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Calculation of the Surface-Wave Excitation
in Multilayered Structures

Markus O. Thieme,Member, IEEE, and Erwin M. Biebl,Senior Member, IEEE

Abstract—A novel rigorous analysis of the surface waves ex-
cited by a Hertzian dipole embedded in a multilayered structure is
presented. A transmission-line resonator equivalent circuit is used
to calculate the surface wave’s electromagnetic field components.
It is shown that the power carried by the surface waves is related
to the energy stored in the resonator. An analytical method for
the calculation of the stored energy is given. A simple algorithm
iterating over the layers of the structure is derived to analytically
calculate the surface wave’s electromagnetic field components
and the power carried by surface waves. The need of numerical
integration or calculation of residues is omitted. This benefits a
reduction in computation time and an improvement in accuracy
and versatility of computer-aided design (CAD) programs. The
presented method has been implemented in a microwave CAD
program. Numerical results for planar antennas are presented.

Index Terms—Nonhomogeneous media, surface waves.

I. INTRODUCTION

M ICROSTRIP and multilayered planar antennas excite
surface waves that propagate along the dielectric sub-

strate. The power carried by surface waves contributes signifi-
cantly to the loss of the antenna. Moreover, parasitic radiation
from the substrate edges occurs in the presence of surface
waves, deteriorating the radiation pattern and affecting the
input impedance. Therefore, the calculation of the surface-
wave excitation is a key function in microwave computer-
aided design (CAD) programs.

Asymptotic methods accounting for the saddle point and
the singularities of Green’s function in the spectral domain
can be applied to calculate the electromagnetic far field both
in the free-space and in the vicinity of the substrate. The
“immittance approach” introduced by Itoh [1] has proven to be
a standard method for the calculation of Green’s function of
a layered structure in the spectral domain. A matrix algorithm
that is well suited for an implementation in CAD programs
has been derived for that task [2]. The electromagnetic field
components in the free-space can be obtained by evaluating
Green’s function at the saddle point. The location of the saddle
point is related to the observation point’s spherical coordinates
[3]. An implementation in microwave CAD programs is,
therefore, straightforward.

However, to compute the electromagnetic field components
of the surface waves, the poles and associated residues of
Green’s function in the spectral domain must be calculated.
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While sophisticated root-finding algorithms are available for
the computation of the poles, the calculation of the residues
is more complicated. Two approaches to this task have been
known from the literature. Analytical methods calculate the
residues manually [4]. This method benefits high computation
speed and high accuracy. However, it leads to considerable
analytical labor in case of multilayered structures. As another
drawback, the substrate configuration must be known in ad-
vance, which means a loss in generality when implemented in
CAD programs. Numerical methods, on the other hand, use
algorithms to numerically take the derivative. While not re-
stricted to a special structure of the substrate, these algorithms
are known to be numerically ill conditioned, resulting in low
accuracy and low computational stability [5].

In this paper, a novel method is presented. It is based
on a network theorem that relates the stored energy in a
lossless resonator at resonance frequency to the residue of the
resonator’s immittance function. A transmission line resonator
equivalent circuit representing the layered structure is derived.
A discretized transmission line model with arbitrary dispersion
characteristics is used to calculate the energy stored in the
resonator. This allows for the analytical calculation of the
residue of Green’s function in the spectral domain. A simple
algorithm iterating over the layers of the structure is derived to
analytically calculate the surface-wave’s electromagnetic com-
ponents and the power carried by surface waves. Considerable
analytic work can be saved for these types of problems. As an
example, a microstrip structure is investigated and the results
are compared with the literature.

A lossless structure is assumed in the following derivation
of the method. The resulting equations for the microstrip
configuration (cf., Section VII) turned out to be valid for a
lossy structure also when a complex permittivity was assumed.
The general case, however, is left for further investigations.

II. CALCULATION OF ELECTROMAGNETIC FIELD

COMPONENTS IN THE SPECTRAL DOMAIN

The novel method presented in this paper is based on the
calculation of the electromagnetic field components in the
spectral domain. In the following, a multilayered structure
consisting ofn homogenous, lossless, and isotropic layers
of thicknesshi, i = 1 � � �n with the relative permittivity
�i and the relative permeability�i is considered. We will
use a Cartesian coordinate systemx; y; z with its z axis
perpendicular to the layers, a cylindrical coordinate system in
the space domain�; '; z, and a cylindrical coordinate system
in the spectral domainkt;�; z. An x-oriented electric point
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source

J = �(x)�(y)�(z)I0lex (1)

or a magnetic point source

M = �(x)�(y)�(z)K0lex (2)

is assumed to be located at the interface of two layers. The
symbol � denotes Dirac’s delta function. We apply a two-
dimensional Fourier transform

~	(kx; ky; z) =

Z
1

�1

Z
1

�1

	(x; y; z)e�j(kxx+kyy) dx dy (3)

to Maxwell’s equations with the time dependencyexp(j!t)
omitted and use a cylindrical coordinate system in the spectral
domain

kx = kt cos�; (4)

ky = kt sin�: (5)

This allows for a decomposition of the electromagnetic field
into � and � components yielding two ordinary differential
equations

d ~E
(i)
�;�

dz
+ 
iZ

(i)
�;�

~H(i)
�;� = � ~M (i)

�;� (6)

d ~H(i)
�;�

dz
+ 
iY

(i)
�;�

~E(i)
�;� = � ~J (i)

�;� (7)

with

Z(i)
� =

1

Y
(i)
�

=

iZ0

j�ik0
(8)

Z(i)
� =

1

Y
(i)
�

=
j�ik0Z0


i
(9)

and


i =
q
k2t � �i�ik

2
0: (10)

The tilde (�) denotes quantities in the Fourier domain. The
index i denotes quantities in theith layer of the structure. The
� and� components of the electromagnetic field quantities are
related to the Cartesian components by�

~Ex

~Ey

�
=

�
cos � � sin�
sin� cos �

��
~E�

~E�

�
(11)�

~Jx
~Jy

�
=

�
cos � � sin�
sin� cos �

��
~J�
~J�

�
(12)�

~Hx

~Hy

�
=

�
� sin� � cos�
cos � � sin�

��
~H�

~H�

�
(13)�

~Mx

~My

�
=

�
� sin� � cos�
cos � � sin�

��
~M�

~M�

�
: (14)

Fig. 1 shows the relation betweenx, y and �, � components.
This notation is consistent with the one used in [2]. It can
be transformed to Itoh’su and v notation [1] by a change
in the sign of some of the components. The advantage of
our method lies in the fact that (6)–(10) are decoupled for
� and � components, thus saving code when implemented
in a CAD program. However, this can only be achieved by
a transformation that relates the� and � components to the

x and y components differently, depending on the type of
field (electric or magnetic). We do not need to consider the
z components~Hz and ~Ez here since they can be calculated
from the � and � components using the divergence property
of the electromagnetic field quantities. As can be seen from
(21)–(24), the � components of the electromagnetic field
correspond to the� components of the surface wave, whereas
the � components correspond to the' components. The (6)
and (7) hold within each layer of the substrate. At the interfaces
of the layers, the� and� components of the electromagnetic
field must be continuous [6]. We substitute

~E(i)
� ! v

~H(i)
� ! i


(i) ! 


Z(i)
� ! ZW

cos�I0l ! i0

�sin�U0l ! v0 (15)

for � components and

~E(i)
� ! v

~H(i)
� ! i


(i) ! 


Z(i)
� ! ZW

�sin�I0l ! i0

�cos �U0l ! v0 (16)

for � components. From (6) and (7), we get

dv

dz
+ 
ZW i = �v0�(z � z0) (17)

di

dz
+ 


1

ZW

v = �i0�(z � z0) (18)

which are the transmission line equations. This permits the
construction of a transmission line equivalent circuit resonator
describing the layered structure [1]. Each section of the
resonator corresponds to a layer of the structure. The solution
of (17) and (18) for one section can be written as

i = i+ + i� = i0+e
�
z + i0�e


z (19)

v = v+ + v
�
= ZW i0+e

�
z � ZW i0�e

z : (20)

The indexi selecting the layers has been omitted. Together
with the continuity condition at the interfaces of the layers,
the voltages and currents along each section of the resonator
can be calculated from the current through the voltage source
(which represents a magnetic point source) or from the voltage
across the current source (which represents an electric point
source). A matrix algorithm to calculatei0+, i0�, v0+, and
v0� is particularly useful for an implementation of this task in
CAD programs [7]. Backsubstituting the electromagnetic field
components yields Green’s function in the spectral domain
for any givenz.
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Fig. 1. Relation betweenx; y and �; � components.

III. CALCULATION OF SURFACE-WAVE MODES

While numerical techniques must be applied in the near-
field region to obtain Green’s function in the space domain,
asymptotic techniques can be used in the far-field region.
Applying the modified saddle-point technique shows that the
electromagnetic field components of the surface waves are
related to the residues of the poles of Green’s function in
the spectral domain [8] by

E� = A Res

 
~E�

trig(�)

���� kt1
!
trig(') (21)

E' = A Res

 
~E�

trig(�)

���� kt1
!
trig(') (22)

H� = A Res

 
~H�

trig(�)

���� kt1
!
trig(') (23)

H' = �A Res

 
~H�

trig(�)

���� kt1
!
trig(') (24)

with

A =

s
kt1
2��

e�j
�
4 e�jkt1� (25)

and

trig(� � �) = �

�
sin(� � �)
cos(� � �):

(26)

In (21)–(24), the “trig” function within one equation is the
same. It is determined from (11)–(14). The index1 denotes
the pole of the Green’s function in the spectral domain and
Res(f(z) j z1) denotes the residue of the complex function
f at its polez1. We use df

dz
j1 to denote df

dz
evaluated at

z = z1. For a z-oriented source (which is not considered
here) similar equations can be derived. Generally,kt1 is not
unique, i.e., more than one surface-wave mode exists. Note that
a pole of a Green’s function corresponds to a resonance of the
resonator equivalent circuit. A root-finding algorithm has to
be applied to computekt1 [9]. kt1 is real for propagating
surface-wave modes. Therefore, by (10),
i1 can be either
real, corresponding to an evanescent wave in layeri, or purely
imaginary, corresponding to a propagating wave in that layer.

Since the electromagnetic field components of the surface
waves can be calculated from the above relations using (19)
and (20) at any givenz, it is sufficient to consider the
electromagnetic field components in the plane of the source
z = 0. Thus, to calculate the surface waves, we can view
the transmission line resonator equivalent circuit as a one-port
operated at a resonance frequency.

In the next section, we will give a network theorem,
which permits the calculation of the residue of the immittance
function of a lossless one-port from the energy stored in
the one-port. This is particularly useful in our case, since
the energy stored in the transmission line resonator can be
calculated analytically, as will be shown in Section V.

IV. ENERGY STORED IN A LOSSLESSONE-PORT

In the following, a novel network theorem is derived relating
the energy stored in a lossless one-port operated at resonance
frequency to the residue of the one-port’s immittance function.
A proof of the theorem will be given using a canonical
realization of the one-port.

We consider a lossless one-port, which is characterized
by its impedance functionZ(!). We assume thatZ(!) has
a simple pole at! = !1, i.e., the one-port has a parallel
resonance at!1. Likewise, the dual case of a one-port operated
at a series resonance frequency can be considered by replacing
all quantities by their dual counterparts in the following.

For any lossless one-port, a partial-fraction expansion of its
impedance

Z(!) =
1

j!C0
+

rX
�=1

j!

C�
1

L�C�
� !2

+ j!L1: (27)

is possible [10]. The functionZ(!) hasr simple poles at the
resonance frequencies!� = 1p

L�C�
. In case of a distributed

one-port,r!1. Fig. 2 shows the correspondingfirst Foster
realization of (27). Using

A!

!2� � !2
=

A
2

!� � !
+

�A
2

!� + !
(28)



THIEME AND BIEBL: CALCULATION OF THE SURFACE-WAVE EXCITATION IN MULTILAYERED STRUCTURES 689

Fig. 2. First foster realization of the impedance functionZ(!).

we can write (27) as

Z(!) =
1

j!C0
+

rX
�=1

 
j

2C�

!� � !
�

j

2C�

!� + !

!
+ j!L1 (29)

which is the Laurant expansion ofZ(!). It follows from (29)
that the residue ofZ(!) at the pole!1 is given by

Res(Z j !1) =
1

2jC1
: (30)

We now assume that the one-port is operated at its parallel
resonance frequency!1. A voltagev 6= 0 then appears across
the port while the current flowing into it is zero. Therefore,
the voltage acrossC0 andL1 is zero. Also, the voltage across
the parallel resonance circuitsL�C� is zero, except for� = 1.
Hence, the energy stored in the one-port is concentrated in the
resonant circuitL1C1. This energy is given by

W =
1

2
C1jvj

2 (31)

where v denotes the complex instantaneous voltage across
the one-port. For convenience, we write!1 instead of!1 in
the following to denote the resonance frequency. Using (30),
we can conclude that the following relationship between the
energyW1 stored in a lossless one-port operated at a parallel
resonance frequency!1, the voltagev1 across the one-port
in this case and the residue of the impedance functionZ(!)
of the one-port at! = !1 holds true:

Res(Z j !1) =
jv1j2

j4W1
: (32)

A similar derivation shows that

Res(Y j !1) =
ji1j2

j4W1
(33)

holds true in case of a lossless one-port operated at its series
resonance frequency!1. The admittance function of the
one-port is denoted byY (!) and i1 denotes the complex
instantaneous current flowing into the one-port.

We will now show that the residue of the impedance of a
lossless one-port operated at a parallel resonance frequency is
related to the derivation of the one-port’s admittance function
Y (!) with respect to the frequency.

From the definition of the residue of a function [11], it
follows that

Res(Z j !1) = lim
!!!1

(! � !1)Z(!) = lim
!!!1

! � !1
Y (!)

:

(34)

Since

Y (!1) = 0 (35)

we can write

Res(Z j !1) = lim
!!!1

! � !1
Y (!) � Y (!1)

(36)

and, thus,

Res(Z j !1) =
1

dY
d!

��
1
: (37)

Together with (32), it follows that the energy stored in a
lossless one-port operated at a parallel resonance frequency
can be calculated if the derivative of the one-port’s admittance
function with respect to the frequency is given. A similar
derivation shows that the energy stored in a lossless one-port
operated at a series resonance frequency can be calculated
if the derivative of the one-port’s impedance function with
respect to the frequency is given.

As we will see later, the resulting equations for the residues
of Green’s function of a layered structure is independent of!.
This means that it would have been possible to define “Z(kt)”
instead of “Z(!)” for a lossless one-port.! would then have
been completely eliminated in the derivation of the method.
However, the authors felt that the calculations are far more
readable with a notation using!.

V. ENERGY STORED IN THE TRANSMISSION

LINE RESONATOR EQUIVALENT CIRCUIT

To calculate the energy stored in the transmission line
resonator, we use a distributed equivalent circuit model for
each section of the resonator.

In the last section, we have shown that the energy stored
in a lossless one-port operated at a parallel (series) resonance
frequency can be calculated if the derivative of the one-port’s
admittance (impedance) function with respect to the frequency
is given. Thus, we have to use a transmission line model
that allows for an independent adjustment of the transmission
line’s characteristic impedanceZW , the propagation constant

 and the dispersion characteristicsdZW

d!
and d


d!
. Furthermore,

the equivalent circuit must support evanescent waves. This is
accomplished by the equivalent circuit shown in Fig. 3, which
represents a section of the transmission line with differential
length dz. It results from a combination of the equivalent
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Fig. 3. Discretized transmission line model.

circuits supporting TM and TE waves in hollow waveguides
[6].

We first show how the network elementsL0sdz, C0s
dz

, L0pdz,

and
L
0

p

dz
have to be chosen in order to match the characteristic

impedanceZW , the propagation coefficient
, and the disper-
sion characteristicsdZW

d!
and d


d!
of a given transmission line.

We use (17) and (18) and apply Kirchhoff’s current law and
Kirchhoff’s voltage law to the circuit shown in Fig. 3. This
yields


ZW = j!L0s +
1

j!C 0s
(38)




ZW
= j!C 0p +

1

j!L0p
(39)

and by taking the derivative we obtain the circuit elements

L0s = �
j

2

�

ZW

!
+
d(
ZW )

d!

�
(40)

C0s = �
2j

!
�

ZW � !

d(
ZW )
d!

� (41)

C0p = �
j

2

 



!ZW
+
d
�



ZW

�
d!

!
(42)

L0p = �
2j

!

�



ZW
� !

d

�



ZW

�
d!

� : (43)

The instantaneous energy stored in the lumped elementsL0sdz,
C0s
dz

, L0pdz, and
L0p
dz

of the equivalent circuit is given by

dWLs =
1

2
L0sRe(ie

j!t)2dz (44)

dWCs =
1

2

1

!2C0s
Re(iej!t)2dz (45)

dWCp =
1

2
C0pRe(ve

j!t)2dz (46)

dWLp =
1

2

1

!2L0p
Re(vej!t)2dz: (47)

From (19) and (20), it follows for a propagating wave

Re(iej!t)2 = (Re(i+e
j!t) + Re(i�e

j!t))2 (48)

Re(vej!t)2 = jZW j
2(Re(i+e

j!t) �Re(i�e
j!t))2 (49)

Im(iej!t)2 = (Im(i+e
j!t) + Im(i�e

j!t))2 (50)

Im(vej!t)2 = jZW j
2(Im(i+e

j!t)� Im(i�e
j!t))2 (51)

and for an evanescent wave

Re(iej!t)2 = (Re(i+e
j!t) + Re(i�e

j!t))2 (52)

Re(vej!t)2 = jZW j
2(Im(i+e

j!t)� Im(i�e
j!t))2 (53)

Im(iej!t)2 = (Im(i+e
j!t) + Im(i�e

j!t))2 (54)

Im(vej!t)2 = jZW j
2(Re(i+e

j!t) �Re(i�e
j!t))2: (55)

We use a polar form of the currents

i0+ = ji0+je
j'+ (56)

and

i0� = ji0�je
j'� (57)

in the following. By (19) and (20) (for propagating waves) the
total energy stored in a section of lengthdz of the transmission
line is given by

dWp =

�
1

2

�
ji0+j

2 cos(2'+ � 2�z + 2!t)

+ ji0�j
2 cos(2'� + 2�z + 2!t)

��Re(ZW )

!

+
1

2

�
ji0+j

2 + ji0�j
2
�
Re(ZW )

d�

d!

+ ji0+jji0�j cos('+ � '� � 2�z)�
dRe(ZW )

d!

�
dz

(58)

and for evanescent waves, the energy is given by

dWe =

�
1

2
ji0+j

2e�2�z cos(2'+ + 2!t)
�Im(ZW )

!

+
1

2
ji0�j

2e2�z cos(2'� + 2!t)
�Im(ZW )

!

+
1

2

�
ji0+j

2e�2�z + ji0�j
2e2�z

�
�
dIm(ZW )

d!

+ ji0+jji0�j cos('+ � '�) Im(ZW )
d�

d!

�
dz:

(59)

We have chosen to express the stored energy in terms of
the current along the transmission line. However, this is not
mandatory; alternatively, we could use the voltage across
the transmission line, which leads to similar expressions. It
can be seen from (58) and (59) that the stored energy is
composed of two terms. One term harmonically oscillates with
the frequency2!, while the other term is constant. This is also
true for the total energy stored in the resonator since the total
energy is calculated by integratingdW over dz. However, in
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the resonance case, the total stored energy must be stationary.
Therefore, we can neglect the oscillating term and use the
average energy

d �Wp =

�
1

2

�
ji0+j

2 + ji0�j
2
�
Re(ZW )

d�

d!

+ ji0+jji0�j cos('+ � '� � 2�z)�
dRe(ZW )

d!

�
dz

d �We =

�
1

2

�
ji0+j

2e�2�z + ji0�j
2e2�z

�
�
dIm(ZW )

d!

+ ji0+jji0�j cos('+ � '�) Im(ZW )
d�

d!

�
dz:

The� denotes averaged quantities. We substituteZ� andZ�
for the characteristic impedanceZ! and evaluate the above
equations at the pole! = !1, kt = kt1, 
0 = 
01. This
yields

d �Wp = �

�
1

2

�
ji0+j

2 + ji0�j
2
�

� ji0+jji0�j cos('+ � '� � 2�1z)

�

� jZ�;�

01

1

d
0

d!

����
1

dz (60)

d �We = �

�
�
1

2

�
ji0+j

2e�2�1z + ji0�j
2e2�1z

�
+ ji0+jji0�j cos('+ � '�)

�

� jZ�;�

01

1

d
0

d!

����
1

dz (61)

with


01 =
q
k2t1 � k20: (62)

The upper sign is valid for� surface-wave modes, while the
lower sign is valid for� surface-wave modes. Integratingd �W
over the lengthh of the considered section of the resonator
yields

�Wp = �h

�
1

2

�
ji0+j

2 + ji0�j
2
�
� ji0+jji0�j cos('+ � '�

� �1h) sinc(�1h)

�
� jZ�;�


01

1

d
0

d!

����
1

(63)

�We = �h

�
�
1

2

�
ji0+j

2 ex(�2�1h) + ji0�j
2 ex(2�1h)

�
+ ji0+jji0�j cos('+ � '�)

�
�jZ�;�


01

1

d
0

d!

����
1

:

(64)

The sinc-function is given by

sinc(x) =

�
sin x
x

; for x 6= 0
1; for x = 0

(65)

and the ex-function is given by

ex(x) =

�
e
x
�1
x

; for x 6= 0
1; for x = 0.

(66)

Using the immittance approach derived in Section II, the
currents i0+ and i0+ in each section of the resonator can
be calculated. The summation over the energy stored in each
section of the resonator yields the total energy

W1 =
nX
i=1

Wa;ei
: (67)

From (10), (32), and (33), we get

Res(Z j kt1) = Res(Z j !1)
dkt

d!

����
1

= Res(Z j !1)
dkt

d
0

����
1

d
0

d!

����
1

= Res(Z j !1)

0

kt

d
0

d!

����
1

=
jv1j

2

j4W1


01
kt1

d
0

d!

����
1

(68)

Res(Y j kt1) =
ji1j

2

j4W1


01
kt1

d
0

d!

����
1

: (69)

Note thatRes(Z j kt1) andRes(Y j kt1) are independent of
! sinceW1 � d
0

d!
j1. Once the residues of Green’s function

in the planez = 0 have been calculated, the electric and
magnetic field components at any givenz can be calculated
using (19)–(20).

Using the divergence property

divE = 0 (70)

divH = 0 (71)

the z components of the electromagnetic field can be calcu-
lated. This permits the calculation of Poynting’s vector, which
is defined as

Re(T) =
1

2
Re(E �H�): (72)

The total power transported in a surface-wave mode results
from the integration of Poynting’s vector over the surface of
a cylinder with a radius�!1 andz = �1� � �1, cf., [4]

Ps = lim
z!1

lim
�!1

Z 2�

'=0

Z z

z0=�z

Re(T�(�; '; z
0)) �dz0 d': (73)

Note thatT�(�; '; z0) = 0 if z0 < �h.
Due to (19) and (20), thez dependency of the electromag-

netic field of the surface wave is of the form

A exp(�
iz) + B exp(
iz) (74)

cf., [12]. Therefore, the integration overz can be carried out
analytically.

VI. A LGORITHM

As a result, the following algorithm, which calculates the
electromagnetic field components of the surface wave excited
by a Hertzian dipole embedded in a multilayered structure,
can be given as follows.

1) Calculate Green’s function in the spectral domain using
the immittance approach.
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(a) (b)

Fig. 4. (a) Microstrip substrate. (b) Corresponding transmission line equiv-
alent circuit resonator.

2) Calculate the propagation constant of a surface-wave
mode using a root-finding algorithm.

3) Iterating over the layers of the structure; calculate the
energy stored in the resonator equivalent circuit using
(63)–(64) as a function of the voltage across the current
source or the current through the voltage source.

4) Calculate the residue of Green’s function in the spectral
domain using the energy residue theorem (68).

5) Calculate the field components using (21)–(24).
6) Calculate the power carried by the surface wave using

(73).
7) Repeat the above steps iterating over the propagating

surface-wave modes.

This algorithm has been implemented in the microwave CAD
program analysis and optimization of planar antennas (AOPA).

VII. EXAMPLE: MICROSTRIPCONFIGURATION

To validate the method derived in this paper, a microstrip
configuration as depicted in Fig. 4 is considered as an example.
While the presented algorithm is not restricted to a special
substrate configuration, a moderate size expression results
in case of a microstrip configuration, which is suitable for
a treatment in this paper. Furthermore, the results can be
compared with the literature.

The microstrip substrate, which forms layer two, is char-
acterized by its relative permittivity�2 and its thicknessh.
The backside metallization forming layer one is characterized
by its conductivity� ! 1. The substrate is covered by the
free-space with�3 = 1; �3 = 1 (layer three). In Fig. 4(b), the
corresponding transmission line resonator equivalent circuit is
shown. We obtain

Z =
ZW 2ZW 3 sinh 
2h

ZW 2 sinh 
2h+ ZW 3 cosh 
2h
(75)

whereZ is the input impedance of the resonator equivalent
circuit seen by the current source. The pole ofZ can be found
from

ZW 2 sinh 
2h+ ZW 3 cosh 
2h = 0 (76)

which is the denominator ofZ. We restrict ourselves to the
first pole, which corresponds to the TM0 surface-wave mode

[4]. Note that by (10),
21 = j�21 is purely imaginary,
whereas
31 = �31 is real. This means, a propagating wave
exists in Section II of the resonator, whereas an evanescent
wave exists in Section III. Backsubstitution yields the spectral
domain representation of the electric field in the planez = 0

~E�;� =
Z
(2)
�;�Z

(3)
�;� sinh 
21h

Z
(2)
�;� sinh 
21h+ Z

(3)
�;� cosh 
2

1
h
I0l

�

�
� sin�; for � components
cos�; for � components:

(77)

Using the immittance approach, we obtain for the current in
Section II

i2+ = i2� =
�v1

2ZW 2 sinh 
21h
(78)

whereas for the current in Section III, we obtain

i3+ =
1

ZW 3
v
1

(79)

i3� = 0: (80)

v1 is the voltage across the current source of the equivalent
circuit shown in Fig. 4 in case of resonance. In the case of
our example, we obtain for the energy stored in Section II of
the resonator

�Wp = �
d
3

d!

����
1

jv
1
j2�2
31k0(2
21h+ sinh 2
21h)

8Z0
23
1

sinh2 
21h
:

(81)
and for the energy stored in Section III of the resonator

�We = �
d
3

d!

����
1

jv1j
2k0

4Z0
31
: (82)

Z0 is the characteristic impedance of the free-space. With (68),
after some lengthy calculations using complex trigonometric
identities, we get the result

Res(Z j kt1)

=
Z0

jk0


31
kt1


31
21

3
1


21
(�2
31h+ 1)� 
2

1


31

�
3
1
h

�2
+ 1

� : (83)

The same result is obtained by calculating the residue directly
form (75). Using (21), we obtain

E�0 = � cos'I0l

s
kt1
2��

e�j
�

4 e�jkt1� Z0

jk0


31
kt1

�

31
21


31

21

(�2
31h+ 1)� 
21

31

(
31h

�2
+ 1)

(84)

which is the� component of the TM0 surface-wave mode’s
electric field in the planez = 0. The results comply with
those reported in [4].
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VIII. C ONCLUSION

In this paper, a novel method for the analytic calculation of
the surface-wave excitation in multilayered structures has been
presented. The immittance approach has been used to set up a
transmission line equivalent circuit of the stratified medium. A
surface-wave mode corresponds to a resonance of the equiv-
alent circuit. A novel network theorem has been derived that
relates the energy stored in a lossless one-port operated at the
resonance frequency to the residue of its immittance function.
A discretized transmission line model with arbitrary dispersion
characteristics is used to calculate the energy stored in the
resonator. This allows for an analytic calculation of the surface
wave’s field components. The new method circumvents the
need of a numerical calculation of residues, which is an ill-
conditioned problem. A simple algorithm iterating over the
layers of the structure has been given, which is well suited for
an implementation in microwave CAD programs. Considerable
analytic labor is saved in case of multilayered structures.
Furthermore, the structure of the substrate need not be known
in advance, adding versatility to CAD programs. The method
has been applied to a microstrip structure and the results have
been compared with the literature.
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[5] C.-E. Fröberg,Numerical Mathematics, Theory and Computer Applica-
tions. Menlo Park, CA: Benjamin/Cummings, 1985.

[6] E. C. Jordan,Electromagnetic Waves and Radiating Systems. Engle-
wood Cliffs, NJ: Prentice-Hall, 1950.

[7] E. Biebl, Zum Entwurf Integrierter Millimeterwellenschaltkreise (Ha-
bilitationsschrift). Munich, Germany: Erschienen Selbstverlag, Apr.
1993.

[8] A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scat-
tering. London, U.K.: Prentice-Hall, 1991.

[9] D. M. Pozar, “Rigorous closed-form expressions, for the surface wave
loss of printed antennas,”Electron. Lett., vol. 26, pp. 954–956, June
1990.

[10] G. C. Temes and J. W. LaPatra,Introduction of Circuit Synthesis and
Design. New York: McGraw-Hill, 1977.

[11] D. F. Tuttle Jr.,Network Synthesis. New York: Wiley, 1958.
[12] A. K. Bhattacharyya, “Characteristics of space and surface waves in a

multilayered structure,”IEEE Trans. Antennas Propagat., vol. 38, pp.
1231–1238, Aug. 1990.

Markus O. Thieme (M’94) was born in Munich,
Germany, on July 4, 1967. He received the Dipl.-
Ing. and Dr.-Ing. degrees from the Technische Uni-
versität München, Germany, in 1993 and 1997,
respectively.

From 1994 to 1996, he was with the Institut f¨ur
Hochfrequenztechnik der Technischen Universit¨at
München, where he was engaged with the analysis
and optimization of monolithically integrated mil-
limeter wave antennas. In 1997 he joined Siemens
AG, München, Germany, where he is involved in

the development of mobile radio communication base stations.

Erwin M. Biebl (S’88–M’91–SM’96) was born in
Munich, Germany, in 1959. He received the Dipl.-
Ing., Dr.-Ing., and the Habilitation degrees from the
Technical University Munich, Germany, in 1986,
1990, and 1993, respectively.

In 1986, he joined Rohde & Schwarz, Munich,
Germany, where he was involved in the develop-
ment of mobile radio communication test sets. Since
1988 he has been with the Institut f¨ur Hochfre-
quenztechnik at the Technical University Munich,
where he is now University Lecturer and Head of

the Optical and Quasi-Optical Systems Group. He has been engaged in
research on optical communications and integrated optics. His current interests
include field theoretical analysis of planar resonators and antennas, quasi-
optical measurement techniques, and design and characterization of integrated
millimeter wave devices.

Dr. Biebl was the recipient of the Dr. Georg Spinner Award in 1991. In
1996 he was co-recipient of the ITG award. He is a member of the Informa-
tionstechnische Gesellschaft (ITG) in the Verband Deutscher Elektrotechniker
(VDE), Germany.


