716 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 5, MAY 1998

Near-Field Antenna Measurements Using
Nonideal Measurement Locations

Ronald C. WittmanngSenior Member, IEEEBradley K. Alpert, and Michael H. FranciSenior Member, IEEE

Abstract—We introduce a near-field to far-field transformation ~ w(r) of a probe located at may be modeled as
algorithm that relaxes the usual restriction that data points be
located on a plane rectangular grid. Computational complexity w(r) = Zf,,,,, exp(ik,, - 1) @
is O(Nlog N) where N is the number of data points. This al- "
gorithm allows efficient processing of near-field data with known
probe position errors. Also, the algorithm is applicable to other where¢, , is the (normalized) coupling product and
measurement approaches such as plane-polar scanning, where

data are collected intentionally on a nonrectangular grid. k,, = ™ + el
T L, L,

Y+ Yuk
Index Terms—Antenna measurements.
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oo ()
[. INTRODUCTION L, L,

E introduce a near-field to far-field transformatioWe assume that the probe response is negligible outside the
method that relaxes the usual restriction that data poiritgerval |z| < L., |y| < L, for z values of interest. (That
be located on a plane-rectangular grid. It is not always practiés] w(r) is a periodic extension.) To improve conditioning,
or desirable to make uniformly spaced measurements; fwe include only propagating plane wavés,, real) in the
example, the maintenance of positioning tolerances beconsesnmation in (1). Evanescent waves, ( imaginary) are
more difficult as frequency is increased. Our algorithm allowexponentially attenuated and are negligible in the far-field
efficient processing of data with probe position errors. Thiggion. We must also ensure that evanescent waves are not
method can extend the frequency ranges of existing scannérgortant contributors to the measured probe response; this is
make practical the use of portable scanners for on-site megually accomplished by maintaining a probe-to-test-antenna
surements, and support schemes such as plane-polar scansiegaration of several wavelengths.
where data are intentionally collected on a nonrectangular grid.In matrix form (1) becomes
Although “ideal” locations are not required, we assume that
probe positions are known. (In practice, laser interferometry w=Q¢ (2)

is often used for this purpose.) Our approach is based Merew = {w(r,)}, . is the location of thesth measure-
a linear model of the formA{ = b (see Section Il). The . point,é = {'5 ’} éndQ = {Q — exp(iky - £n)}

) . . . “ A 16 = vl - n, v T v n .
conjugate gradient “methnod IS used to find the “unknowry,g objective of near-field to far-field transformation is to
¢ in terms of the “data’b (Section Ill). The operatold  yetermine the coupling produgtfrom measurements made

must be applled_ once per conjugate gradient iteration apfly regtricted region near the test antenna. The transmitting
this is done efficiently using the recently developed u%fl1

I g : ¢ g ar-field) pattern can be found from the coupling products of
equally space as'_[ Fourier tran_s orm (FFT) [2], [3] and 10C# e test antenna with each of two independent known probes.
interpolation (Section IV). As implemented, each iteration
requiresO(N log N) operations, wheréV is the number of :

. . . B, Normal Equations
measurements. The required number of iterations depends _ o
on desired computational accuracy and on conditioning. InIn practical situations, where the number of measurements

Section V, we present several simulations that are based @i¢n exceeds the number of unknowns, the system (2) is
actual near-field antenna data. overdetermined and will generally not have a solution. We

will actually solve the normal equations

Il. THE MODEL
A¢=bD 3
A. Discrete Theory
: - . where

Consider a transmitting test antenna and a receiving probe.
According to Kerns's theory (see Appendix A), the response A=Q"Q
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estimate. Most methods for processing planar near-field dat@sonable restrictions. For example, arbitrarily large condition
[based on the model (1)] solve (3), either directly or indinumbers can arise when evanescent plane waves are included
rectly. In the standard plane-rectangular grid algoritinis in the model (1). In the examples of Section V, the exclusion
diagonal andQ” andQ can be applied with FFT’s, giving a of evanescent fields results in acceptable condition numbers.
computational complexity of) (N log V). On the other hand, When all evanescent modes are excluded and data are
a direct solution using Gaussian elimination requit§sV®) measured on the regular (ideal) grid (18), the condition number
operations. For typical problem sizé)* < N < 10°), the is ¢ = 1. On the other hand, substantial values cotan
importance of computational efficiency is readily apparent. result when data density is significantly nonuniform. In some
simulations involving large position errors, projection of the
I1l. CONJUGATE GRADIENT SOLUTION measurement locations onto thg plane defined a region
with scalloped edges. If, and L, were large enough to
A. Algorithm define a rectangle containing all the data points, the gaps

. : " " .- . ue to the scallops led to poor conditioning. Our solution
Since A is Hermitian and positive definite (assuming tha(EI b : 9
Was to choose slightly smaller values fér, and L, and

Q is full rank), the conjugate gradient method is applicable " . . ; . ; -
(see, for example, [4]). The algorithm is an iterative schenlgo discard data points lying outside this boundary. Similarly,

When there are regions with high data densities (as in plane-

given by polar scanning), condition numbers can often be markedly
d» = =p— A¢® improved by thinning or otherwise weighting data points
I[e)2 consistent with a uniform “information density.” To find a
Xi = m weighted least-squares estimate, replace (4) with
J
gu+n :ﬁ(j)+xjd(j) (5) A=Q7xQ
RO+D Z 300 s AQY) b= Q" kw )
4G+ = G+ o BV o)
|[x@)|]? wherek is a diagonal matrix. In particulak,,,, is a positive

h 2 = vHy Initial esti tical and weight to be associated with the measurement pgjnt
where||y||* = y"y. Inifial estimates are not critical and we It is tempting to consider the possibility of choosidg

(0) — implici i .
use{™ = 0 for simplicity. Somewhat earlier CONvergence, g L, to encompass a region much larger than the actual

mayé bet Otétta'_ne?j’ iorrre];ample,tb()j/ sdta:t|n95W|E:_1hthe Cougl'r\gleasurement area. This would mitigate truncation effects
product obtained fromk-corrected data [5]. € guan Iy(since the probe response is not implicitly assumed to be

) =b - Ag(]) is the jth residual. zero immediately beyond the measurement region) and would
seem to allow determination of the sidelobes from measure-
ments made near the main-beam zone. In practice, such a
The rate of convergence can be estimated with [6, p. 525hodel quickly becomes useless because of poor conditioning.
N Schemes which produce wide-angle pattern coverage from
||€(j) — ¢l < 2(C—> ||€(0) — €| (6) limited measurement data must invariably rely arpriori
c+1 information about the antenna under test [7]-[9].

B. Conditioning and Convergence

where |ly]|3 = y”Ay and the condition number? is
the ratio of the largest to smallest eigenvalue Af (The
condition number ofQ is ¢, ¢ > 1.) Thus, the conjugate IV. EFFICIENCY
gradient algorithm willalwaysconverge. For each it mini- In the conjugate gradient procedure of (5), it is necessary
mizes||£¢) — €||a for ¢€U) — &%) in the Krylov space span to apply the matrixA = QHQ to a vector once each
@ Ar® AT (0] iteration. This can be done by a straightforward summation,
Relative error is bounded by the residual but only in @(N?) operations. In order to reduce complexity
1€ — g [E&n to O(N logN) operatiqns per iteration, we have developegl
<c? . (7) a scheme that combines the unequally spaced FFT with
€1l bl interpolation inz. For example, to applf) to ¢Y) we use

If we suppose that “perfect” measuremewtsand “imperfect” the unequally spaced FFT to evaluate (2) (N log V)
measurementsy correspond to the solutions [of (3§} and operations) at the points,x + y,y + 2z for several fixed
g, then values ofz. We then use local interpolation into reach the
1€ — &l [ actua! measurement locations. _Since we are dealing Wi_th
<e . (8) bandlimited functions, the numerical precision of the algorithm
1€l [[woll can be controlled and is specified as an input parameter. Com-
For large condition numbers (poor conditioning), (6)—(8putational time depends on the desired numerical accuracy
indicate potential problems with convergence rate, computaand on the spatial distribution of data points. Our technique
tional accuracy, and/or experimental design. Fortunately, itigs most efficient when measurement locations lie close to a
often possible to improve conditioning by adding physicallplane. Details are given in Appendix B.
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Fig. 1. H-plane far-field pattern of the radiometer. Probe position errors afég. 2. H -plane far-field pattern of the radiometer. Probe position errors are
given by (10). The solid line corresponds to the corrected pattern and to tfieen by (11). The solid line corresponds to the corrected pattern and to the
actual pattern. The dashed line shows the result of ignoring the position err@rstual pattern. The dashed line shows the result of ignoring the position errors.

V. SIMULATIONS The second case was a more severe test
A. Probe Position Errors (;l‘ 0.3 cos(0.35n) cos(0.65m) )
=103 0.25 0.15 ) 11
We began with planar near-field data for a radiometer 6Z CO(;(E%(.wn;lgo(;(zz(.an)n) (11)

antenna with an aperture diameter of 25 cm and an operating

:eg;elng{ ggiijifgﬁ ;nhﬁgsa?agtﬁ dczgiigfblyes%) ggméfnﬁle peak magnitude of this position errorlid A and the rms
(0.4}). The model (1) was specified with, = 7, = 161 x magnitude i9).52X. Fig. 2 shows the result of probe position

0.38/2 = 30.59 cm and the coupling product was calculateaOrreCtIOn N this example. The pattern computed ignoring
. : ' . %robe position errors bears little resemblance to the correct
using standard near-field to far-field transformation software. . . ) .
= : . gttern—even the main beam is no longer recognizable. Again,
Position errors were then simulated by using (1) to calcul . . . : i
the probe response at nonideal measurement locations. In {ARe Is no discernible d|fferer_10e between actual and p05|_t|_on
setup, there are about 26 000 simulated measurements (é?]r&ecteq |02atterns. For the 4d|splacements (811)' the condition
about 20000 unknowns (evanescent modes excluded). Wgnber isc® & 21, 79 < 107, and e < 1077

present five cases. In the third case we used position errors
For the first case, we used a moderate position error of the
form bx 0.3 cos(0.35n + 4.55) cos(0.65m + 4.2)
8y | =1 0.3cos(0.25n — 4.25) cos(0.15m + 2.85) | A
b 0.14 cos(0.35n) cos(0.65m) 8z cos(0.15n — 3.3) cos(0.11m — 1.43)
8y | = [ 0.14cos(0.25n) cos(0.15m) | A (10) (12)
bz 0.20 cos(0.15n) cos(0.11m) which are similar to the second case but with phase offsets.

This seems to be a minor change; nevertheless, the condition

wheren is the x index andm is they index. Both indexes ,mner increased t& ~ 490 ands9 iterations were required
run from —80 to 4+-80. Peak magnitude of this position errog, - hiave a tolerance of 10 (rso < 107%).

is 0.28A and the rms magnitude &.14A. Fig. 1 shows the The reason for poor conditioning in the third case is the

resg_lt of p_r;)lb%_?fosmon (k:Jort'rectlon '? tT'S Zxamptl_e. There tgp%)earance of gaps (scallops) at the edges of the measurement
no discernible difference between actual and position correctgdl ) * "o fourth case we decreagedand 1, slightly to

patterns, as expected from (7). The pattern compu_ted 'ghor} %linate these gaps. Data falling outside the reduced bound-
probe position errors, however, has a broader main beam an

) i ) ., arles were discarded. Also, it was advantageous to exclude
also has a gain that is about 2 dB low. The relative re5|du(§\l . : L
o Lo ) ata points lying withird.1X of the boundary. (Because of the
at the jth iteration is defined as o . . .
periodic continuation of measurement space, data points too
7 = [[¢9|/]b)|. close to the boundary can result in excessive density there.)
These changes reduced the condition number fedme 490
We terminate our program after.,, iterations or after the to ¢” ~ 42 with 757 < 10~®. (The total number of discarded
relative residual becomes less thar(say, jm.x = 100 and data points was about 120 out of 26 000.)
= 10~%). For the displacements (10), the condition number The fifth case used the position errors of the second case [see
isc? = 13, s < 10~%, and 9 < 108, Condition numbers (11)], but a phase gradient was introduced into the near-field
are estimated using a procedure due to Lanczos [6, p. 528ta to steer the main beam°®3@om boresight. As shown
Calculations were done on a 200-MHz personal computer aimd Fig. 3 the pattern, ignoring probe position errors, bears
required approximately 75 s per iteration. little resemblance to the correct pattern. If we correct only
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Fig. 3. H-plane far-field pattern of the radiometer with a steered bearkig. 5. H-plane far-field pattern of the dish (see Section V-B). The solid line
Probe position errors are given by (11). The solid line corresponds to tberresponds to the pattern without position errors. The dashed line shows the
corrected pattern and to the actual pattern. The dashed line shows the rgmtiern computed from data on the plape- X /4, also without position errors.

of ignoring the position errors. The dash-dotted line is the result of correctiigne dash-dotted line illustrates conjugate-gradient position-error correction.
only the z-position errors.

C. Plane-Polar Grid

Beginning with the coupling product data of Section V-A,
we simulated probe response on a plane-polar grid: maximum
radius . = 43 cm; radial stepAr = 0.4X; angular step
Vo A /\ “ : A¢ = w/356 (so thatr,..A¢ = 0.4X). Data were retained

’ ‘ - within the rectanglgz|, |y| < 30.59 cm. In this setup, there
are about 65 000 simulated measurements. A direct application
of our algorithm resulted in a poor condition numhérs 2,

400, and Tio0 ~ 5 x 10_7.

The condition number can be dramatically reduced by
finding a weighted least-squares solution of (2). For example,
, ‘ ‘ when data points were weighted by their measurement radii,

—60 4020 . 0 20 40 60 the condition number was? ~ 46 and 79 < 10~%. This
zimuth (deg) . . . . . . .
weighting scheme is consistent with an “information content”
Fig. 4. H-plane far-field pattern of the dish (see Section V-B). The solighat is constant per unit area. Alternatively, when we simply
line corresponds to the pattern without position errors. The dashed line sh(ms d the d h . |
the result of ignoring the position errors. inned the data so that measurement spacing was never less
than 0.15 cm, the condition number was reduced’tav 6
N ) and r7 < 107%. (In this setup, the number of simulated
for » position errors, much of the true pattern is recoveregheasurements is about 44 000.)
However, the gain is still about 1 dB low, and there are There are noniterative schemes for processing plane-polar
anomalous sidelobes. The condition number and the numbeggts in O(N log N) operations [11]-[15]. Our approach is

iterations were the same as in the second case. This exampie flexible, however, since data locations can be perturbed
demonstrates the importance of three-dimensional positigNthree dimensions.

error correction for steered-beam antennas.
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B. Laboratory Tests VI]. SUMMARY

We want to verify that our method is effective in the A number of papers treat nonideal measurement locations
presence of measurement errors. Three sets of near-field nié8}-[23]. We think that our approach compares favorably in
surements were taken of a 1.2 m dish at 4 GHz. Two sets wéggms of efficiency, accuracy, and simplicity. Major features
made without position errors on planes separatechby. In are:
the third set, we deliberately introduceeposition errors (as + the algorithm is iterative, with a fixed cost per iteration
a function of z). The errors included periodic and random that is O(N log V). The memory requirement i§(N)
components, and had a maximum magnitudé.o6f. and is independent of the number of iterations;

Results are shown in Figs.4 and 5. From Fig. 4, we ¢ convergence is guaranteed; bounds [see (6)] on the con-
see that the position-error corrupted pattern is considerably vergence rate for the conjugate gradient procedure are
distorted. Fig. 5 shows all three far-field patterns. Due to tighter than for many alternative iterative techniques;
measurement errors (primarily multiple reflections), there ares computation error (not measurement error) is bounded by
discrepancies. The patterns are consistent, however, within the residual [see (7)];
normal measurement uncertainties [10].  our current implementation is fully three dimensional,
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« the recipe given in this paper is also applicable to cylindri- The infinite summation ranges in (14) must be truncated.
cal and spherical scanning geometries; the basic ingrefli-natural way to do this is to eliminate evanescent modes
ent is an efficient procedure for predicting probe responge imaginary). These usually contribute little to(r) since
at the measurement locations, based on an estimatkdy are exponentially attenuated away from the transmitting
modal spectrum. antenna. For example, in standard planar near-field scanning

Software implementing this method is available; interesté@pplications, modal indices are limited by
readers should contact the authors. N, <v<N,, =N, <p<n, (16)

APPENDIX A

where N, and &, are usually chosen just large enough to
PLANAR NEAR-FIELD SCANNING

include all propagating modes
Following Kerns [24], the response(r) of a receiving

probe antenna (located a&) to a transmitting test antenna N, > —~, N, > L—y a7
(located at the origin) may be written as the Fourier transform A2 A2
wl(r) :/ / D(k) exp(ik - ) dk, dk, (13) With dataw(x,.,) measured on the grid
T T L.n L,m
Tpm = —X + ——y + dz (18)
where N, N,
k=ktx+ky+yz
v=k, = /k2—kg—k5 =Ny <n< Ny, =Ny, <m<N,
_ 2r (14) becomes a discrete Fourier transform. The FFT algorithm
A may be used to calculate tig, in O(N log V') operations

and v is chosen positive real or positive imaginary (théN = AN, N, ).

exp(—iwt) factor is suppressed). This model assumes that

the probe is translated from place to place without rotation. APPENDIX B
The physical structures of the transmitting and receiving IMPLEMENTATION
antennas must be entirely in the half spaces< 0 and

z > 0, respectively. Multiple interactions between antennas According to the model (1) the coupling prodyct: {¢, .}

. . . . IS, determined from the probe responsér) at a given set of
are ignored. Typically, we seek to determine coupling product . .

measurement locations, - - -, rx. As discussed above, there
D(k) from measured values af(x).

. o . . re fewer coefficientg,, than measurements (the problem
Equation (13) is discretized by assuming, on some pla|seoverdetermined so the coefficients are found in a least
z = d, thatw(r) = 0 when |z| > L, or |y| > L,. This )

— . ; squares sense from the normal equations (3). The normal
approximation must be physically reasonable in the context© . . . ; ; :
the measurement. The data then may be expressed as a Fotfl ﬁnons are solved iteratively using the conjugate gradient

. j method.
series(—L Ly, —L L . . N
(=Le <@ < Loy =Ly <y < 1Ly) This approach requires the repeated multiplication of the

— = . matricesQ andQ" by vectors. The present method computes
w(r) = Z Z &upoxp(iky o) (14)  each mz(?rix-ve?tor p};oduct (N 102 N) operations (forl{f3
reTreETe measurements), in contrast@{ ') operations for evaluation
with by a direct method.
k,, = ﬂ& + Ey Yy We first (_:onsider applicati_on of the mgtr@. The mei’:\sgre-
Ly L, ment locationsey, - - -, rx, With ¥, = Z,X + ¥, ¥ + 2,2, lie
e - 2 approximately on the plane= d and we assume that they are
Yo = \/k2 — (L_> — (L_) . not more than a few wavelengths away from it. In particular,
e v |zn —d| <aAforn=1,--- N with ¢ < 4, wherex = 2= /k.
Now This assumption allows the determinatioresp (k. , -r,,) by
1 Lo ply . polynomial interpolation from a small set of values at fixed
S i, /_LI /_Ly w(r) exp(—ik,, -r)dr dy. locations in z

I
On the other hand, the Fourier transform (13) may be inverted . .
o give (13) may exp(ik,, -x,) = ; Ci(zn)exp(tky - Tnt) + €0pn (19)

1 e Ly
D(k) = —/ / w(r) exp(—ik - r) dz dy. where
a7 J_p, —Ty
A comparison of the last two equations gives rp = rnxr—i— YnY + 212
2 - Zﬂ, Zm
Tr ju— —_—
bon= 7 Dksy). (15) Gy = ]I 3=

L.’r,'Ly m=1,m#l
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and the interpolation points are Chebyshev nodes defined laye a number of ways to reduce this constant, but it has been
entirely adequate for our purposes.

Zr41 — 2 20—-1 _ X . :
Zr=2Zo+ % 1—cos % , I=1,---/L The iterative solution of the normal equations (3) by the
L - 20 conjugate gradient method follows the procedure given in (5).
20 = WMl En, - L4l = HAX 2 (20) addition, we estimate the conditieh of the matrixA using

The numbelL of interpolation nodes is chosen so the interp he Lanczos meth(_)d. This method exploits the cor_1nect|on
etween the condition oA and that of the Krylov matrices

lation errore, ,,, satisfies|e, | < €, wheree is specified by
the user. The polynomial interpolation error (see, for examplg (A, (" j) = [v( Ax(® ... AJ-1e®] j=172 ...
[25, p- 49)) is

I (L)
cvun = [ [(2n = 1) - %; Cuun € [Z0,ZL41]

=1

(see, for example, [6]). The method generates a sequence
of symmetric tridiagonal matriced';, T»,---, with T; of
dimension;j x j, such that the extremal eigenvalues Bf
approximate those oA increasingly well. On thgth iteration
where f(z, ) = exp(ik, , -x,). Forzi, - -+, Z, defined by (20) of the conjugate gradient method, the estimafeof the
and|v, .| < k, this reduces to the bound condition of A is obtained by diagonalizind’; and defining

¢; = Aj1/Ajj, whered;y, Ajs, - -+, A;; are the eigenvalues of

I
ey in| < @. T; in descending order.

' The matrixT; is defined by the formula
The smallest integef such that2(ra)"/L! < ¢ therefore a0 o - 0
suffices. o _ )

Substituting (19) into (1) and changing the order of sum- . _ Bo o K : i=1,2, -
mation yields ! Lo B ’ o
. i —2
w/(rn) :ZCI(ZW,)ZfiueXP(Z’kuu 'I‘nl)-i-sz/m&,m 0 6]’—2 -1
I v v where

where w' = {w/(r,)} is the probe response due to the o = [d9)2 ||V =D )||e)))?
coupling product’ = {fj,u}. The parametet is chosen so T e@))2 |[x =]t
that the sum involving, ,, can be neglected. The inner sum ||d(j—1)||2||r(j)||
over vy is a discrete Fourier transform in two dimensions Bi-1 = _W

for each!, except that the points,x + y,y are unequally

spaced. The unequally spaced FFT of Dutt and Rokhlin [&r j = 0,1,--- and we defind[x{~"|| = 1, ||d=V|| = 0.

and, subsequently, Beylkin [3] can be used to evaluate this sunThe estimatexf» of the condition of A are necessarily

for all N locations inO(N log V) operations. This evaluationimperfect; they cannot account for aspects Af that are

is obtained for each of the planes= z;,---,Zz; and the absent fromK(A,r(O),j). These estimates, however, are the

resulting values are weighted by the interpolation coefficierttest available gived (A, +(%), j). The Kaniel-Paige conver-

Ci(zn). gence theory (see [6]) establishes the connection between the
The multiplication of matrixQ”’ by a vector is nearly the estimates and the choice 6f*).

same as forQ. The computation ob’ = {b,,} from w',

whereb’ = Q" w’ is given by the equation

b,, = Z Ci(zn) Z w'(v,) exp(—ik} , - Tnp).
l n
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