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Near-Field Antenna Measurements Using
Nonideal Measurement Locations
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Abstract—We introduce a near-field to far-field transformation
algorithm that relaxes the usual restriction that data points be
located on a plane rectangular grid. Computational complexity
is O(N logN) where N is the number of data points. This al-
gorithm allows efficient processing of near-field data with known
probe position errors. Also, the algorithm is applicable to other
measurement approaches such as plane-polar scanning, where
data are collected intentionally on a nonrectangular grid.

Index Terms—Antenna measurements.

I. INTRODUCTION

W E introduce a near-field to far-field transformation
method that relaxes the usual restriction that data points

be located on a plane-rectangular grid. It is not always practical
or desirable to make uniformly spaced measurements; for
example, the maintenance of positioning tolerances becomes
more difficult as frequency is increased. Our algorithm allows
efficient processing of data with probe position errors. This
method can extend the frequency ranges of existing scanners,
make practical the use of portable scanners for on-site mea-
surements, and support schemes such as plane-polar scanning,
where data are intentionally collected on a nonrectangular grid.

Although “ideal” locations are not required, we assume that
probe positions are known. (In practice, laser interferometry
is often used for this purpose.) Our approach is based on
a linear model of the formA� = b (see Section II). The
conjugate gradient method is used to find the “unknown”
� in terms of the “data”b (Section III). The operatorA
must be applied once per conjugate gradient iteration and
this is done efficiently using the recently developed un-
equally spaced fast Fourier transform (FFT) [2], [3] and local
interpolation (Section IV). As implemented, each iteration
requiresO(N logN ) operations, whereN is the number of
measurements. The required number of iterations depends
on desired computational accuracy and on conditioning. In
Section V, we present several simulations that are based on
actual near-field antenna data.

II. THE MODEL

A. Discrete Theory

Consider a transmitting test antenna and a receiving probe.
According to Kerns’s theory (see Appendix A), the response
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w(r) of a probe located atr may be modeled as

w(r) =
X

��

��� exp(ik�� � r) (1)

where��� is the (normalized) coupling product and
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We assume that the probe response is negligible outside the
interval jxj � Lx; jyj � Ly for z values of interest. (That
is, w(r) is a periodic extension.) To improve conditioning,
we include only propagating plane waves(
�� real) in the
summation in (1). Evanescent waves (
�� imaginary) are
exponentially attenuated and are negligible in the far-field
region. We must also ensure that evanescent waves are not
important contributors to the measured probe response; this is
usually accomplished by maintaining a probe-to-test-antenna
separation of several wavelengths.

In matrix form (1) becomes

w = Q� (2)

wherew � fw(rn)g; rn is the location of thenth measure-
ment point,� � f���g, andQ � fQn;�� = exp(ik�� � rn)g.
The objective of near-field to far-field transformation is to
determine the coupling product� from measurementsw made
in a restricted region near the test antenna. The transmitting
(far-field) pattern can be found from the coupling products of
the test antenna with each of two independent known probes.

B. Normal Equations

In practical situations, where the number of measurements
often exceeds the number of unknowns, the system (2) is
overdetermined and will generally not have a solution. We
will actually solve the normal equations

A� = b (3)

where

A � QHQ

b � QHw: (4)

The operatorQH � fQH
��;n = exp(�ik��� � rn)g is the

Hermitian (conjugate) transpose ofQ. The solution � of
(3) minimizeskw �Q�k; that is, this� is the least-squares
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estimate. Most methods for processing planar near-field data
[based on the model (1)] solve (3), either directly or indi-
rectly. In the standard plane-rectangular grid algorithm,A is
diagonal andQH andQ can be applied with FFT’s, giving a
computational complexity ofO(N logN ). On the other hand,
a direct solution using Gaussian elimination requiresO(N 3)
operations. For typical problem sizes(104 < N < 106), the
importance of computational efficiency is readily apparent.

III. CONJUGATE GRADIENT SOLUTION

A. Algorithm

SinceA is Hermitian and positive definite (assuming that
Q is full rank), the conjugate gradient method is applicable
(see, for example, [4]). The algorithm is an iterative scheme
given by

d(0) = r(0) = b�A�(0)

�j =
kr(j)k2

[d(j)]HAd(j)

�(j+1) = �(j) + �jd
(j)

r(j+1) = r(j) � �jAd
(j)

d(j+1) = r(j+1) +
kr(j+1)k2

kr(j)k2
d(j)

(5)

wherekyk2 � yHy. Initial estimates are not critical and we
use �(0) = 0 for simplicity. Somewhat earlier convergence
may be obtained, for example, by starting with the coupling
product obtained fromk-corrected data [5]. The quantity
r(j) = b � A�

(j) is the jth residual.

B. Conditioning and Convergence

The rate of convergence can be estimated with [6, p. 525]

k�(j) � �kA � 2

�
c � 1

c + 1

�j
k�(0) � �kA (6)

where kyk2A � yHAy and the condition numberc2 is
the ratio of the largest to smallest eigenvalue ofA. (The
condition number ofQ is c; c � 1.) Thus, the conjugate
gradient algorithm willalwaysconverge. For eachj it mini-
mizesk�(j) � �kA for �(j) � �(0) in the Krylov space span
fr(0);Ar(0); � � � ;Aj�1r(0)g.

Relative error is bounded by the residual

k�(j) � �k

k�k
� c2

kr(j)k

kbk
: (7)

If we suppose that “perfect” measurementsw0 and “imperfect”
measurementsw correspond to the solutions [of (3)]�0 and
�, then

k� � �0k

k�0k
� c

kw �w0k

kw0k
: (8)

For large condition numbers (poor conditioning), (6)–(8)
indicatepotential problems with convergence rate, computa-
tional accuracy, and/or experimental design. Fortunately, it is
often possible to improve conditioning by adding physically

reasonable restrictions. For example, arbitrarily large condition
numbers can arise when evanescent plane waves are included
in the model (1). In the examples of Section V, the exclusion
of evanescent fields results in acceptable condition numbers.

When all evanescent modes are excluded and data are
measured on the regular (ideal) grid (18), the condition number
is c = 1. On the other hand, substantial values ofc can
result when data density is significantly nonuniform. In some
simulations involving large position errors, projection of the
measurement locations onto thexy plane defined a region
with scalloped edges. IfLx and Ly were large enough to
define a rectangle containing all the data points, the gaps
due to the scallops led to poor conditioning. Our solution
was to choose slightly smaller values forLx and Ly and
to discard data points lying outside this boundary. Similarly,
when there are regions with high data densities (as in plane-
polar scanning), condition numbers can often be markedly
improved by thinning or otherwise weighting data points
consistent with a uniform “information density.” To find a
weighted least-squares estimate, replace (4) with

A � QH�Q

b � QH�w
(9)

where� is a diagonal matrix. In particular,�nn is a positive
weight to be associated with the measurement pointrn.

It is tempting to consider the possibility of choosingLx
and Ly to encompass a region much larger than the actual
measurement area. This would mitigate truncation effects
(since the probe response is not implicitly assumed to be
zero immediately beyond the measurement region) and would
seem to allow determination of the sidelobes from measure-
ments made near the main-beam zone. In practice, such a
model quickly becomes useless because of poor conditioning.
Schemes which produce wide-angle pattern coverage from
limited measurement data must invariably rely ona priori
information about the antenna under test [7]–[9].

IV. EFFICIENCY

In the conjugate gradient procedure of (5), it is necessary
to apply the matrixA = QHQ to a vector once each
iteration. This can be done by a straightforward summation,
but only inO(N2) operations. In order to reduce complexity
to O(N logN ) operations per iteration, we have developed
a scheme that combines the unequally spaced FFT with
interpolation inz. For example, to applyQ to �(j) we use
the unequally spaced FFT to evaluate (2) (inO(N logN )
operations) at the pointsxnx̂ + ynŷ + zẑ for several fixed
values ofz. We then use local interpolation inz to reach the
actual measurement locationsrn. Since we are dealing with
bandlimited functions, the numerical precision of the algorithm
can be controlled and is specified as an input parameter. Com-
putational time depends on the desired numerical accuracy
and on the spatial distribution of data points. Our technique
is most efficient when measurement locations lie close to a
plane. Details are given in Appendix B.
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Fig. 1. H-plane far-field pattern of the radiometer. Probe position errors are
given by (10). The solid line corresponds to the corrected pattern and to the
actual pattern. The dashed line shows the result of ignoring the position errors.

V. SIMULATIONS

A. Probe Position Errors

We began with planar near-field data for a radiometer
antenna with an aperture diameter of 25 cm and an operating
frequency of 31.65 GHz. These data consist of 161 points in
x by 161 points iny on an ideal grid spaced by 0.38 cm
(0:4�). The model (1) was specified withLx = Ly = 161 �
0:38=2 = 30:59 cm and the coupling product was calculated
using standard near-field to far-field transformation software.
Position errors were then simulated by using (1) to calculate
the probe response at nonideal measurement locations. In this
setup, there are about 26 000 simulated measurements and
about 20 000 unknowns (evanescent modes excluded). We
present five cases.

For the first case, we used a moderate position error of the
form

0
@
�x
�y
�z

1
A =

0
@
0:14 cos(0:35n) cos(0:65m)
0:14 cos(0:25n) cos(0:15m)
0:20 cos(0:15n) cos(0:11m)

1
A� (10)

wheren is thex index andm is the y index. Both indexes
run from�80 to+80. Peak magnitude of this position error
is 0:28� and the rms magnitude is0:14�. Fig. 1 shows the
result of probe position correction in this example. There is
no discernible difference between actual and position corrected
patterns, as expected from (7). The pattern computed ignoring
probe position errors, however, has a broader main beam and
also has a gain that is about 2 dB low. The relative residual
at the jth iteration is defined as

�j � kr
(j)k=kbk:

We terminate our program afterjmax iterations or after the
relative residual becomes less than� (say, jmax = 100 and
� = 10�8). For the displacements (10), the condition number
is c2 � 13, �5 < 10�4, and �19 < 10�8. Condition numbers
are estimated using a procedure due to Lanczos [6, p. 523].
Calculations were done on a 200-MHz personal computer and
required approximately 75 s per iteration.

Fig. 2. H-plane far-field pattern of the radiometer. Probe position errors are
given by (11). The solid line corresponds to the corrected pattern and to the
actual pattern. The dashed line shows the result of ignoring the position errors.

The second case was a more severe test

0
@
�x
�y
�z

1
A =

0
@
0:3 cos(0:35n) cos(0:65m)
0:3 cos(0:25n) cos(0:15m)
cos(0:15n) cos(0:11m)

1
A�: (11)

The peak magnitude of this position error is1:1� and the rms
magnitude is0:52�. Fig. 2 shows the result of probe position
correction in this example. The pattern computed ignoring
probe position errors bears little resemblance to the correct
pattern—even the main beam is no longer recognizable. Again,
there is no discernible difference between actual and position
corrected patterns. For the displacements (11), the condition
number isc2 � 21, �9 < 10�4, and�29 < 10�8.

In the third case we used position errors

0
@
�x
�y
�z

1
A =

0
@

0:3 cos(0:35n+ 4:55) cos(0:65m+ 4:2)
0:3 cos(0:25n� 4:25) cos(0:15m+ 2:85)
cos(0:15n� 3:3) cos(0:11m� 1:43)

1
A�

(12)
which are similar to the second case but with phase offsets.
This seems to be a minor change; nevertheless, the condition
number increased toc2 � 490 and89 iterations were required
to achieve a tolerance of 10�8 (�89 < 10�8).

The reason for poor conditioning in the third case is the
appearance of gaps (scallops) at the edges of the measurement
area. In the fourth case we decreasedLx andLy slightly to
eliminate these gaps. Data falling outside the reduced bound-
aries were discarded. Also, it was advantageous to exclude
data points lying within0:1� of the boundary. (Because of the
periodic continuation of measurement space, data points too
close to the boundary can result in excessive density there.)
These changes reduced the condition number fromc2 � 490
to c2 � 42 with �37 < 10�8. (The total number of discarded
data points was about 120 out of 26 000.)

The fifth case used the position errors of the second case [see
(11)], but a phase gradient was introduced into the near-field
data to steer the main beam 30� from boresight. As shown
in Fig. 3 the pattern, ignoring probe position errors, bears
little resemblance to the correct pattern. If we correct only
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Fig. 3. H-plane far-field pattern of the radiometer with a steered beam.
Probe position errors are given by (11). The solid line corresponds to the
corrected pattern and to the actual pattern. The dashed line shows the result
of ignoring the position errors. The dash-dotted line is the result of correcting
only the z-position errors.

Fig. 4. H-plane far-field pattern of the dish (see Section V-B). The solid
line corresponds to the pattern without position errors. The dashed line shows
the result of ignoring the position errors.

for z position errors, much of the true pattern is recovered.
However, the gain is still about 1 dB low, and there are
anomalous sidelobes. The condition number and the number of
iterations were the same as in the second case. This example
demonstrates the importance of three-dimensional position
error correction for steered-beam antennas.

B. Laboratory Tests

We want to verify that our method is effective in the
presence of measurement errors. Three sets of near-field mea-
surements were taken of a 1.2 m dish at 4 GHz. Two sets were
made without position errors on planes separated by�=4. In
the third set, we deliberately introducedz-position errors (as
a function of x). The errors included periodic and random
components, and had a maximum magnitude of0:5�.

Results are shown in Figs. 4 and 5. From Fig. 4, we
see that the position-error corrupted pattern is considerably
distorted. Fig. 5 shows all three far-field patterns. Due to
measurement errors (primarily multiple reflections), there are
discrepancies. The patterns are consistent, however, within
normal measurement uncertainties [10].

Fig. 5. H-plane far-field pattern of the dish (see Section V-B). The solid line
corresponds to the pattern without position errors. The dashed line shows the
pattern computed from data on the planez0+�=4, also without position errors.
The dash-dotted line illustrates conjugate-gradient position-error correction.

C. Plane-Polar Grid

Beginning with the coupling product data of Section V-A,
we simulated probe response on a plane-polar grid: maximum
radius rmax = 43 cm; radial step�r = 0:4�; angular step
�� = �=356 (so thatrmax�� = 0:4�). Data were retained
within the rectanglejxj; jyj < 30: 59 cm. In this setup, there
are about 65 000 simulated measurements. A direct application
of our algorithm resulted in a poor condition numberc2 � 2,
400, and �100 � 5 � 10�7.

The condition number can be dramatically reduced by
finding a weighted least-squares solution of (2). For example,
when data points were weighted by their measurement radii,
the condition number wasc2 � 46 and �29 < 10�8. This
weighting scheme is consistent with an “information content”
that is constant per unit area. Alternatively, when we simply
thinned the data so that measurement spacing was never less
than 0.15 cm, the condition number was reduced toc2 � 6
and �17 < 10�8. (In this setup, the number of simulated
measurements is about 44 000.)

There are noniterative schemes for processing plane-polar
data in O(N logN ) operations [11]–[15]. Our approach is
more flexible, however, since data locations can be perturbed
in three dimensions.

VI. SUMMARY

A number of papers treat nonideal measurement locations
[16]–[23]. We think that our approach compares favorably in
terms of efficiency, accuracy, and simplicity. Major features
are:

• the algorithm is iterative, with a fixed cost per iteration
that isO(N logN ). The memory requirement isO(N )
and is independent of the number of iterations;

• convergence is guaranteed; bounds [see (6)] on the con-
vergence rate for the conjugate gradient procedure are
tighter than for many alternative iterative techniques;

• computation error (not measurement error) is bounded by
the residual [see (7)];

• our current implementation is fully three dimensional;
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• the recipe given in this paper is also applicable to cylindri-
cal and spherical scanning geometries; the basic ingredi-
ent is an efficient procedure for predicting probe response
at the measurement locations, based on an estimated
modal spectrum.

Software implementing this method is available; interested
readers should contact the authors.

APPENDIX A
PLANAR NEAR-FIELD SCANNING

Following Kerns [24], the responsew(r) of a receiving
probe antenna (located atr) to a transmitting test antenna
(located at the origin) may be written as the Fourier transform

w(r) =

Z
1

�1

Z
1

�1

D(k) exp(ik � r)dkx dky (13)

where

k = kxx̂+ kyŷ + 
ẑ


 = kz =
q
k2 � k2x � k2y

k �
2�

�

and 
 is chosen positive real or positive imaginary (the
exp(�i!t) factor is suppressed). This model assumes that
the probe is translated from place to place without rotation.
The physical structures of the transmitting and receiving
antennas must be entirely in the half spacesz < 0 and
z > 0, respectively. Multiple interactions between antennas
are ignored. Typically, we seek to determine coupling product
D(k) from measured values ofw(r).

Equation (13) is discretized by assuming, on some plane
z = d, that w(r) = 0 when jxj � Lx or jyj � Ly. This
approximation must be physically reasonable in the context of
the measurement. The data then may be expressed as a Fourier
series(�Lx < x < Lx; �Ly < y < Ly)

w(r) =
1X

�=�1

1X
�=�1

��� exp(ik�� � r) (14)

with

k�� �
��

Lx
x̂+

��

Ly
ŷ + 
��ẑ


�� �

s
k2 �

�
��

Lx

�2
�

�
��

Ly

�2
:

Now

��� =
1

4LxLy

Z L
x

�L
x

Z Ly

�Ly

w(r) exp(�ik�� � r) dx dy:

On the other hand, the Fourier transform (13) may be inverted
to give

D(k) =
1

4�2

Z Lx

�Lx

Z Ly

�Ly

w(r) exp(�ik � r) dx dy:

A comparison of the last two equations gives

��� =
�2

LxLy
D(k��): (15)

The infinite summation ranges in (14) must be truncated.
A natural way to do this is to eliminate evanescent modes
(
 imaginary). These usually contribute little tow(r) since
they are exponentially attenuated away from the transmitting
antenna. For example, in standard planar near-field scanning
applications, modal indices are limited by

�Nx � � < Nx; �Ny � � < Ny (16)

whereNx and Ny are usually chosen just large enough to
include all propagating modes

Nx �
Lx
�=2

; Ny �
Ly
�=2

: (17)

With dataw(rnm) measured on the grid

rnm =
Lxn

Nx

x̂+
Lym

Ny

ŷ + dẑ (18)

�Nx � n < Nx; �Ny � m < Ny

(14) becomes a discrete Fourier transform. The FFT algorithm
may be used to calculate the��� in O(N logN ) operations
(N = 4NxNy).

APPENDIX B
IMPLEMENTATION

According to the model (1) the coupling product� = f���g
is determined from the probe responsew(r) at a given set of
measurement locationsr1; � � � ; rN . As discussed above, there
are fewer coefficients��� than measurements (the problem
is overdetermined), so the coefficients are found in a least-
squares sense from the normal equations (3). The normal
equations are solved iteratively using the conjugate gradient
method.

This approach requires the repeated multiplication of the
matricesQ andQH by vectors. The present method computes
each matrix-vector product inO(N logN ) operations (forN
measurements), in contrast toO(N2) operations for evaluation
by a direct method.

We first consider application of the matrixQ. The measure-
ment locationsr1; � � � ; rN , with rn = xnx̂ + ynŷ + znẑ, lie
approximately on the planez = d and we assume that they are
not more than a few wavelengths away from it. In particular,
jzn�dj < a� for n = 1; � � � ; N with a . 4, where� = 2�=k.
This assumption allows the determination ofexp(ik�� �rn) by
polynomial interpolation from a small set of values at fixed
locations in z

exp(ik�� � rn) =
LX
l=1

Cl(zn) exp(ik�� � rnl) + "��n (19)

where

rnl = xnx̂+ ynŷ + ~zlẑ

Cl(zn) =
LY

m=1;m 6=l

zn � ~zm
~zl � ~zm
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and the interpolation points are Chebyshev nodes defined by

~zl = ~z0 +
~zL+1 � ~z0

2

�
1� cos

(2l � 1)�

2L

�
; l = 1; � � � ; L

~z0 = min
n

zn; ~zL+1 = max
n

zn: (20)

The numberL of interpolation nodes is chosen so the interpo-
lation error"��n satisfiesj"��nj < ", where" is specified by
the user. The polynomial interpolation error (see, for example,
[25, p. 49]) is

"��n =
LY
l=1

(zn � ~zl) �
f (L)(���n)

L!
; ���n 2 [~z0; ~zL+1]

wheref(zn) = exp(ik�� �rn). For ~z1; � � � ; ~zL defined by (20)
and j
��j � k, this reduces to the bound

j"��nj �
2(�a)L

L!
:

The smallest integerL such that2(�a)L=L! � " therefore
suffices.

Substituting (19) into (1) and changing the order of sum-
mation yields

w0(rn) =
X
l

Cl(zn)
X
��

�0�� exp(ik�� � rnl) +
X
��

�0�� "��n

where w0 = fw0(rn)g is the probe response due to the
coupling product�0 = f�0��g. The parameter" is chosen so
that the sum involving"��n can be neglected. The inner sum
over �� is a discrete Fourier transform in two dimensions
for each l, except that the pointsxnx̂ + ynŷ are unequally
spaced. The unequally spaced FFT of Dutt and Rokhlin [2]
and, subsequently, Beylkin [3] can be used to evaluate this sum
for all N locations inO(N logN ) operations. This evaluation
is obtained for each of the planesz = ~z1; � � � ; ~zL and the
resulting values are weighted by the interpolation coefficients
Cl(zn).

The multiplication of matrixQH by a vector is nearly the
same as forQ. The computation ofb0 � fb0��g from w0,
whereb0 = QHw0 is given by the equation

b0�� =
X
l

Cl(zn)
X
n

w0(rn) exp(�ik
�

�� � rnl):

(Here, we have discarded the interpolation error term.) Again
the inner sum is an unequally spaced Fourier transform in two
dimensions for eachl, except that the unequal spacing is over
the summation index variable, rather than the free variable.
Nevertheless, this case also requiresO(N logN ) operations
for each l.

Implementation of the unequally spaced FFT is rather elab-
orate; we use Beylkin’s version which, for double-precision
accuracy in two dimensions, requires roughly 25 times as
much computation as a standard FFT of the same size. The
overall cost of applyingQ andQH depends on the deviation
of the measurement locations from a plane and on the required
accuracy. If, for example,a = 0:5 and " = 10�8, then
L = 15 and each application of the matrixA = QHQ to
a vector requires approximately2 � 15 � 25 = 750 times as
much computation as a standard two-dimensional FFT. There

are a number of ways to reduce this constant, but it has been
entirely adequate for our purposes.

The iterative solution of the normal equations (3) by the
conjugate gradient method follows the procedure given in (5).
In addition, we estimate the conditionc2 of the matrixA using
the Lanczos method. This method exploits the connection
between the condition ofA and that of the Krylov matrices

K(A; r(0); j) = [r(0);Ar(0); � � � ;Aj�1r(0)]; j = 1; 2; � � �

(see, for example, [6]). The method generates a sequence
of symmetric tridiagonal matricesT1;T2; � � � ; with Tj of
dimensionj � j, such that the extremal eigenvalues ofTj

approximate those ofA increasingly well. On thejth iteration
of the conjugate gradient method, the estimatec2j of the
condition ofA is obtained by diagonalizingTj and defining
c2j = �j1=�jj, where�j1; �j2; � � � ; �jj are the eigenvalues of
Tj in descending order.

The matrixTj is defined by the formula

Tj =

0
BBB@

�0 �0 � � � 0

�0 �1
. . .

...
...

. . .
. . . �j�2

0 � � � �j�2 �j�1

1
CCCA; j = 1; 2; � � �

where

�j =
kd(j)k2

kr(j)k2
+
kd(j�1)kkr(j)k2

kr(j�1)k4

�j�1 = �
kd(j�1)k2kr(j)k

kr(j�1)k3

for j = 0; 1; � � � and we definekr(�1)k = 1; kd(�1)k = 0.
The estimatesc2j of the condition ofA are necessarily

imperfect; they cannot account for aspects ofA that are
absent fromK(A; r(0); j). These estimates, however, are the
best available givenK(A; r(0); j). The Kaniel–Paige conver-
gence theory (see [6]) establishes the connection between the
estimates and the choice of�(0).
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