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Theoretical Analysis of UHF Propagation
in a City Street Modeled as

a Random Multislit Waveguide
Reuven Mazar, Alexander Bronshtein, and I.-Tai Lu,Senior Member, IEEE

Abstract—In this work, we perform an analysis of a channel for
the UHF wave propagation in the city street. The street is modeled
as a planar multislit waveguide with screens and slits distributed
by a Poisson law. Statistical propagation characteristics in such
a waveguide can be expressed in terms of multiple ray fields
approaching the observer along a direct ray and the rays reflected
by the waveguide walls. The corresponding average field and
intensity distributions can be transformed into the sums of mode-
like solutions using the Poisson summation formula. Numerical
examples are presented and compared with the experimental
data.

Index Terms—UHF radio propagation, urban areas.

I. INTRODUCTION

T HE design of new highly capable mobile communication
systems has created the need to improve and develop

new theoretical models for wireless communication channels
in dense urban and suburban areas. The identification of
typical structures and the design of efficient algorithms for the
computation and mapping of the field distribution can provide
a useful tool for the optimal design of local communication
networks. As a result of the irregular spatial and temporal
structure of the urban environments the signal from the trans-
mitter arrives at the receiver along multiple ray trajectories
resulting in significant phase and amplitude variations [1]–[4].
In order to perform a detailed analysis of such complex
structures, it is appropriate to lay the emphasis on methods
that rely on the physical mechanisms of the propagation
phenomena while using the experimental data to determine the
model’s parameters. The statistical analysis is left to the final
stage. Recently, such an approach was employed to predict
propagation loss in urban environments when the transmitter
antenna is located above the buildings [1], [5]. Attempts to
reduce the interference level and a consequent increase in
the spectral efficiency of the cellular radio communication
systems require the reduction of antenna heights. Placing the
transmitting and receiving antennas below the rooftops results
in a sharp change in the character of propagation where the
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city street acts as a waveguide channel for the propagating
signal. With different approximations, the problem has been
studied both theoretically [6]–[12] and experimentally [6],
[13], [14]. Propagation along straight streets with irregularly
spaced high buildings when the transmitter and the receiver
are both located below roof level has been investigated and a
statistical waveguide model was applied for computations of
the line-of-sight (LOS) attenuation in the city street [15], [16].

In this paper, we extend the waveguide model by employing
ray-optical methods [17], [18]. This approach allows us to
compute not only the variations of the energetic parameters
of the field along the city street, but also to present analytical
expressions for the spatial structure of the field.

In Section I, we model the city street as a plane parallel
waveguide with a variable reflection coefficient. Using this
model we present the field at the observer as a superposition of
multiple ray fields traveling from the source. These ray fields
can be classified as 1) direct or refracted rays; 2) reflected
rays; and 3) rays scattered or diffracted by obstacles such
as buildings and the surface of the terrain. In Section II, we
consider a waveguide with randomly distributed screens and
slits along its boundaries [15], [16] and construct expressions
for the average field. The resulting average ray sum can be
retransformed into a mode-like solution by using the Poisson
sum formula. In Section III, we present algorithms for the
average intensity presenting it as a sum of coherent and
noncoherent parts. Using the foundations of the geometrical
theory of diffraction (GTD) [19]–[23], we show how the
diffraction effect of the building corners can be accounted
for (Appendix B). Numerical evaluation of the algorithms
and comparison with the experimental data is presented in
Section IV.

A. Formulation of the Problem

In this section, we apply the ray-optical method for the
plane-parallel waveguide with range-dependent reflection co-
eficients. The propagation geometry is shown in Fig. 1(a)
where one boundary of the waveguide is associated with the

plane at with a reflection coefficient and
the parallel plane boundary at with the reflection
coefficient . The waveguiding system is assumed to be
homogeneous in the-axis direction, with variable reflection
coefficients boundaries as functions of. Since the vertical
locations of the transmitter and the receiver are much smaller
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(a)

(b)

Fig. 1. (a) Multislit waveguide model of a city street. (b) Image source
representation in the plane-parallel waveguide.

compared to the distance, the dependence can be neglected.
The reflection coefficients are assumed to be also functions of
the wavefront incidence angle.

Let us first consider a waveguide which is infinite and
homogeneous in the axis (absence of the ground reflection
surface) and with random distribution of slits and screens in
the direction. Then the field , observed
at due to a unit strength monochromatic point
source at can be expressed as a sum of several
field contributions: 1) field arriving directly from the source at

; 2) fields arriving along multiple reflected rays
with strengths proportional to the powers of the reflection
coefficients of the waveguide boundaries; and 3) single and
multiple diffracted fields

(1)

where

(2)

is the contribution of the multiple reflected rays and
is the diffractive term contribution. In general, the amplitudes
of the diffracted fields are specified by the incident field
amplitude at the corner location and the diffraction coefficients

. These diffraction coefficients are determined in
the GTD [19], [21]–[23] and are functions of the directional
angles and of the incident and diffracted rays. As is
shown later in Appendix B, the diffractive contribution can be
neglected. In (1), , are multi-
ple reflected-ray fields arriving from the source
along different rays. The propagation ranges along these
rays can be determined from the image source picture [see
Fig. 1(b)] and are given by [18]

(3)

(4)

(5)

(6)

There are four indexes in (2) that distinguish the range
coordinate for each reflection. Index denotes
either the lower or the upper boundary. Index is
related to the different ray species with ranges (3)–(6), while

for each of these species defines the number of reflections
of a given ray. Index runs over these reflection events as is
seen from Fig. 1(b).

In (1) and (2), we have used the range values only.
The terms will be used later when the ground reflection
will be taken into account.

The pathlengths in (3)–(6) are determined by the analogy
with a continuous plane-parallel waveguide having ideal re-
flecting boundaries in which the multiple ray hierarchy can
be replaced by an equivalent distribution of real and virtual
sources [Fig. 1(b)]. Each virtual source associated with the
reflecting rays gives a contribution of
to the total field at the observer.
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B. Average Field Presentation in the Waveguide

In this section, we consider propagation along the street
waveguide and construct the average measures assuming that
the lengths of the screens and the slits are randomly dis-
tributed according to the Poisson distribution law:
and . Here, and are the average values, respec-
tively. Reflection from the screens is taken into account by
introducing the random reflection coefficients and
with symbols “1” and “2” denoting the waveguide walls

on the screen
on the slit

(7)

We note that the reflection coefficient is generally a
complex function which is dependent on the incidence angle
and polarization of the wave. The average moments of these
functions are [24]

(8)

(9)

(10)

where we defined the street structure parameter

(11)

The correlation function is given by [15]

(12)

The distributions of the reflection coefficients of the first
and the second street walls are assumed to be statistically
independent, i.e.,

(13)

The actual values of the reflection coefficient depend on the
ray-incidence angle and the exciting source polarization and is
generally a complex number. For sufficiently small glancing
angles the reflection coefficient can be approximated as (see
Appendix A)

(14)

where index according to (3)–(6) is related to the incidence
angle and the coefficient is a function of source polariza-
tion, radiation frequency, and the electrical properties of the
reflecting surfaces.

In the case of vertical polarization of the incident electric
field with respect to the reflecting surface, the reflection
coefficient can be approximated by the general form of (14).

In the case of horizontal polarization, the reflection coefficient
can be assumed to be real and constant with a value close to

1 [25]. Thus, we can use (14) again, assuming .
In addition to the reflected rays there are also fields arriving

at the observer along the rays diffracted from the building
corners. Because of the random distribution of the slits and
screens the terms arising from the diffraction at the street
corners add incoherently and their contribution to the average
field is negligible.

We apply these assumptions to calculate the average field.
Applying an averaging procedure to the expression in (1) and
rearranging the terms in (2), we obtain the average field as
a sum of two terms in which defined in (11) appears as
parameter. Denoting the street structure parameter
where is a any positive number, we obtain the following
expression:

(15)

where is defined as

(16)

Now we extend the analysis to the three-dimensional case
by taking into account the reflection of the ground surface.
Here, the average field is a sum of one direct ray and rays
that approach the observer after reflection from the waveguide
walls plus all the rays that come to the observer after the
reflection from the ground surface. The average field can be
represented as

(17)

where, denotes the ground reflection coefficient which
for small glancing angles remains almost constant for both
polarizations and can be assumed .

In the case of a vertical polarization with respect to the
waveguide walls, the ray-field sums in (17) have a rapid con-
vergence because of the fast decay of the reflection coefficient.
In the case of the horizontally polarized wave, the convergence
of ray-field sums in some cases can be accelerated by applying
the Poisson sum formula [17], [18], [26]

(18)

Applying this transformation to each of the sums in (17)
and changing the integration variables in the integrals to
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leads to

(19)

Representing the second exponential term containing the ab-
solute value by its Fourier transform and combining the
terms for we can approximate (18) as a mode-like
expansion with

(20)

When the source and the receiver locations satisfy the
condition , the expressions in (16) and (20) can be
substantially simplified. Expanding (17) into the Taylor series
of , the expression for the average field becomes

(21)

where is the average field distribution in the two-
dimensional case, i.e., in the absence of the ground surface
and in the modal form is represented as

(22)

In the case of a continuous waveguide the expressions
in (20) and (22) reduce to the modal expansion of the field
[17], [18], [26].

C. Average Intensity

In Appendix B it is shown that the corner diffraction con-
tributions are negligible for most of the practically important

propagation ranges. It allows us to approximate the intensity
as a square of the absolute value of the field

(23)

Explicitly expanding (23), taking into account the statistical
properties of the reflection coefficients, and calculating their
statistical moments analogously (as was done for the average
field) we can represent the expression for the average intensity
as a sum of coherent and noncoherent portions

(24)

For not very small values of “” (which is justified for almost
all city areas), the contribution to the sums in (17) and (21)
comes from the terms with low “” numbers. Therefore, for

, , , the coherent part can be approximated
as

(25)

The noncoherent portion can be represented by the following
formula:

(26)

where

(27)

(28)

(29)

is the noncoherent part due to the reflective terms and
is the noncoherent portion arising due to

diffraction from the slit edges. It can be computed by
adding the contributions of all edges with corresponding GTD
coefficients. An alternative way is presented in Appendix B.
According to the results in the case of the vertical polarization
this contribution can be neglected for all practically important
ranges. In the case of the horizontal polarization, the diffractive
sum can be neglected up to the ranges of 1 km. Beyond this
range it can be estimated, as shown in Appendix B.

Using the approximation as in (21) for the noncoherent
portion and substituting the explicit form of the reflection
coeficient, we obtain

(30)

The coefficient was defined in (29).
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Fig. 2. Signal-strength variation with rangez (antenna height 5 m) 870 MHz.
Dashed line: theoretical calculations. Points: measurements of [14].

D. Numerical Example

To compare the algorithms presented above with experimen-
tal data, here we consider a nonregular street waveguide with
a street width of m and choose the street structure
parameter , which was detemined from the data
described in [14] and is close to the value characteristic to
inner London where the measurements had been performed
[13]. The transmitter–receiver configurations were also chosen
according to these references.

In Figs. 2–4, we present the signal strength as a function
of the range according to direct calculations from (24)–(30).
In Fig. 2, the signal dependence is given for the radiation
frequency 870 MHz and the transmitting and receiving antenna
heights 5 and 1.5 m, respectively. In Fig. 3, the transmitter
and the receiver antenna heights were 9 and 1.5 m, respec-
tively. We present the maximum and minimum field-strength
amplitude envelopes as functions of range. Since there is
a multiple ray contribution, these envelopes were calculated
using the assumption of Rayleigh distribution. The results were
compared with the measurements performed in [14], while
in Fig. 2 we obtain good agreement with the experimenthal
data; there is a sharp spread in the measurements presented
in Fig. 3 after the range of about 700 m. In Fig. 4, signal
path losses were computed for the radiation frequency of 936
MHz, and for the transmitting and receiving antenna heights
of 3 and 2 m, respectively. According to recommendations
suggested in [25] an averaging interval of 100 wavelengths
was used. A comparison with the results of [13] gives good
agreement for all propagation ranges. Our results also give the
same attenuation rate as in [6].

We note that the algorithms presented in this work can be ap-
plied also to the transverse field-distribution computations. For
illustration purposes in Fig. 5(a)–(c), we present distributions
of the coherent intensity part normalized to the intensity of a
direct ray, with a street structure parameter for ranges

km, km, km for different source locations. Analyzing
the behavior of the coherent part, we note that there is a
smoothing of the field pattern with propagation distance, i.e.,
the contribution of higher modes into the field pattern becomes
weaker. This behavior can be easily explained since the higher
modes are created by the rays incident on the street boundaries

Fig. 3. Field-strength envelope variations with rangez (antenna height 9 m)
870 MHz. Dashed line: theoretical calculations. Points: measurements of [14].

Fig. 4. Path-loss variation with rangez 936 MHz. Dashed line: theoretical
calculations. Points: measurements of [13].

with higher angles. Since these rays undergo a greater number
of reflections, they have a greater escape probability.

Calculating the noncoherent sum, we find that it is almost
flat within the waveguide cross section. In Fig. 6, we draw
the normalized noncoherent intensity part as a function of the
range coordinate .

II. SUMMARY

In this work, we modeled a city street as a nonregular
plane-parallel waveguide and presented the field in it as a
superposition of ray fields arriving along straight and multiple
reflected random rays. The assumption that the screens and
slits on the waveguide walls are distributed according to a
Poisson law allowed us to obtain expressions for the average
field and the average intensity. Analogously to the continuous
plane-parallel waveguide, these expressions can be reduced to
mode-like expansions by applying the Poisson sum formula.
Analyzing the field structure, we found that higher modes are
present in the expression for the average intensity only at short
propagation distances. With increasing propagation range, the
number of multiple reflected rays dominating the higher order
modes decreases, contributing less to the total field and thereby
resulting in smoothing.



MAZAR et al.: THEORETICAL ANALYSIS OF UHF PROPAGATION IN A CITY STREET 869

(a)

(b)

(c)

Fig. 5. Transverse variation of the coherent intensity normalized to the
intensity of a direct ray(� = 0:5) as a function ofx for different range
planes and source locations. (a)xs = 0. (b) xs = 5 m. (c) xs = 10 m. The
middle of the street is atx = 0.

We hope that the proposed physical model of the city
street will be useful for describing urban propagation channels.
The ray approach can be employed to include additional
factors affecting the radiowave propagation such as wall
roughness and random changes of the refractive index, which
are responsible for scattering and fading effects.

Fig. 6. Variation of the noncoherent intensity normalized to the intensity of
a direct ray with range.

APPENDIX A
CALCULATIONS OF THE REFLECTION COEFFICIENT

As indicated in the text, the field from the source arrives at
the observer along multiple rays reflected from the walls of
the street buildings. The reflection coefficient is dependent on
the incidence angle and the-polarization can be calculated
from the well-known formula [25]

(A.1)

where

(A.2)

The real part of the complex permeability represents
the dielectric properties of the reflecting material, whileis
related to its conductivity. According to [25] for the urban
regions, the typical values are , \Mhos/m.
Then using (A.2), the imaginary part in (A.1) is practically
zero and the modulus of can be approximated as

(A.3)

where we introduced the following notations: ,
, .

In the case of an irregular waveguide with slits, the number
of rays contributing to the field at the observer is limited and
decreases with the increase of the street structure parameter

. For example, when (long buildings), the number
of important reflections is less then 20. In this case, the phase
of the reflection coefficient in (A.3) is nearly constant and its
magnitude can be approximated as

(A.4)

In Fig. 7, the approximated reflection coefficient is compared
with the exact expression. Good agreement is obtained for all
important values of . We note that (A.4) is applicable also
for wider ranges of electrical parameters.
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Fig. 7. Approximated reflection coefficient. Solid line: exact calculations.
Dots: approximation.

APPENDIX B
CALCULATIONS OF THE CORNERDIFFRACTION CONTRIBUTIONS

The contributions resulting due to diffraction from the
street corners can be computed by using the methods of the
GTD with given corner diffraction coefficients. This requires
taking into account all the diffracted field species and multiple
interactions of different reflected and diffracted fields.

For a rough estimate of the magnitude of the diffracted-
field contributions, here we adopt the modal approach [22],
[27]. Let us first consider a single slit of width in a
plane-parallel waveguide without a ground surface. If the
slit density is not very high, we can neglect the multiple
interaction of the diffracted fields. Let us consider the field
in the waveguide as a composition of the intrinsic modes.
Since we are dealing with high-frequency radiation
and (where is the radiation wavenumber and
is the waveguide width) and the fact that the higher order
modes have a higher escape probability, we can assume that
most of the energy is concentrated in the lower order modes.
Each mode propagating in the waveguide interacts with the
slit and part of the energy diffracted by the slit edges emerges
through the slit and part of it is returned to the waveguide
in the form of parasitic modes. Estimates of the amount of
energy transfered to the lower order modes show that in the
case of the Dirichlet boundary conditions (-polarization) the
relative losses can be approximated as and,
for the Neuman boundary conditions (polarization), they
can be approximated as .

The distribution function of the parasitic mode amplitudes
is given as:

(B.1)

(B.2)

where is the normalization constant andis the Brillouin
angle of the corresponding mode.

Since the parasitic modes created as a result of diffraction
by the street corners add incoherently, their contribution
to the incoherent part can be estimated from the energetic
considerations. We assume that all propagating coherent modes

have the same effectiveness in creating the parasitic modes in
the waveguide. This assumption will lead to a higher estimate
of the diffracted mode power. The power-balance equations
characterizing the dynamics of the coherent field-diffracted
field interaction are given by

(B-3)

(B-4)

where is the coherent power propagating along the wave-
guide, is the power component due to diffraction, and

are radiation leakage coefficients of the total power and
the diffractive part, respectively, and is the parasitic mode
excitement coefficient defined through the intensity losses per
unit length and can be expressed through the coefficientsas

(B.5)

Of course, in general, these equations are much more compli-
cated. However, the calculations show, because of the higher
mode leakage, the main contribution comes only from the main
order modes. Solving the system (B.3), (B.4) and assuming
that leads to the following result:

(B.6)

(B.7)

The relative contribution of the diffractive component can be
estimated by analyzing the ratio

(B.8)

We note that with increasing, (B.8) approaches unity and
the whole energy is transmitted to the noncoherent diffractive
component. The rate of increase of the diffractive term depends
on the parameters , , , , and . For the numerical
example, we chose the following values of the parameters:

m , m, m, m. Then,
for polarization we found that the street corner diffractive
term can be neglected up to the range of 200 km. For
horizontal polarization the diffractive contribution increases
more rapidly and has to be taken into account after the range
reaches approximately 1 km. Since its contribution is into the
noncoherent portion, it can be estimated by using (B.8).
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