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Abstract—The feasibility of novel all-dielectric waveguide grat-
ing filters is demonstrated, using a genetic algorithm (GA) to
solve for material dielectric constants and geometric boundaries
separating homogeneous regions of the periodic cell. In particu-
lar, GA’s show that simple geometries (not previously reported)
utilizing a small number of layers and/or gratings can be found to
yield bandpass or stop-band filters with user defined linewidth.
The evaluation of the fitness of a candidate design entails the
solution of an integral equation for the electric field in the cell
using the method of moments (MoM). Our implementation is
made efficient by using only very few design frequency points
and accurately approximating a given filter transfer function by
a quotient of polynomials as a function of frequency. Additionally,
the problem impedance matrices are conveniently represented
as the product of a material independent matrix and a vector
of dielectric constants, thus allowing us to fill the matrices
only once. Our code has been parallelized for the Cray T3D
to take advantage of the intrinsic parallelization efficiencies
offered by GA’s. Solutions are illustrated for a very narrow-band
single-grating transmission filter and a relatively broad-band
double grating reflection filter. Additionally, a solution for a five
homogeneous layers Fabry–Perot filter is also presented.

Index Terms—Filters, genetic algorithms.

I. INTRODUCTION

T HIS work is concerned with the synthesis of inhomo-
geneous all-dielectric (lossless) periodic structures that

act as filters. The design of electromagnetic components, in
general, involves finding the values of the relevant parame-
ters, which ensure that the structure performs in accordance
with specified design criteria. The particular type of design
described here can be thought of as an inverse-source prob-
lem since it entails finding a distribution of sources that
produce fields (or quantities derived from them) of given
characteristics. Electromagnetic sources (electric and magnetic
current densities) in a volume are related to the outside fields
by a well-known linear integral equation. Additionally, the
sources are related to the fields inside the volume by a
constitutive equation involving the material properties. Then,
the relationship linking the fields outside the source region
to those inside is nonlinear in terms of material properties
such as permittivity, permeability, and conductivity. Dielectric
filters made as stacks of inhomogeneous gratings and layers
of materials have been used in optical technology for some
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time, but are not common at microwave frequencies. The
problem is then finding the periodic cells geometric config-
uration and permittivity values that correspond to a specified
reflectivity/transmittivity response.

This type of design problem shares some of the formalism
with that of the identification/location of dielectric objects
given their scattered fields in that they are both nonlinear
inverse problems described by the same integral equations.
Some approaches to solving the reconstruction problem have
been proposed [1], [2], which suggest a useful strategy also
applicable in part to the design case. Specifically, the solution
of the nonlinear inverse problem is cast as a combination of
two linear steps by explicitly introducing the electromagnetic
sources in the computational volume as a set of unknowns in
addition to the material unknowns. This allows to solve for
material parameters and electric fields in the source volume
which are consistent with Maxwell’s equations. Solutions are
obtained iteratively by either decoupling the two steps in
[1] or by keeping them coupled in [2]. Irrespective of the
specific solution method, this approach involves a potentially
large number of unknowns, particularly when many frequen-
cies/illumination angles are of interest, which is the case in
design. In order to reduce the number of unknowns or the
complexity of the operators, we introduce a simplification
in the iterative scheme by first inverting for the permittivity
only in the minimization of a cost function and, then, given
the materials, by finding the corresponding electric fields
through direct solution of the integral equation in the source
volume. The sources thus computed are used to generate
the far fields and the synthesized filter response. The cost
function is obtained by calculating the deviation between the
synthesized value of reflectivity/transmittivity and the desired
one. Solution geometries for the periodic cell are sought as
gratings (ensembles of columns of different heights and/or
widths) or combinations of homogeneous layers of different
dielectric materials and gratings. Hence, the explicit unknowns
of the inversion step are the material permittivities and the
relative geometric boundaries separating homogeneous parcels
of the periodic cell.

The inversion step to compute materials and geometric
boundaries is performed using the genetic algorithm (GA)
package PGAPACK [3]. The choice of a GA was suggested
by the primary objective of this work, i.e., investigating the
feasibility of dielectric waveguide filters whose geometry is
simpler or smaller or more easily manufacturable than existing
designs and understanding the trends in required numbers,
values of materials, and their geometric configurations as
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functions of the prescribed filter response. To this end, several
advantages are offered by global optimization techniques such
as GA’s over local gradient-based optimization methods used
with nonlinear problems for electromagnetic designs where the
solution space has many extrema. In particular, the ability of
GA’s to sample a given parameter space globally not only
avoids the common pitfalls of local minimization algorithms,
but holds the promise of finding novel solutions perhaps not
thought to exist. Some applications reported in the literature
include the design of thinned phased-arrays [4], of multilayer
radar absorbers [5], of multilayer optical filters [6], of loaded
antennas [7], [8], and of monolithic microwave integrated
circuits (MMIC) component shapes [9]. Finally, the specific
choice of PGAPACK was suggested by its availability as a
parallel and portable library, thus affording an efficient use of
a versatile software tool.

It has been remarked that GA’s carry a considerable com-
putational cost. Naturally, the most expensive part of the
computational cycle is the forward module that performs the
evaluation of a candidate solution to determine its fitness.
In our case, this consists of solving a set of integral equa-
tions for the electric fields in the cell, one for each design
frequency/illumination angle. Although the impedance matrix
depends on the solution vector of materials and boundaries
candidates, it can be formed as a product of a solution-
independent matrix and a vector. This procedure allows us
to fill the set of frequency-dependent impedance matrices
only once. Additionally, the number of design frequencies at
which the integral equations are actually solved is a small
set of values within the frequency range of the desired filter
response. The reduction is afforded by approximating the
desired filter response by a quotient of frequency dependent
polynomials, through the procedure of transfer function param-
eter estimation described in [10]. Furthermore, full advantage
has been taken of the parallel implementation of PGAPACK
for the Cray T3D. The parallelization scheme used for the
GA is an intuitive, simple, master-slave configuration, where
the expensive evaluation cycles are distributed among the
processors.

Section II describes the electromagnetic scattering from
a two-dimensional (2-D) inhomogeneous dielectric periodic
structure, which constitutes the “forward module” of our inver-
sion scheme. Section III highlights some of the relevant fea-
tures of the specific GA solver used in our work. Section IV fo-
cuses on the design of dielectric waveguide-grating filters and
emphasizes the role of our inverse approach in finding novel
solutions. Section V presents and discusses numerical results
for three different types of filters designed with our code.

II. FORMULATION OF THE FORWARD

SCATTERING FROM A DIELECTRIC GRATING

At every step, we evaluate the scattering from a candidate
solution for a dielectric grating according to the formulation
described in the following. Fig. 1(a) shows the geometry of a
dielectric grating, periodic in thex dimension with periodTx,
infinite in y, and having a thicknesst(x) variable over the cell.
The cell material is characterized by complex permittivity and
permeability. The polarization with the electric field parallel to

(a)

(b)

(c)

Fig. 1(a). Geometry of a 2-D periodic structure showing an inhomogeneous
dielectric cell and the illuminating plane wave. (b) and (c) Specific cell
geometries realizable with our methodology.

the strip will be considered (E polarization); a formulation for
the perpendicular polarization can be similarly developed. To
properly pose the scattering problem for a periodic structure,
the excitation field must be a function with constant amplitude
and linear phase. The incident field is defined as [11]

Ei(x; z) = E0 0(x) e
jkz0z (1)

where

 m(x) =
1
p
Tx

ejkxmx (2)

and
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and theej!t time convention is used. Using the electric field
integral equation, the unknown induced currentJ(�) is found
at each design frequency/illumination angle from

Ei(�) =
1

j!"0�(�)
J(�) � Es(�) (3)

where all components arey directed, and� is the contrast
function

�(�) = "r(�) � 1:
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The scattered field is found from integrating the induced
currents over the grating

Es(x; z) =
�!

4
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is the 2-D periodic Green’s function—the outgoing Hankel
function of order zero—representing the field due to source
points within each cell [12]. Using this periodic spatial Green’s
function, the integration area is then over one periodic cell.
Equation (4) contains an integrable singularity, occurring as
the source and observation points are made to coincide. The
Appendix outlines a method for isolating this singular point
and performing the integration in an efficient manner. The
result is

Es(x; z) =

Z Tx

0

dx0
Z t(x)

0

dz0J(x0; z0)
�
ZP
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+
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where the various terms are defined in the Appendix.
The method of moments (MoM) is used to solve the above

integral equation. The numerical solution of (3) is found by
first discretizing the current over a periodic cell in a pulse
basis set

J(x; z) =
PX

p0 =1

QX
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Cp0q0�p0(x)�q0(z); P 0xQ
0 = P 0Q0 (6)

where the pulse is defined as
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In our MoM procedure, point matching is used with the testing
functions being
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The matrix system for the unknown coefficientsC is then

hEi; Tpqi =
X
p0q0

Cp0q0
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where the inner product is defined as

hf; gi =
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0
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Z t(x)

0

dz fg�:

The matrix of (8) depends on the materials through the
contrast�. However, it can be represented as a product of a
material-independent matrix times the vector of the contrasts

at each discretization cell. Therefore, the basic matrix is filled
only once for each design frequency and it is simply updated
at each iteration step by multiplication with the current vector
of contrasts. It seems that there is one independent contrast
value for each discretization cell used in our MoM. In reality,
we constrain the grating periodic cell to be composed of
a number of regions with different materials, separated by
boundaries, and arranged in a combination of homogeneous
horizontal layers and/or strips with� varying along thex and
z directions, as illustrated in Fig. 1(b) and (c). Then the set
of inversion parameters for the GA, i.e., the different values
for � and boundary locations alongx andz, is much smaller
than the number of discretization cells. A mapping algorithm
transforms this reduced parameter set for a candidate solution
to the full vector of contrasts at each discretization cell.

Assuming that only the dominant(m = 0) mode is prop-
agating, the reflection and transmission coefficients are found
from evaluating the total field atz � t andz � 0, respectively
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where the transform of the current is given in the Appendix.
In designing a filter the desired behavior ofR and T

(RR� or TT �) within a continuous range of frequencies is of-
ten specified; since the coefficients of the current are frequency
dependent, it would appear that to evaluate the response of
a candidate many MoM solutions of (5) must be calculated.
However, any prescribed filter response must satisfy the con-
dition of realizability. It is well known from classical lumped
parameter filter design that realizability requires that the in-
sertion loss (as a function of frequency) be representabable
as the ratio of two polynomials of even powers of frequency.
Then the problem is reduced to representing the desired filter
response by a quotient of polynomials working with a set
of prescribed values sufficient to determine the unknown
coefficients. As discussed in [10], the general representation
for a magnitude-squared network transfer function with poles
and zeroes is given by

jF (!i)j
2 =

PN�1

j=0
Bj(!i)2j

PN

j= 0
Aj(!i)2j

+
KX

j=0

Cj(!i)
2j (10)

where the quantity on the left-hand-side is eitherRR� or TT �.
Equation (10) can easily be turned into a system of equations in
the 2�N +K unknownsAj ,Bj , andCj. Hence, the solution
of (5) is calculated only at 2�N + K design frequencies
and the correspondent values for (9a) or (9b) are used to
solve for (10). The polynomial approximation of (9a) or (9b)
are then obtained at all frequencies of interest and used in
the evaluation of the residual. In our implementation we
investigated prescribed insertion loss functions, which can be
represented very well by (10), and in the case of a Butter-
worth response discussed in Section VI, exactly. Naturally,
the frequency response of a distributed system might not
be consistent with (10) and a thorough investigation of its
applicability is beyond the scope of this work. However, since
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we are concerned with filter designs in the neighborhood of
one resonance, it is expected that (10) will apply approximately
to the filter transmittivity and/or reflectivity. Indeed, for our
filters we verifieda posteriori that the solutions calculated
by extrapolation from (10) were in agreement with those
calculated directly.

III. PGAPACK PARALLEL GENETIC ALGORITHM

The general properties of GA’s are described very exten-
sively in the literature (see, for example, [13]) and here we
summarize only the most important features of the specific
library used in our work. PGAPACK is a parallel GA library
developed at Argonne National Laboratory by Levine [3].
Both serial and parallel versions are available for a large
number of computer systems (including the Cray T3D) using
message passage interface (MPI) system libraries. The low-
level routines are written inC, but interface (wrappers)
routines are available which allow PGAPACK to be used
in a FORTRAN code. For simple problems, or limited user
involvement, a single high-level call to the library is available.
More user control can be achieved by calling the GA lower
level functions explicitly in which case many parameters
affecting the mechanisms of selection, recombination, and
fitness evaluation can be adjusted. We have chosen a flexible,
customized usage in our work, which included writing some
additional low-level routines. Several data types are admissible
to represent the string of unknowns called “gene”; we have
chosen real encoding whereby each unknown is represented
by one real number whose value can vary continuosly within
a predefined range. Hence, the solutions are not limited to
the discrete approximations associated with a binary represen-
tation. We find PGAPACK implementation of real encoding
very appealing also because the meaning of the operations of
crossover and mutation are more transparent and, we believe,
more effective than for binary encoding. To illustrate the point
on a simple example, we have simulated the application of a
crossover and a mutation operations to a real encoded gene
contrasted to a binary encoded gene in Fig. 2. (Note that
the two representations are not meant to describe the same
numbers.) It is assumed that there are four variables and
that three bits have been chosen to represent each of them
in the binary approximation; by contrast a full real number
is used to represent an allele in real encoded genes. A two-
point crossover has been chosen in both cases. In either case,
the crossover operation generates new strings by combining
portions of two existing strings, broken at one or more points.
While in a binary representation, the bit sequence representing
one variable can be broken by the crossover operation at any
point, as illustrated in(�) on the left of Fig. 2, in this real
encoding, the full value of a variable is always preserved as
seen in(�) on the right of Fig. 2. For our specific problem, we
found uniform crossover to be very effective and we specified
a probability of occurrence of 50%, consistent with PGAPACK
author’s recommendations. Crossover then simply rearranges
the sequence of candidate values, and then mutation changes
them. Note also that the mutation operation acquires a more
versatile meaning and is not just the flipping of a bit in the

(a) (b)

Fig. 2. Example outcome of crossover(�) and mutation(�) operations
in (a) binary encoded gene versus (b) real encoded gene. In both cases,
chromosome is composed of four genes. In the binary case, three bits have
been chosen to represent each allele.

string. Instead, an allele is mutated by modifying its value
according to some algorithms, for example, by a percentage
of the current value chosen probabilistically within a range
(compare, for example,(�) on the left and right of Fig. 2). We
have been using the Gaussian mutation type in our work where
the allele is mutated by adding a random number obtained from
a Gaussian distribution with zero mean and standard deviation
prescribed by the user to be a percentage of the current allele’s
value. Typically, 5–10% was specified in our test runs. Larger
percentages resulted in less desirable (higher residual value)
solutions for the same number of generations. One can see
that with this real encoding, crossover is the most important
operation during the early generations, when the gross features
of a good solution are evolved. Later on, mutation becomes the
critical mechanism that allows the fine features of the solution
to emerge. It is noted that PGAPACK “swap only” crossover
operator used with real encoding is not the only possible
one; for example, implementations exist where arithmetic or
geometric averages of the alleles values being swapped form
the child strings [14]. In addition to the types of encoding
described so far, PGAPACK allows the user to define custom
data types, which implies writing a set of custom functions
to perform the operations which are data-type dependent. This
facility is very useful for problems requiring a mixed type of
variable encoding.

IV. A N APPLICATION:
GUIDED-MODE RESONANCE FILTERS

It has been demonstrated that planar dielectric layer diffrac-
tion gratings exhibit sharp resonances due to the coupling of
exterior evanescent diffractive fields to the leaky modes of
dielectric waveguides. In these cases, efficient switching of
energy between (nearly) totally reflected zero-order mode and
(nearly) totally transmitted zero-order mode is achieved with
proper choice of the cell size. Such property leads to the possi-
bility of filter designs whose arbitrarily narrow linewidths can
be controlled by the choice of modulation amplitude and mode
confinement. In optics, the guided-mode resonance effect has
been combined with classical antireflection properties of thin
film structures, leading to the design of symmetric reflection
filters with low sidebands over wavelength ranges related to
the number of films used and their dielectric constants [15].
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Recently, a combination of guided-mode resonance and high-
reflection layer design has been demontrated to yield trans-
mission bandpass filters [16]. A reflection filter of this type
has also been demonstrated in the microwave region [17]. In
the present paper, we investigate the possibility of finding new
types of waveguide-grating filter solutions in the microwave
region. In the above studies, “forward scattering” analysis
techniques were used to obtain the filter response, starting
from a set of user specified filter parameters and relying on
known properties of antireflection (half-wavelength) or high-
reflection (quarter wavelength) homogeneous layers/gratings
for reflection and transmission filters, respectively. By contrast,
here we start from a desired filter response and determine
the grating/layer configuration and dielectric constants of
the solution, without constraining the thicknesses to be a
specified fraction of the resonance wavelength. This approach
is particularly appealing in the microwave region where the
traditional approach used in optics would yield solutions that
are too thick for practical use. At the same time, the potential
reduction in size can be beneficial in optics too, since thinner
filters have a wider range of application.

Some important issues can be explored with our inverse
approach. The first relates to the shape of the resonance
response of the filter; in particular, we have investigated
the possibility of synthesizing a transmission response de-
scribed by a Lorentzian lineshape with controllable linewidth
to achieve a very narrow band. On the other hand, we have
also searched for solutions whose reflection response follows
a given Butterworth curve to demonstrate that broad-banded
response and sharp cutoff are also obtainable with these type
of structures. A second issue concerns the actual number
and configuration of gratings/layers required; specifically, we
have been looking for the “simplest” solutions, i.e., those
which involve only one grating, if possible. In particular, we
have also investigated the possibility of using more than two
materials to make one grating to achieve symmetric responses,
exhibiting a sharp resonance and low sidebands. We have seen
that there is a tradeoff between the values of the dielectric
constants (resulting in the modulation) and the thickness of the
periodic cell. Since it is our interest to examine the possibility
of designs that might not be known to exist, we have not
restricted the choice of dielectric constants to a small set of
familiar values, but instead have considered the materials that
can, in principle, exist. Specific numerical results are presented
in the following section.

V. NUMERICAL EXAMPLES

A novel design for a narrowline bandpass filter is presented
in Fig. 3. By allowing the unknown dielectric constants to span
the range between one and ten—a realistic assumption in the
microwave region—we have obtained a solution for a three-
material single waveguide-grating transmission filter with a
bandwidth of 0.7% of the central wavelength of 3 cm. The
geometry of the cell and illumination condition is reported
in the figure together with the obtained filter response. The
grating periodTx and thickness were fixed and we solved
for the two geometric boundaries (ranging between zero and

Fig. 3. Transmittivity response for three-material single-grating filter de-
signed to satisfy a Lorentzian lineshape. Cell size isTx = 2:2 cm, thickness
= 0:9 cm. Boundary locations are atx12 = 1:15, x23 = 1:78 cm. Dielectric
constants of materials from left to right are"1 = 2:498, "2 = 7:939,
"3 = 10.

Tx) and three material permittivities (ranging between one
and ten). The chromosome is constructed as the sequence
of material parameters followed by the boundary locations.
The prescribed response is a Lorentzian line approximated
according to (10); for this particular case, we determined
numerically thatN = 2, K = 1 was sufficient to represent
the Lorentzian with at least six digits of accuracy. As a result,
five design wavelengths were used to specifyRR�: 2.5, 2.75,
3, 3.25, and 3.5 cm. The residual was actually evaluated
for a set of 103 wavelengths not equally distributed in the
range 2.5–3.5 cm, but rather having a denser distribution in
a small region around the expected resonance (21 points in
the range 2.98–3.02 cm). We took the population size to be
3000 with replacement through crossover and mutation of up
to 300 (steady state) at every generation and performed the
calculations on the JPL Cray T3D. Gridding the cell with 21�
7 points was sufficient to achieve convergence to the solution
reported in the figure in about 150 iterations. For each iteration,
the overall cost of replacement, i.e., the time necessary to
evaluate the newly created strings at each iteration, was about
5 s using 64 processors.

As an example of a stopband filter, a response described by
a fourth-order Butterworth polynomial with bandwith of 8%
of the center wavelength was input to the GA as a prescribed
reflectivity. A synthesized two-grating solution, the simplest
realization with the smallest cell size which was found, is
illustrated in Fig. 4 with the obtained response contrasted with
the desired one. Sixteen wavelengths were specified to exactly
represent the Butterworth curve according to (10) and the
residual was calculated at 51 points. Both sets of points were
uniformly distributed in the range of interest of 2.5–3.5 cm.
The trial cell size was chosen to be 2� 2.7 cm and was
gridded with 10� 14 points. A population size of 4000 with
10% replacement was chosen and convergence was reached in
about 300 generations. The calculation was performed on the
Cray T3D using 128 processors in about 1 h with a cost of
replacement of about 13 s.

Finally, to validate this method for a class of structures
for which there are analytical solutions, we started with the
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Fig. 4. Reflectivity response for double-grating filter designed to satisfy a
Butterworth lineshape of the fourth order. Cell size isTx = 2:5 cm, thickness
= 2:7 cm. Boundary locations alongx are atx12 = 1:5 cm (bottom grating)
andx34 = 1:25 cm (top grating). Thickness of bottom grating is 0.96 cm.
Dielectric constants of the four materials are"1 = 1:319, "2 = 9:172,
"3 = 3:638, "4 = 4:113.

Fig. 5. Reflectivity response of five homogeneous layer filter designed to
satisfy curve illustrated in the figure as “prescribed.” Overall thickness of the
structure is 1.62 cm. Thicknesses of each layer are (from bottom)z1 = 0:2,
z2 = 0:4, z3 = 0:42, z4 = 0:4, and z5 = 0:2 cm. Dielectric constants
of the five materials are"1 = 6:5, "2 = 1:023, "3 = 6:373, "4 = 1:067,
and "5 = 6:5.

response of a five-layer Fabry–Perot filter and report the
results for our design solution in Fig. 5. The design curve
was obtained [18] with a forward-scattering approach for a
five-layer structure with thicknesses from bottom to top of
0.2, 0.5, 0.22, 0.5, and 0.2 cm. The correspondent original
dielectric constants of the five materials were 6.13, 1, 6.13,
1, and 6.13. For use with our inverse approach, the design
curve was approximated according to (10) and its rational
representation was obtained numerically forN = 2 andK = 1
using five wavelengths unequally distributed in the design
range, specifically at 1.8, 1.9, 1.95, 1.986, and 2.1 cm. The
“cell periodicity” was taken to be 0.1 cm and the overall
thickness was fixed at 1.62 cm. Note that the solution found by
the GA is symmetric with values of thicknesses and dielectric
constants very close to those used to generate the design curve.
In particular, no symmetry requirements were introduced as
constraints. Since the reconstructed transmittivity is in very
good agreement with the prescribed one, we can see that the

sensitivity of the response to small variations in the design
parameters (thicknesses and dielectric constants) is very small.
This property is well known for Fabry–Perot filters. We note
that while we are not advocating the use of our design
approach for Fabry–Perot structures, we chose this example
for validation of our technique, showing that starting from the
response of a Fabry–Perot filter, the algorithm finds a solution
in this class.

VI. CONCLUSION

The feasibility of novel all-dielectric waveguide grating
filters has been demonstrated using a GA to optimize material
dielectric constants and placement of geometric boundaries
separating homogeneous regions of the periodic cell. Exploit-
ing the GA’s ability to sample a specified parameter space
globally, we show the existence of simple filter geometries (not
previously reported) utilizing a small number of layers and/or
gratings and yielding bandpass or stopband responses with
user defined linewidth. Novel solutions are illustrated for a
very narrowband (Lorentzian) single grating transmission filter
and a relatively broad-band double grating reflection filter.
We believe that our three-material single-grating structure
achieving narrow-transmission linewidth, symmetric response,
and very low sidebands has not been demonstrated before.
An efficient implementation is presented where the most
expensive part of the computation is reduced by: 1) conve-
niently filling a set of impedance matrices associated with a
MoM discretization and 2) explicitly solving the MoM only
at a small number of design frequencies/illumination angles
and then extrapolating the solution for the (normally) much
larger set of design frequencies/illumination angles of interest.
Thanks to these features, the availability of a parallel GA
library and a supercomputer we were able to obtain design
solutions in about two hours using a Cray T3D. The general
approach outlined in this paper, combining an efficient forward
scattering module with a GA-based inversion scheme, can be
applied to other electromagnetic system design problems.

APPENDIX

Applying Kumar’s transformation to (4) it is obtained
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�
�H

(2)
0

�
�
k
p
(x� x0 �mTx)2 + (jz � z0j+ �)2

�
e+jkx0mTx

�

�
!�

4

Z t(x)

0

dz0

Z Tx

0

dx0 J(x0; z0)
X
m

H
(2)
0

�
�
k
p
(x� x0 �mTx)2 + (jz � z0j+ �)2

�
e+jkx0mT

x

(A.1)

where � is the shift away from thejz � z0j axis. The first
integral contains an integrable singularity, while the second
can be transformed into a quickly convergent summation. Use
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is made of the Poisson sum formula to convert the second
integral in (A.1) to a spectral domain summation. The Poisson
sum formula is

1X
m=�1

f(�m) =
1

�

1X
m=�1

F

�
2m�

�

�

F (!) =

Z 1

�1

ej!zf(z) dz

where we take

f(mTx)

= H
(2)
0

�
k
p
(x� x0 �mTx)2 + (jz � z0j+ �)2

�
ejkx0mTx

and

F (kx) =
1

2jkz
ej(kx+kx0 )(x�x

0)e�jkz (jz�z
0j+�):

The summation in the second integral of (A.1) becomes

1

Tx

1X
m=�1

1

2jkzm
ej(

2�m

Tx
+kx

0
)(x�x0)e�jkzm (jz�z0j+�)

and the second integral is reduced to

!

4

X
m

1

2jkzm
	m(x)

Z t(x)

0

dz0 ~Jm(z
0) e�jkzm (jz�z0j+�):

(A.2)
Then (A.1) is given by

Es(x; z) =

Z Tx

0

dx0
Z t

0

dz0 J(x0; z0)
�
Zp
m(x; z j x

0; z0)

� Zp
m(x; z j x

0; z0 + �)
�

+
X

~Zm ~J�m	m(x) e
�jkzm(z+�) (A.3)

where the� sign applies forz > z0 and the+ sign for
z < z0. The first integral in (A.3) is the contribution from the
singularity, whereas the summation pertains to the nonsingular
part

~J tm =

Z Tx

0

dx0
Z t(x)

0

dz0 J(x0; z0)	�
m(x

0) e�jkzmz
0

~Zm = �
!�

8jkzm

Zp
m(x; z j x

0; z0) =
�!�

4

X
m

H
(2)
0 (x; z j x0; z0) ejkx0mTx :
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