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Application of the Fast Far-Field
Approximation to the Computation

of UHF Pathloss over Irregular Terrain
Conor Brennan and Peter J. Cullen,Member, IEEE

Abstract—The recent availability of fast numerical methods has
rendered the integral-equation approach suitable for practical ap-
plication to radio planning and site optimization for UHF mobile
radio systems. In this paper, we describe a conceptually simple
scheme for the efficient computation of UHF radial propagation
loss over irregular terrain, which is based on the fast far-field
approximation. The method is substantially faster than conven-
tional integral-equation (IE) solution techniques. The technique
is improved by incorporating the Green’s function perturbation
method and we outline a way in which the formulation can be
made more exact. Computational issues such as terrain profile
truncation and the effect of small-scale roughness are addressed.
The method has been applied to gently undulating terrain and
compared to published experimental results in the 900-MHz
band. It has also been successfully applied to more hilly terrain
and to surfaces with buildings added.

Index Terms—Mobile communication, propagation, terrain
factors.

I. INTRODUCTION

T HE computation of UHF propagation loss is of central
importance to the planning of wireless communications

systems. Coverage analysis and site-optimization tools require
efficient and accurate propagation algorithms. If such tools are
to operate with the minimum of supervision it is important that
field-computation algorithms are reliable and robust. In this
regard, the deterministic (as opposed to empirical) approach
to propagation modeling has clear advantages.

One particularly important problem, the subject of this
paper, is the computation of UHF land–mobile radio radial-
propagation loss over irregular terrain. This is a well-known
problem and many solutions have been proposed. In this paper,
an integral-equation formulation is adopted: a formulation,
which can, in principle, be applied to other typical problems
arising in wireless communications engineering where surface
scattering is the predominant physical phenomenon. These
will not be considered; however, many of the key ideas are
manifested in the treatment of the terrain-propagation problem.

Other deterministic methods which have been applied to
terrain propagation include the geometric theory of diffrac-
tion (GTD) and also methods deriving from the parabolic
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approximation in both integral and differential form. These
methods are well known. GTD is well suited to high-frequency
asymptotic problems, however, the grazing incidence associ-
ated with terrain propagation (resulting in the delocalization
of interaction regions), the large number of vertices in a
typical terrain profile, and the problem of multiple transition-
zone diffraction makes its application to terrain propagation
rather difficult to justify. The main advantage of the parabolic
equation (PE) is its ability to handle tropospheric refractive
index variations. The form of the parabolic approximation (in
the context of integral equations) involves the assumption of
forward propagation, the extraction of a phase term
(assuming two-dimensional propagation in thedirection)
from both the propagating field and the Green’s function
for the problem together with certain assumptions about the
derivatives of the reduced field. These and indeed further
simplifications arise in a more natural way in recent fast-
solution strategies for surface integral-equation (IE) formu-
lation. Finite-difference and spectral-domain solutions of the
PE require careful handling of the impedance boundary used
to satisfy the radiation condition.

We adopt an exact IE formulation as a starting point. The
application of IE methods to antennas and in microwave
engineering is well known. In those disciplines, people typi-
cally seek solution methodologies that have wide applicability.
Our task is to exploit the specific nature of the terrain-
propagation problem to obtain a fast algorithm for the solution
of the integral equation. The IE formulation lends itself
particularly well to this specialization because it is manifestly
physical—we can separate specific interactions between parts
of the surface and remove them or approximate them as we
see fit. This approach is largely precluded when we opt for a
differential equation methodology.

The method proposed in this paper provides massive compu-
tational savings when compared to previous attempts to apply
surface integral equations to terrain-propagation modeling [1],
[2].

Section II outlines the IE formulation to the terrain scatter-
ing problem and identifies the main restriction of conventional
solutions, namely the prohibitively large computational burden
encountered. Section III introduces the fast far-field algorithm
(FAFFA) [3] and further implementational considerations are
discussed in Section IV. Most notable of these is the incor-
poration of the Green’s function perturbation method (GFPM)
[4] to expedite the FAFFA scheme even further. A further po-

0018–926X/98$10.00 1998 IEEE



882 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 6, JUNE 1998

Fig. 1. Groupings in FAFFA scheme.

tential improvement to the FAFFA formulation is sketched in
Section V. Section VI considers some further issues pertaining
to the UHF propagation problem, namely the truncation of the
terrain profile and the effect of small-scale random roughness.
We close with numerical examples which demonstrate the
accuracy and efficiency of the methods outlined.

II. PROBLEM FORMULATION

A certain degree of abstraction is required in order to tackle
any scattering problem of this scale. Our terrain model assumes
invariance in one dimension reducing the problem to two
dimensions. The terrain is assumed to be perfectly electrically
conducting (PEC), an assumption really only justifiable at the
grazing incidences that concern us. The surface is considered
to be composed of linear segments connecting sampled terrain
points. A later section outlines how the introduction of small
scale roughness need not significantly affect the application of
the FAFFA algorithm. We stress also that extension to three
dimensions is perfectly feasible as is the treatment of dielectric
surfaces.

The terrain model described above allows us to use (as-
suming TM polarization with time dependence of
assumed and suppressed) the two-dimensional (2-D) electric
field integral equation (EFIE) for a PEC surface [5].

A simple numerical solution of the EFIE proceeds by
modeling the unknown surface currentin terms of pulse-
basis functions of length centered on the collocation
points . This leads to the following matrix
equation [5]

(1)

where

(2)

(3)

(4)

where is the wavenumber and is a constant equal
to . is a vector, whose unknown entries are the
coefficients of the pulse-basis functions and is a vector
whose entries are the incident electric field at thecollocation
points. The incident field is defined as the field that would be
present in the absence of the scatterer. This formulation allows
for interaction betweenall sections of the scatterer, regardless
of intervisibilty conditions, and so provides for precise cal-
culation of all multiple scattering effects, a provision, which

is facilitated by the fact that is assumed to radiate in free-
space, as evidenced by the presence of the free-space Green’s
function in the matrix entries.

The necessity to accurately model the quickly varying
, coupled with the huge scale of the UHF propagation

problem (many tens of thousands of wavelengths) means
that the matrix is of extremely high order and, generally,
cannot be explicitly stored. However, a solution is feasible if
we employ iterative solution methods that do not explicitly
store . Instead, (1) is solved by recursively updating an
estimate of until some convergence criterion is satisified.
Probably the most physical iterative scheme is the “for-
ward/backward” [6] or “method of ordered interactions” [7]
scheme, which successively incorporates effects due to the
appropriate forward and backward scattering events at each
iteration. Reference [1] uses a simplified version that allows
for forward-scattered energy only, once again, sufficient for the
specific problem addressed in this paper. We stress, however,
that the fast methods we describe below are general and can be
applied toany iterative scheme and the assumption of forward
scattering is by no means fundamental. Iterative schemes,
while computationally tractable, are extremely time consuming
if applied in their basic form. The computational burden arises
from the numerical calculation of scattering integrals

(5)

Specifically, a forward-scattering scheme approximatesas
being lower triangular and writes for

(6)

The “point to point” interactions inherent in such a scheme
means that the computational complexity is . An effi-
cient implementation of such a scheme must address the issue
of expediting these summations in some simple and accurate
fashion. It is to this issue that we turn our attention.

III. FAST FAR-FIELD ALGORITHM

There exist a number of efficient iterative schemes such
as the adaptive integral method [8], matrix decomposition
algorithm [9], and various forms of the fast multipole method
[10], [11] to which the fast far-field algorithm is related. All
succeed by a process of grouping points together and a twostep
approximation of the point to point interactions inherent in
an iterative scheme. This two-step scheme involves first the
calculation of fields scattered to the group centres and then
the dissemination of this scattering information to other points
in each group. Indeed, beyond the scope of this paper, but
discussed in [12], is the idea that the success of the “well-
informed” basis sets of [13]–[15] can be interpreted in a
manner very similar to the discussion below.

The FAFFA proceeds by grouping together large numbers
of collocation points, each group having a designated group
center. Also defined for each groupis a “near-field” ,
usually consisting of the group itself and neighboring groups.
Other groups are considered to lie in’s far field .
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Fig. 2. Amalgamation of integration domains.

Now, for a point in a group with center (see
Fig. 1), we write

(7)
where are constants to be derived later. The first
summation is over groups deemed to be in’s far field, while
the second summation is over’s near field. The ability to
reusethe calculation to efficiently approximate
the field scattered from a far-field groupto each in
indicates the key computational saving of this scheme. The
necessity to calculate exactly the near-field interactions is not
a great restriction, especially when one considers that this is
but a small percentage of the overall burden.

The far-field approximation to the Hankel function

(8)

will be our starting point in deriving the “shifting functions”
.

Referring to Fig. 1, we apply the cosine rule to the quantities
, , , and to write (assuming is sufficiently large to

enable us to use the above far-field approximation)

(9)

where

(10)

(11)

Both and depend on through their dependence on
and and so we cannot make the identification

(12)

as we demand that be independent of .

However, if we define

(13)

(14)

where is the center of group, we can use (7) with

(15)

These “shifting functions” differ slightly from those pre-
sented by Lu and Chew [3] in being more accurate though at
higher computational cost. Lu’s and Chew’s functions have
no dependence and both variants coincide as the group
separation . This removal of the dependence enables
Lu and Chew to achieve considerably more “recycling,” an
idea expanded and improved in the specific instance of UHF-
terrain scattering by the tabulated interaction method (TIM)
[12]. We will use the shifting functions of (13) and (14)
because they are suggestive of further refinements that can
be made—an idea pursued in Section V.

IV. I MPLEMENTATION CONSIDERATIONS

The FAFFA scheme of the last section offers considerable
computational savings, but further speed ups can be had by
implementing the three ideas outlined in this section.

To facilitate the introduction of these ideas it would be per-
haps beneficial to introduce some terminology. Each grouping
in the FAFFA scheme has a dual role—that of radiating fields
toward other groups and receiving fields scattered from other
groups. We will refer to a group performing the former task
as being anintegration domainand one performing the latter
task as being anobservation domain. Hence, when one group
is being an observation domain, all others are behaving as its
integration domains and so on.

• Integration-Domain Amalgamation—the first imple-
mentation consideration, as suggested in [3], is to
note that when calculating fields scattered to a given
observation domain; a further efficiency can be had by
amalgamating integration domains that share a similar
angular relationship with . For example, consider the
three integration domains of Fig. 2, each scattering
fields to observation domain. If , , and are
close in value, we replace the three integration domains
with one superdomain and write

(16)

where is the value of calculated with respect to
the center of the superdomain. A simple geometrical
rule can govern this amalgamation procedure; that is,
amalgamate the integration domains if their angular
relationship with satisfies

(17)

for where is the angle subtended by the
center of the resultant superdomain andis a prechosen
threshhold constant. The utility of this idea can be easily
seen. If there are points in each of the groupings



884 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 6, JUNE 1998

, then the computation on the left-hand side of
(16) will necessitate complex multiplications,
to calculate the fields scattered to the center ofand

to shift these results to the other points in
the group. A similar logic dictates that the right-hand
side will only require complex multiplications.
As evidenced by the numerical results of Section VII
this procedure can produce exceptionally large integration
domains in the case of propagation over terrain where
the gently undulating nature of the terrain profile leads
to slowly varying angular relationships between groups,
a situation readily exploited by this concept.

• Large Integration Steps—the second implementation
consideration results from the physical nature of the
propagation mechanism. The grazing incidence coupled
with the slowly undulating nature of the surface results,
in a forward-scattering context, in the integrand occurring
in the EFIE being very slowly varying. Accordingly, the
numerical integration of these integrals as denoted by
(5) can use a suitably larger step size. An asymptotic
approximation can be employed to efficiently calculate
integrals describing backscattered radiation. More details
on these ideas can be found in [16]. It is hard to
qualify exactly the extent of speed up obtained by such
an approximation, reliant as it is on the terrain being
gently undulating and the incidence being grazing, but
the numerical examples cited in the results section used
integration steps as large as 10.

• FAFFA/GFPM Hybrid —given the nature of the efficien-
cies introduced by the FAFFA one would expect that mak-
ing the group sizes as large as possible would optimize
the computational savings. Indeed, results obtained using
the natural basis set [13]–[15] would seem to indicate
that very large groupings are feasible for the types of
problems that interest us. However, this ignores the
necessity to calculate exactly the near-field contributions,
which, of course, includes a group’s self interaction. This
procedure’s computational intensity grows quadratically
with the group size and, thus, imposes limits on the
optimum group size. The third implementational con-
sideration addresses this important issue, by introducing
the Green’s function perturbation method to efficiently
calculate a group’s self interaction and, hence, freeing
us to make the group sizes as large as is possible. The
GFPM basically approximates the matrix associated
with a scattering problem by one that is Toeplitz or
cyclical in structure. It does this by approximating the
Euclidean distance arising in the argument of the Hankel
function with the arclength distance instead. Specifically,
we approximate

(18)

where is the arclength distancealong the terrain
profile between the points and . The IE, which results
from this approximation, is convolutional in form and
can be efficiently solved using fast Fourier transform
techniques. Applying this to the specific problem of
rapid calculation of a group’s self-interaction is a simple

Fig. 3. Geometry for wedge example.

matter. A new scattering problem is postulated with a new
“incident field” consisting of the original incident field
on the group plus the field scattered from its integration
domains. This problem is then solved using the GFPM.
While the GFPM is exact for a flat plate, we stress that it
can deal accurately with small-scale roughness, providing
the slope variations are not too large [17], [18]. Thus, it is
ideally suited to calculate the self interactions of groups
occurring in the present context, where we expect that
locally the terrain would have gentle slope variations.
Indeed, results presented in Section VII use the GFPM
to calculate the self interaction of groups up to 600in
length that span several linear segments. The addition of
small-scale roughness to these linear segments is feasible,
too, as evidenced in [19].

V. IMPROVED FAFFA SCHEME

The FAFFA scheme disseminates information about fields
scattered to a groupfrom a group by means of two shifting
functions and . Of these, is the more important and
depends on the quantites, , and . The introduction of the
(in some sense) “average” quantitiesand enables us write

(19)

and facilitates “recycling” of scattered field information as
explained in Section III.

As stated earlier, this expression is suggestive of a poten-
tially more accurate formulation, as discussed below. Specifi-
cally, we introduce an improved estimate of

(20)

With this improved estimate we get

(21)

(22)

Unfortunately, the summation on the right-hand side of (22)
cannot be reused as it takes a different value for each.
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Fig. 4. � variation in wedge example.

Remembering that it is the potential reuse of calculations that
offers the FAFFA its computational efficiency prompts us to
find an expression that will facilitate it. With this in mind, we
write

(23)

Inserting this into (22) yields

(24)

Noting that

indicates that the first term of (24) is the usual FAFFA
summation. The other summations provide corrections to the
basic formulation at little extra computational expense, as it
can be shown that for each sum

(25)

and so the sums are broadly similar, their terms only varying
by a real multiplicative factor. Obviously, we must be careful
in applying this approach as and premature
truncation of the series (23) can result in error. However,
for most applications, only a modest number of terms are
necessary.

To illustrate the concepts outlined in this section, consider
the example of wave propagation over a 2-D wedge structure,
as shown in Fig. 3. A source is placed 10.4 m over the left-
most point, radiating at 970 MHz. The surface was divided
into groups of length 35. For a fixed test point in group,
we move through the points in groupcausing to vary.
Fig. 4 compares the value of the following:
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Fig. 5. Field strength over wedge.

• the exact phase relationship ;
• the FAFFA approximate phase relationship ;
• the improved FAFFA phase relationship

.

Our new linear estimate of agrees within graphical ac-
curacy with the actual value of and provides a significant
improvement over the usual FAFFA estimate given by the
constant line in Fig. 4. The improvement in field calculation
is displayed in Fig. 5, which shows the fields calculated 2.4
m above the surface for a region in deep shadow and also
plots a reference forward-scattering solution. The improved
FAFFA, which retained four terms of (23) offers a significantly
better solution than the basic FAFFA, at only a slightly higher
computational cost as illustrated below.

Solution scheme Computation time
FAFFA 140
Improved FAFFA 166

VI. PROFILE TRUNCATION AND SMALL -SCALE ROUGHNESS

Before presenting numerical results based on the ideas
discussed it would be useful to address some of the issues

that our terrain model raises, specifically the issue of how to
decide what portions of terrain interact with each other and
the treatment of the small-scale roughness that lies along the
terrain profile and is inevitably random in nature.

Obviously, we cannot deal with an infinitely long terrain
profile and must choose some way of truncating it. The
forward-scattering assumption achieves this very naturally, we
truncate the profile just under the antenna and “march” the
solution forward, each surface point being allowed interact
only with points between it and the antenna. A potential
problem with this approach is the possibility of the truncation
point acting as a line source with energy being diffracted
around the truncation point and “under” the terrain profile.
While we have yet to encounter this in our calculations,
we acknowledge its potential manifestation. It can be simply
addressed by extending the truncation point further backwards
from the antenna, thus reducing this diffraction effect. A
similar procedure can be used to prevent erroneous diffraction
effects at the other truncation point in a “forward/backward”
scheme.

An obvious route to improving the terrain model is the
addition of some small-scale random roughness to the ter-
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Fig. 6. Fields over profile Hjorringvej.

rain profile. The effects of this roughness can be significant
(especially at off-grazing incidence) and it is an important
consideration. One potential treatment is to the examine the
statistics generated by a large number of computations, each
using a particular realization of surface roughness. The tech-
niques outlined in this paper can efficiently deal with such
a surface realization at no extra computational cost. While
the specifics of the group to group interaction will change,
the field being scattered more diffusely for example, the
implementation of the basic FAFFA algorithm will remain
broadly the same. We can still compute group centres and
the geometrical factors and (which for groups far away
will not alter dramatically). What will change is the value of
the recycled summation

reflecting the more diffuse nature of the scattering. The near-
field scattering will be significantly different, but as our
near-field calculations are done exactly or via the GFPM,
which can handle moderate surface roughness, this need not
concern us. We will not pursue the issue of random rough-
ness further here, but instead refer the interested reader to
[19].

VII. RESULTS AND DISCUSSION

The techniques discussed in this paper have been applied
with success to UHF propagation problems. The first example
is a terrain profile taken from northern Denmark. The antenna
was placed 10.4 m above the left-most point and radiated at
970 MHz. Fig. 6 shows the following.

• The terrain profile Hjorringvej.
• The measured field strength.
• The field strength calculated using a slow forward-

scattering reference solution.
• The field strength calculated using the methods described

in this paper. We used groups of 200 m in
length. The far field was restricted to a each groups
self interaction and this self interaction was calculated
using the GFPM. An tolerance was set at 10 and this
produced very large integration domains up to 9 km in
length. We also exploited the slowly varying nature of
the integrand to use large integration steps (some 10).
Note the excellent agreement between the predicted and
measured results. The discrepancy between the measured
data and predicted results over the last kilometer is due
to the presence of a small urban area not included in our
terrain model.

The table below emphasises the computational savings
available with the FAFFA/GFPM hybrid. Times quoted are
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Fig. 7. Fields over mountainous profile.

in seconds and the computations were performed on an IBM
Power PC.

Solution scheme Hjorringvej Mountainous
Reference 100857 12800
FAFFA/GFPM 50 426

The FAFFA/GFPM hybrid obviously offers significant com-
putational savings over conventional IE-solution techniques.
However, for gently undulating terrain, as is the case in this ex-
ample, the FAFFA/GFPM’s performance can be significantly
bettered by both the natural basis set and the TIM, which can
produce results of equal accuracy in around 2 s on the same
machine.

Our second example involves a mountainous terrain profile
displaying steeper slopes than our first example. Unfortunately,
we have no measured data for this example, but we would
expect a strong agreement between the IE solutions and
experimental results as noted in the last example. Once again,
an antenna radiated at 970 MHz, this time 52 m over the
left-most point. Fig. 7 shows the following.

• The terrain profile.
• The field strength calculated using a slow forward-

scattering reference solution.
• The field strength calculated using the methods described

in this paper. We used groups of 5 m in length.
Once again, the far field was restricted to a each groups

self interaction and this self interaction was calculated
using the GFPM, though the smaller nature of the groups
restricted the speed ups attainable using the GFPM. An
tolerance procedure produced integration domains up to
20 m in length.

Once again, the FAFFA/GFPM offers significant compu-
tational savings though the efficiencies achieved are not as
dramatic as in the last example. The reason for this is essen-
tially the more mountainous nature of the terrain profile which
produces significantly greater angular relationships between
groups. Thus, it is necessary to form accordingly smaller
groups to maintain accuracy. The steep slopes also restrict
our ability to use large integration steps. Despite this, the
FAFFA/GFPM still produces good results in relatively quick
time and in this case outperforms the natural basis set, which
does not perform optimally in a mountainous environment. We
mention again the TIM, which, with recent improvements, can
produce a solution to this problem in around 10 s. However,
the TIM in it’s present form cannot deal with more general
scattering environments, something the FAFFA can do quite
easily.

To illustrate this, in Fig. 8, we have randomly added some
buildings to the terrain profile of Example 1 and used IE
solutions to predict the resultant field strength. Group sizes
were 50 m along the flat areas, but were reduced to
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Fig. 8. Buildings added to Hjorringvej profile.

along the buildings. This is necessary due to the sharp an-
gles encountered in these vicinties. Employing the improved
FAFFA scheme of Section V produces accurate answers when
compared against the reference solution, accurately predicting
the local effects of the buildings.

VIII. C ONCLUSION

A fast solution method has been described which renders
tractable the solution of large scale UHF propagation problems
using an IE formulation. The method proceeds by grouping
points together and replaces the point to point interactions of
standard iterative solutions with group to group interactions.
Implementational considerations have been discussed, most
notably the incorporation of the Green’s function perturbation
method to calculate each group’s self interaction. An improved
version of the “shifting function” was introduced, which
can improve the techniques performance for more challenging
problems such as scattering from a wedge. The issues of profile
truncation and small-scale roughness effects were addressed
and numerical results presented which showed excellent agree-
ment with published measured data.
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