along the transverse plane to the axis
of the slot. For this equation, define the surface as shown in
Fig. 4 and apply the Stokes theorem to obtainI

l

E �dl = �|!

Z
s

B � an ds +

Z
s

M � an ds: (26)

In (26), the path of integration is along the contour ofS, as
shown in Fig. 4. This path lies along the segmentsAB, BC,
CD, andDA. Note that along pathsAB andCD, E �dl = 0
sincedl is perpendicular toz. Thus, we haveI

l

E � dl =
�
EAD

z
� EBC

z

�
lz (27)

whereEAD

z
andEBC

z
are the electric fields atAD andBC,

respectively, andlz is the length ofS along thez direction.
Further, noting that all field quantities are invariant withz we
have

�|!

Z
s

B � an ds = �|!

Z
z

Z
l

Bt � an dl dz

= �|!lz

Z
l

Bt � an dl (28)

and Z
s

M � an ds = M0lz

Z
l

�(� � �
0)ax � an dl: (29)

Fig. 8. Pulse function�i.

Thus, using (27)–(29), (26) may be written as

EAD

z
� EBC

z

= �|!

Z
l

Bt � an dl +M0lz

Z
l

�(� � �
0)ax � an dl: (30)

B. Description of Basis Functions

The next step in the numerical scheme is to approximate
the 2-D cavity by triangular cylinders, as shown in Fig. 5. Let
NI , NJ , andNK represent the number of vertices, triangular
faces, and edges, respectively, in the grid scheme. Also, letNB

represent the number of vertices on the cavity walls. Next, we
look at the basis functions.

Referring to Fig. 8, we define the a set of functions termed
as the pulse functions�i(�) as

�i(�) =

�
1:0 � 2 Ti
0:0 otherwise

(31)

whereTi represents the region obtained by assembling all the
triangles connected to vertexi and joining the centroids of each
triangle to the midpoints of each edge connected to vertexi.
Note that eachTi represents a closed contour, provided vertex
i is not a boundary vertex.

Next, the total electric fieldEz and magnetic flux density
Bt existing in the discretized space can be expressed as

Ez =
NIX
i

Ei�i(�) (32)

Bt =
NKX
k

Bk^k(�) (33)

whereEi andBk represent the unknown coefficients to be
determined. Note that̂k(�), defined in (11), has a continuous
normal component along each edge. This property is important
in enforcing continuity of the magnetic flux density at material
boundaries.

C. Numerical Analysis

Consider an interior vertexi, as shown in Fig. 9. Vertices
ii = 1, 2, � � �, Ii connect the edgeski = 1, 2, � � �, K i to
the vertexi, and ji = 1, 2, � � �, J i represent the triangles
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connected to vertexi. Using this notation, we will derive the
finite-integral discretized form of (25) and (30).

Consider the left-hand side of (25). Substituting the rooftop
function defined in (11) we haveI

l

Bt

�
�dl =

K
iX

ki=1

Bki

�

I
l
ki

^ki(�) � dl

=
K

iX
ki=1

Bki
5lki

36

"
m+

ki

�+
ki
A+
ki

+
m�
ki

��
ki
A�
ki

#

=
K

iX
ki=1

Bki�ki (34)

whereT�
ki

are the triangles connected to edgeki, m�

ki
are the

median lengths from the opposite vertex to the edgeki, and
A�
ki

are the areas of the trianglesT�
ki

.
Next, let us look at the right-hand side of (25). Substituting

the �i basis function defined by (31) for the electric field
yields, for any vertexi

|!

Z
s

�Ez ds = |!�

Z
@Ti

Ei�i(�) ds

= |!Ei

JiX
ji=1

�ji
Aji

3
(35)

where @T i is the contour of the�i(�) subdomain and�ji
andAji are the permittivity and area, respectively, associated
with face ji.

Substituting (34) and (35) into (25) yields

K
iX

ki=1

Bki�ki = |!Ei

J
iX

ji=1

�ji
Aji

3
: (36)

Next, consider left-hand side of (30). Referring to Fig. 9
and applying the� function to a vertexi yields for any edge
ki = 1, 2, � � �, Ki connected to vertexi, we have

EAD
z � EBC

z = Ei � Eik: (37)

For the right-hand side of (30), we have

�|!

Z
l

Bt � an dl +M0�(� � �
0)

= �|!Bik

Z
l

^ik(�) � an dl +M0

= �|!Bik�ik lik +M0 cos � (38)

where�ik = 1:0 if ^ik andan are in the same direction and
lik is the length of the edgeik. Also,� is the angle between the
normal vector to the edgean and the direction of the current
ax. Thus, using (37) and (38), we can write (30) as

Ei � Eik = �|!Bik�iklik +M0 cos �: (39)

Using (39) and (36) to eliminate the magnetic field coeffi-
cients, we have

K
iX

ki=1

Ei � Eii

�|!�ki lki
�ki � |!Ei

J
iX

ji=1

�ji
Aji

3
=

K
iX

ki=1

M0 cos ��ki

�|!�kilki

(40)

Fig. 9. A vertexi with associated verticesii, edgeski, and trianglesji . In
this case, the local variablesIi

= K
i
= J

i
= 6.

Fig. 10. Equivalent magnetic current on a rectangular cavity-backed slit
illuminated by a normal incident TE plane wave.

where now the unknowns are exclusively in terms of the
unknown electric field coefficients. By solving (40) for a given
excitation, we obtain electric field at each vertex. Next, we
use (39) to obtain the magnetic field coefficients. Thus, the
elements ofY C

pq are obtained by placing the magnetic current
source atxq, q = 1, 2, � � �, N and obtaining the corresponding
magnetic field atxp, p = 1, 2, � � �, N . Note thatxp andxq
are located along the slot width.

IV. NUMERICAL RESULTS

In this section, we present the numerical results obtained
by the FIT scheme presented in Sections II and III. Although,
we have reproduced most of the results presented in [3], [4],
for the sake of brevity, we present only rectangular cavity
(1:2�� 0:8�) here.

In Figs. 10 and 11, we present the equivalent magnetic
current induced on the aperture as function of slot width for
normally incident TE and TM plane waves, respectively. The
slot region is divided into 24 equal segments. The cavity region
is divided into 24� 16 squares. By joining the diagonals,
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Fig. 11. Equivalent magnetic current on a rectangular cavity-backed slit
illuminated by a normal incident TM plane wave.

the region is aproximated by 768 triangular cylinders. For
comparison, we also present the finite-difference solution. We
note good agreement between both solutions. Further, these
results compare well with the FE solutions [3], [4].

V. CONCLUSION

The purpose of this effort was to validate the FIT method for
cavity-backed aperture problems illuminated by TE and TM
plane waves. It may be noted that the FIT technique generates
a sparse matrix and easily handles inhomogeneous materials
and complex geometries. Further, the FIT method is free of
spurious solutions. We observed this fact while calculating
the modal frequencies of rectangular and circular waveguides.
Thus, FIT may be considered as an alternate method to FE
solution. Presently, work is in progress to apply the FIT
method to three-dimensional problems.
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