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Calculation of the Surface-Wave Excitation
In Multilayered Structures

Markus O. ThiemeMember, IEEE and Erwin M. Biebl,Senior Member, IEEE

Abstract—A novel rigorous analysis of the surface waves ex- While sophisticated root-finding algorithms are available for
cited by a Hertzian dipole embedded in a multilayered structure is  the computation of the poles, the calculation of the residues
presented. A transmission-line resonator equivalent circuit is used s more complicated. Two approaches to this task have been

to calculate the surface wave’s electromagnetic field components.k f the literat Analvtical thod lculate th
It is shown that the power carried by the surface waves is related nown irom the fiterature. Analytical methods caiculate the

to the energy stored in the resonator. An analytical method for residues manually [4]. This method benefits high computation
the calculation of the stored energy is given. A simple algorithm speed and high accuracy. However, it leads to considerable
iterating over the layers of the structure is derived to analytically ~analytical labor in case of multilayered structures. As another
calculate the surfa_ce wave'’s electromagnetic field compon_entsdrawback’ the substrate configuration must be known in ad-
and the power carried by surface waves. The need of numerical . . . . .
integration or calculation of residues is omitted. This benefits a vance, which means a I_OSS in generality when implemented in
reduction in computation time and an improvement in accuracy CAD programs. Numerical methods, on the other hand, use
and versatility of computer-aided design (CAD) programs. The algorithms to numerically take the derivative. While not re-
presented method has been implemented in a microwave CAD stricted to a special structure of the substrate, these algorithms
program. Numerical results for planar antennas are presented. 56 known to be numerically ill conditioned, resulting in low

Index Terms—Nonhomogeneous media, surface waves. accuracy and low computational stability [5].

In this paper, a novel method is presented. It is based
on a network theorem that relates the stored energy in a
lossless resonator at resonance frequency to the residue of the

ICROSTRIP and multilayered planar antennas excit@sonator’s immittance function. A transmission line resonator

surface waves that propagate along the dielectric sukyuivalent circuit representing the layered structure is derived.
strate. The power carried by surface waves contributes signfidiscretized transmission line model with arbitrary dispersion
cantly to the loss of the antenna. Moreover, parasitic radiatieRaracteristics is used to calculate the energy stored in the
from the substrate edges occurs in the presence of surfaggonator. This allows for the analytical calculation of the
waves, deteriorating the radiation pattern and affecting thgsidue of Green’s function in the spectral domain. A simple
input impedance. Therefore, the calculation of the surfacgtgorithm iterating over the layers of the structure is derived to
wave excitation is a key function in microwave computeranalytically calculate the surface-wave’s electromagnetic com-
aided design (CAD) programs. ponents and the power carried by surface waves. Considerable

Asymptotic methods accounting for the saddle point anghalytic work can be saved for these types of problems. As an
the singularities of Green’s function in the spectral domaiample, a microstrip structure is investigated and the results
can be applied to calculate the electromagnetic far field baffe compared with the literature.
in the free-space and in the vicinity of the substrate. The A |ossless structure is assumed in the following derivation
“‘immittance approach” introduced by Itoh [1] has proven to bgf the method. The resulting equations for the microstrip
a standard method for the calculation of Green’s function ebnfiguration (cf., Section VII) turned out to be valid for a
a layered structure in the spectral domain. A matrix algorithfgssy structure also when a complex permittivity was assumed.

that is well suited for an implementation in CAD programshe general case, however, is left for further investigations.
has been derived for that task [2]. The electromagnetic field

components in the free-space can be obtained by evaluating ||, CALCULATION OF ELECTROMAGNETIC FIELD
Green'’s function at the saddle point. The location of the saddle COMPONENTS IN THE SPECTRAL DOMAIN

point is related to the observation point’s spherical coordinate
[3]. An implementation in microwave CAD programs is

I. INTRODUCTION

SThe novel method presented in this paper is based on the
‘calculation of the electromagnetic field components in the

therefore, straightforward. . . )

- ectral domain. In the following, a multilayered structure
However, to compute the electromagnetic field componen . 4 :

. . consisting ofn homogenous, lossless, and isotropic layers
of the surface waves, the poles and associated residues . . . : .
, C . of thicknessh;, ¢ = 1---n with the relative permittivity
Green'’s function in the spectral domain must be calculated. . o . . ;
¢; and the relative permeability; is considered. We will
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source z and y components differently, depending on the type of
field (electric or magnetic). We do not need to consider the

J = 6(2)é(y)o(=) lole, @ . components, and £, here since they can be calculated

or a magnetic point source from the ¢ and p components using the divergence property
of the electromagnetic field quantities. As can be seen from

M = 6(x)0(y)o(z) Kole, (2) (21)-(24), thee components of the electromagnetic field

orrespond to the components of the surface wave, whereas
he 4 components correspond to tkecomponents. The (6)
and (7) hold within each layer of the substrate. At the interfaces
of the layers, the and ¢ components of the electromagnetic
k'r ky, 2) = / / (z,y, 2)e —i (ke +EsY) e dy 3) field must be continuous [6]. We substitute

is assumed to be located at the interface of two layers. The
symbol § denotes Dirac’'s delta function. We apply a two-
dimensional Fourier transform

(i)
to Maxwell's equations with the time dependeneyp(jwt) l? _”.}
omitted and use a cylindrical coordinate system in the spectral HEZ) -1
domain Y
ky = k; cos @, (4) Zgz) — Zw
ky = k;sin ®. (5) cos @Iyl — 1y
) . L —sin ®Uyl — vy (15)
This allows for a decomposition of the electromagnetic field
into e_andp components yielding two ordinary d|fferent|aI]cor ¢ components and
equations
dEY) - . B0
© 7 ) — _ yp) _
dZ + 77 ZC,MHC,M MC,M (6) H/(;) — Z
Fr(i) :
Tk ¥ QB = -] ™) 7’ =1
with —sin ® Il — iy
Z0 = f) ;i“ (8) —cos ®Uyl — vy (16)
Y i Ko
o = L JpikeZo (9) for s components. From (6) and (7), we get
H Y;57) o ]
v
and d_ +vZwi= —vab(z — z) a7)
o + 'y—v = —igé(z — 20) (18)

The tilde (~) denotes quantities in the Fourier domain. The

index ¢ denotes quantities in th#h layer of the structure. The which are the transmission line equations. This permits the

e andp components of the electromagnetic field quantities are
construction of a transmission line equivalent circuit resonator
related to the Cartesian components by

N 8 describing the layered structure [1]. Each section of the
(Ex ) B (cos $ —sin @) (E6 ) (1) resonator corresponds to a layer of the structure. The solution

Ey sin®  cos® E, of (17) and (18) for one section can be written as

I _fcosP —sind J o ) ) .

(jy ) o (sinCD cos @ ) (J,,,) (12) 1=y - = ZO+6iW ‘1'10—672 . (19)
(fi”) N <_ A COS(I)) (HF > (13) v=vy +vo = Zwigpe” T — Zwig_€e"". (20)

H, ) \cos® —sind® /\H,

MJ Csin®  —cosd M/ The index: selecting the layers has been omitted. Together
(My> = ( cos B —sin<I>> (Mu> (14) with the continuity condition at the interfaces of the layers,

the voltages and currents along each section of the resonator
Fig. 1 shows the relation between y ande, ¢ components. can be calculated from the current through the voltage source
This notation is consistent with the one used in [2]. It cafwhich represents a magnetic point source) or from the voltage
be transformed to Itoh’s: and v notation [1] by a change across the current source (which represents an electric point
in the sign of some of the components. The advantage swfurce). A matrix algorithm to calculatge,, #_, vo4+, and

our method lies in the fact that (6)—(10) are decoupled for_ is particularly useful for an implementation of this task in

e and ¢ components, thus saving code when implement&RAD programs [7]. Backsubstituting the electromagnetic field
in a CAD program. However, this can only be achieved byomponents yields Green'’s function in the spectral domain
a transformation that relates theand ¢ components to the for any givenz.
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ky
E, J, H, M| o
E,J,H, Mgl .
ny us (24 €
Eg} Jg! -Hul -Mu
)
E,J,H, M, k —
Fig. 1. Relation betweer,y and ¢, x components.
[ll. CALCULATION OF SURFACEWAVE MODES Since the electromagnetic field components of the surface

While numerical techniques must be applied in the nea/@ves can be calculated from the above relations using (19)
field region to obtain Green’s function in the space domaid (20) at any given, it is sufficient to consider the
asymptotic techniques can be used in the far-field regi ectromagnetic field components in the plane of the source
Applying the modified saddle-point technique shows that tfe= - Thus, to calculate the surface waves, we can view
electromagnetic field components of the surface waves 4§ transmission line resonator equivalent circuit as a one-port

related to the residues of the poles of Green's function fPerated at a resonance frequency.

the spectral domain [8] by I_n the n_ext section, we will give a network_theprem,
_ which permits the calculation of the residue of the immittance
_ E. . function of a lossless one-port from the energy stored in
Ep _AReS<trig(<I>) k""’)mg(gp) (1) the one-port. This is particularly useful in our case, since
- the energy stored in the transmission line resonator can be
B, = A Res .E'/:, ko | trig(e) (22) calculated analytically, as will be shown in Section V.
trig(®)
H. :
H,=A Res(t (@) ktw) trig(e) (23) IV. ENERGY STORED IN A LOSSLESSONE-PORT
Il
B In the following, a novel network theorem is derived relating
H, . the energy stored in a lossless one-port operated at resonance
H,=—AR — ke |t 24 . T .
v es(tng(q)) ""’) rig(s) (24) frequency to the residue of the one-port’s immittance function.
_ A proof of the theorem will be given using a canonical
with realization of the one-port.
ki iz _ip We consider a lossless one-port, which is characterized
A= Imp TaeTI el (25) by its impedance functior?(w). We assume tha¥(w) has
a simple pole atv = wy, i.e., the one-port has a parallel
and resonance ab; . Likewise, the dual case of a one-port operated
. sin(- - -) at a series resonance frequency can be considered by replacing
trig(---) = cos(- - ). (26) g guantities by their dual counterparts in the following.
For any lossless one-port, a partial-fraction expansion of its

In (21)—(24), the “trig” function within one equation is the
same. It is determined from (11)—(14). The indexdenotes
the pole of the Green’s function in the spectral domain and

impedance

. . 1 r i
Res(f(z) | 20 ) denotes thdef residue of thedfcomplex function Z(w) = - n Z _C ot jwle. 27)
[ at its polez.. We useZ-|. to denoteZ> evaluated at wCy @ = e —w

Z = Z.. FOr az-oriented source (which is not considered
here) similar equations can be derived. Generdlly, is not s yosgiple [10]. The functio (w) hasr simple poles at the
unique, i.e., more than one surface-wave mode exists. Note that - e frequencies, = ———. In case of a distributed
a pole of a Green'’s function corresponds to a resonance of _port,r — oo. Fig. 2 showéy'cpflye correspondifigst Foster
resonator equivalent circuit. A root-finding algorithm has tPeaIizati(;n of (27). Using

be applied to computé; ., [9]. k... is real for propagating
surface-wave modes. Therefore, by (1§),, can be either
real, corresponding to an evanescent wave in layer purely _

imaginary, corresponding to a propagating wave in that layer. wy —w? Wy

+—2 (28)




THIEME AND BIEBL: CALCULATION OF THE SURFACE-WAVE EXCITATION IN MULTILAYERED STRUCTURES 689
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Fig. 2. First foster realization of the impedance functigiiw).

we can write (27) as Since
1 ZT T s . Yy —
Z — % _ P Loo 29 (wm) = 0 (35)
() JwCl + By (w,, —w Wy, tw T (29)

C . we can write
which is the Laurant expansion &f(w). It follows from (29)

that the residue of(w) at the polew, is given by Res(Z Y W — Woo 36
1 es( | wm) - w_lil)loo Y((.d) _ Y(Woo) ( )
Res(Z |wi) = —. (30)
2jCh and, thus,
We now assume that the one-port is operated at its parallel 1
resonance frequeney, . A voltagev # 0 then appears across Res(Z |weo) = w577 (37)
the port while the current flowing into it is zero. Therefore, E|m

the voltage across,, and L, is zero. Also, the voltage across ) ) _
the parallel resonance circuifs, C, is zero, except for = 1. Together with (32), it follows that the energy stored in a

Hence, the energy stored in the one-port is concentrated in {figS€ss one-port operated at a parallel resonance frequency

resonant circuitZ, C;. This energy is given by can pe caI(_:uIated if the derivative of the o_ne-port’s adm_ittgnce
function with respect to the frequency is given. A similar
W = 1(]1 v (31) derivation shows that the energy stored in a lossless one-port
2

operated at a series resonance frequency can be calculated
where v denotes the complex instantaneous voltage acrdbshe derivative of the one-port's impedance function with
the one-port. For convenience, we writg, instead ofw; in  respect to the frequency is given.
the following to denote the resonance frequency. Using (30),As we will see later, the resulting equations for the residues
we can conclude that the following relationship between tld Green'’s function of a layered structure is independent.of
energyW,, stored in a lossless one-port operated at a paralléhis means that it would have been possible to defifig:})”
resonance frequeney.., the voltagev., across the one-portinstead of 7Z(w)” for a lossless one-portv would then have
in this case and the residue of the impedance functign) been completely eliminated in the derivation of the method.
of the one-port atv = w, holds true: However, the authors felt that the calculations are far more
readable with a notation using.

2
Res(Z | weo) = JZ;) . (32)
A similar derivation shows that V. ENERGY STORED IN THE TRANSMISSION
D LINE RESONATOR EQUIVALENT CIRCUIT
Res(Y | weo) = ZO;I/' (33) To calculate the energy stored in the transmission line
J4Weo

resonator, we use a distributed equivalent circuit model for
holds true in case of a lossless one-port operated at its segash section of the resonator.
resonance frequency.,. The admittance function of the In the last section, we have shown that the energy stored
one-port is denoted by (w) and i., denotes the complex in a lossless one-port operated at a parallel (series) resonance
instantaneous current flowing into the one-port. frequency can be calculated if the derivative of the one-port’s
We will now show that the residue of the impedance of admittance (impedance) function with respect to the frequency
lossless one-port operated at a parallel resonance frequendg igiven. Thus, we have to use a transmission line model
related to the derivation of the one-port’s admittance functiaghat allows for an independent adjustment of the transmission

Y (w) with respect to the frequency. line’s characteristic impedancgy , the propagation constant
From the definition of the residue of a function [11], ity and the dispersion characteristi€&? and 2. Furthermore,
follows that the equivalent circuit must support evanescent waves. This is
W — Weg accomplished by the equivalent circuit shown in Fig. 3, which

Res(Z | weo) = MEE; (W —we)Z(w) = ME{?& V(w) = represents a section of the transmission line with differential

(34) length dz. It results from a combination of the equivalent
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. .. 1 o
i -dv j+di dWe, = 50 Re(ve’*")dz (46)
— > - 1 1 ;
o 1) {— o AWy, = ST Re(ve? “")?dz. 47)
. C/ ’
L,dz d; l-di From (19) and (20), it follows for a propagating wave
Re(ie’i“’t)2 = (Re(ige’*") —|—'Re(i_ eI))? ' (48)
Re(ve’“")? = | Zw |*(Re(iy /') — Re(i_e’“'))?  (49)
Im(ie?“")? = (Im(iye?“?) + Im(i_e/*"))? (50)
v - v+dv Im(ve’“")? = | Zw |*(Im(iy e?“") — Im(i_e/“"))>  (51)
d"z 3 C,dz == and for an evanescent wave
Re(ie’“")? = (Re(iy ¢/“") 4+ Re(i_/“"))? (52)
Re(ve*")? = | Z ["(Im(iy ') = Im(i_¢/"))*  (53)
i ! Im(ie"m)2 = (Im(iye’*") —|—'Im(i_ ety ' (54)
) Im(ve’“")? = | Zw |*(Re(ig ¢/“") — Re(i_e’“"))>.  (55)
dz We use a polar form of the currents
) > iy = oy ]e 7 (56)
Fig. 3. Discretized transmission line model. and
io_ = |i0_|6jw_ (57)

circuits supporting TM and TE waves in hollow waveguides
[6]. in the following. By (19) and (20) (for propagating waves) the

We first show how the network elementsdz Lidz, total energy stored in a section of lengthof the transmission

’ dz
and 2 have to be chosen in order to match the charactens{lne is given by

|mpedanceZW, the propagat|on coefficient, and the disper-
sion character|st|c§7—W and 7 ” of a given transmission line.
We use (17) and (18) and apply Kirchhoff's current law and

1,.
W, = (§(|10+ |? cos(2¢4 — 282 + 2wt)

Kirchhoff's voltage law to the circuit shown in Fig. 3. This + [io— | cos(20- + 202 + 2wt))

ields o ¥ Sins ? + lio- [)Re(Zw )2
St e ) T lins llio— | cos(py — ¢ — wz)ﬁ%) &
T =Gt T (39) (59)

and by taking the derivative we obtain the circuit elements @1 for evanescent waves, the energy is given by

. 1 Im(Z
p I (72w | dvZw) dW, = —|20+|2 2% cos(2¢4 + 2w t)M
L. = 2\ w + dw (40) “
. ] s alm(Zy )
Ol =- K 7w (42) + 5'104262 cos(2p- + 2wl)— =
YLW
W(VZW —YT D ) Lo oy . dIm(Zw )
+ —<|ZQ+|26 2az + |Z()_|262a2>057
il (77) 2 du
=50 —— " (42) o da
2\ wiZw dw + |ioy |in_]| cos(py — ¢ )Im(ZW)dw dz.
2j
L, =~ ERNY (43) (59)
“(% —w—gs > We have chosen to express the stored energy in terms of

the current along the transmission line. However, this is not
The mstantaneous energy stored in the lumped eleniénts mandatory; alternatively, we could use the voltage across

L’ dz, and 2 of the equivalent circuit is given by the transmission line, which leads to similar expressions. It
can be seen from (58) and (59) that the stored energy is
AW, = lL’g Re(iel“")?dz (44) composed of two terms. One term harmonically oscillates with
T2 the frequencyw, while the other term is constant. This is also
dWe. = 11 Re(ie? )2 dz (45) true for the total energy stored in the resonator since the total

T2wC energy is calculated by integratind}” over dz. However, in
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the resonance case, the total stored energy must be stationdgmg the immittance approach derived in Section Il, the
Therefore, we can neglect the oscillating term and use tberrents¢,, and ¢, in each section of the resonator can

average energy be calculated. The summation over the energy stored in each
B 1 3 section of the resonator yields the total energy
dw, = <§<|i0+|2 + [io-|?) RG(ZW)@ n
W = W, ... 67
o dRe(Zw) 2 W 7
+ lios fio- | cos(ips — - = 282)8 = | dz
From (10), (32), and (33), we get
1 — 1 . 2, —2az . 2 2az dIHl(Zw) ( ) ( ) ( ) g
dWe = { 5 (Jio e + lio- [e*** Ja———= dk,
“ Res(Z | kyoo) = Res(Z | woo)d—w'
s da
Hlinello-costipy — o) iz 5 )= e oy e[
= Res Weo ) —| ——
" . d d
The — denotes averaged quantities. We substittiiteand 7, 70d “ oo
for the characteristic impedancé, and evaluate the above = Res(Z | woo)% 7o
equations at the pole = wy,, bkt = k1o, Y0 = Y0oa- THIS ke dw |
. o d
yields |v |2 Ve 470 (68)
- L, 0w j4W ktmdwm
dw, = —<§(|lo+| + Jio-[*) Res(Y | ko) = liso|” Yoo d70 (69)
)T AW, ke, dw |

=+ |2 19— | cos —w_ — 2Bz
o o~ cos(ipr = ’ )> Note thatRes(Z | k,_,) andRes(Y | k,_ ) are independent of

iz d% d 60 w sinceW,, ~ d”” 2|... Once the residues of Green'’s function
"’ Yoo dw o ‘ (60) in the planez = 0 have been calculated, the electric and
- 1 i magnetic field components at any givercan be calculated
AW, = — £=(Jigs "™ 2= + |ig_ [ e**=7) using (19)—(20).
2 . :
Using the divergence property
+linello-| cos(r — ) B0 70
d divH = 71
iz, = 00) g, (61) v 7
Yoo 49 oo the z components of the electromagnetic field can be calcu-
with lated. This permits the calculation of Poynting’s vector, which
— is defined as
Re(T) = -Re(E x H"). (72)
The upper sign is valid for surface-wave modes, while the 2
lower sign is valid foru surface-wave modes. Integratidgy’ The total power transported in a surface-wave mode results
over the length» of the considered section of the resonatdrom the integration of Poynting’s vector over the surface of
yields a cylinder with a radiup — co andz = —oo - - - 0, cf., [4]
W, = —h( (ling | + io_2) % lios llio_| cos(ps — o = lim lim / / Sy 0.2)) pd! dp. (73)
0=0Jz'=—2z
. Voo d% —
— Boh)sine(Boh) ) - 37, o (63) Note thatT,,(p,¢,2') = 0 if 2/ < —h.
. Too 09 oo Due to (19) and (20), the dependency of the electromag-
W. = —h <i§(|i0+|2 ex(—20es h) + |i0_|2 eX(Q%oh)) netic field of the surface wave is of the form
Y. d70 Aexp(—y;2) + Bexp(y,;2) (74)
+ |z 19— | cos — e . . .
i [lio-coslpe = - )>j " Yoo dw cf., [12]. Therefore, the integration overcan be carried out

(64) analytically.

The sinc-function is given by VI ALGORITHM
sinc(z) = {¥, for « f 0 (65) As a result,_thg following algorithm, which calculates the
L, for z =0 electromagnetic field components of the surface wave excited

by a Hertzian dipole embedded in a multilayered structure,
. can be given as follows.
ex(x) = {e = for l’f 0 (66) 1) Calculate Green'’s function in the spectral domain using
for z = 0. the immittance approach.

and the ex-function is given by
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Z [4]. Note that by (10),y2., = j02., IS purely imaginary,
T z w3 whereasys , = aj,, is real. This means, a propagating wave
— exists in Section Il of the resonator, whereas an evanescent
p ] wave exists in Section Ill. Backsubstitution yields the spectral
£=1, =1 @ Zyas Vs domain representation of the electric field in the plane 0
3T ' 3T
I} .
J = - ZE(ZN)ZESN) sinh sk

= Iyl
=* T0 '—@— " Zg?) sinh s h + ZEZ) coshys_h ’
ES €, =1 ;ES @ | Zo s | . {—sm ®, for ¢ components 77)

cos P, for ;. components

Using the immittance approach, we obtain for the current in
@ (b) Section I

Fig. 4. (a) Microstrip substrate. (b) Corresponding transmission line equiv- — v,
alent circuit resonator. oy =iy = = —— 78
* 2 22w o sinh v, b (78)

2) Calculate_ the propgga_tlon cons_tant of a Surface_Wa\\/v%ereas for the current in Section 1lI, we obtain
mode using a root-finding algorithm.

3) lterating over the layers of the structure; calculate the 1
energy stored in the resonator equivalent circuit using izy = 7 Voo (79)
(63)—(64) as a function of the voltage across the current i =0 W (80)
source or the current through the voltage source. -
4) Calculate the residue of Green’s function in the spectral )
domain using the energy residue theorem (68). Voo IS the volta_\ge across the current source of the equivalent
5) Calculate the field components using (21)—(24). circuit shown in Fig. 4 in case of resonance. _In the case of
6) Calculate the power carried by the surface wave usiy" example, we obtain for the energy stored in Section Il of
(73). the resonator

7) Repeat the above steps iterating over the propagating

surface-wave modes. A I [*€2¥a00 ka(27200 P+ 500 2955, h)
This algorithm has been implemented in the microwave CAD & o 820753, sinh” Yoo 81
program analysis and optimization of planar antennas (AOPAéPhd for the energy stored in Section IIl of the resona(tor)
VIlI. EXAMPLE: MICROSTRIP CONFIGURATION . dys | o ko
To validate the method derived in this paper, a microstrip We=-—=~ R (82)

configuration as depicted in Fig. 4 is considered as an example.

While the pres_ented_ algorithm is not r_estncted to a spemgl is the characteristic impedance of the free-space. With (68),
substrate configuration, a moderate size expression resulis . . : ;
. ; ! ' : - . after some lengthy calculations using complex trigonometric
in case of a microstrip configuration, which is suitable fo.

Feoo
. : identities, we get the result

a treatment in this paper. Furthermore, the results can ge ' 9
compared with the literature.

The microstrip substrate, which forms layer two, is char-Res(Z | kr..)
acterized by its relative permittivity, and its thicknesgh. _ ﬁ V30 V300 V200 . (83)
The backside metallization forming layer one is characterized Jko ki, 12—""(627300]1 +1)-— 12—00(73520’1 +1)

by its conductivitye — oo. The substrate is covered by the

free-space withis = 1, p15 = 1 (layer three). In Fig. 4(b), the The same result is obtained by calculating the residue directly
corresponding transmission line resonator equivalent circuitgsim (75). Using (21), we obtain

shown. We obtain
Zw o 2 inh y5 h
_ .Wz w3 SInh ¥ (75) k. e Zo s
Zw o sinhyoh + Zyw 5 cosh ya b E,q = —cosplyl 2_°° eI Eed ux,ka_w
m
where 7 is the input impedance of the resonator equivalent P 0 oo

Z

circuit seen by the current source. The poléZotan be found " 73""72‘:2 P (84)
from e (@mh 1) = S=(F5= 4+ 1)
Zw o sinhyah + Zyw 5 coshyoh =0 (76)

which is thep component of the TM surface-wave mode’s
which is the denominator of/. We restrict ourselves to theelectric field in the planee = 0. The results comply with
first pole, which corresponds to the T Murface-wave mode those reported in [4].
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VIIl. CONCLUSION [6] E. C. Jordan Electromagnetic Waves and Radiating Systen&ngle-
. . . wood Cliffs, NJ: Prentice-Hall, 1950.
In this paper, a novel method for the analytic calculation of7] E. Biebl, zZum Entwurf Integrierter Millimeterwellenschaltkreise (Ha-

the surface-wave excitation in multilayered structures has been bilitationsschrift) - Munich, Germany: Erschienen Selbstverlag, Apr.
. 1993.
presen_ted_. Th_e 'mmlt_tance aPprO_aCh has bee_n_ used t‘? set uf%]aA. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scat-
transmission line equivalent circuit of the stratified medium. A~ tering. London, U.K.: Prentice-Hall, 1991.
surface-wave mode corresponds to a resonance of the equ[g]_ D. M. Pozar, “Rigorous closed-form expressions, for the surface wave
. . . loss of printed antennasElectron. Lett, vol. 26, pp. 954-956, June
alent circuit. A novel network theorem has been derived that 1g¢q
relates the energy stored in a lossless one-port operated at[the G. C. Temes and J. W. LaPatratroduction of Circuit Synthesis and
i ite i i i Design New York: McGraw-Hill, 1977.
reS(.)nanC.e frequency tq the. residue of I.ts Immlttance_ funCt_I I:ﬂlll] D. F. Tuttle Jr.,Network Synthesis New York: Wiley, 1958.
A discretized transmission line model with arbitrary dispersiofi2] A. k. Bhattacharyya, “Characteristics of space and surface waves in a
characteristics is used to calculate the energy stored in the multilayered structure,1EEE Trans. Antennas Propagatol. 38, pp.
resonator. This allows for an analytic calculation of the surface 1231-1238, Aug. 1990.
wave'’s field components. The new method circumvents the
need of a numerical calculation of residues, which is an ill-
conditioned problem. A simple algorithm iterating over the
layers of the structure has been given, which is well suited f
an implementation in microwave CAD programs. Considerab
analytic labor is saved in case of multilayered structure
Furthermore, the structure of the substrate need not be kna
in advance, adding versatility to CAD programs. The methc
has been applied to a microstrip structure and the results h;

been compared with the literature.
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