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Modeling Tree Effects on Path
Loss in a Residential Environment

Saúl A. Torrico, Member, IEEE, Henry L. Bertoni,Fellow, IEEE, and Roger H. Lang,Fellow, IEEE

Abstract—A theoretical model is proposed to compute the
path loss in a vegetated residential environment, with particular
application to mobile radio systems. As in the past, the row of
houses or blocks of buildings are viewed as diffracting cylinders
lying on the earth and the canopy of the trees are located
adjacent to and above the houses/buildings. In this approach,
a row of houses or buildings is represented by an absorbing
screen and the adjacent canopy of trees by a partially absorbing
phase screen. The phase-screen properties are found by finding
the mean field in the canopy of the tree. Physical optics (PO)
is then used to evaluate the diffracting field at the receiver
level by using a multiple Kirchhoff–Huygens integration for each
absorbing/phase half-screen combination.

Index Terms—Propagation, urban areas, vegetation.

I. INTRODUCTION

M OTIVATED by the development of cellular systems,
personal communications systems (PCS), and wireless

local loop systems (WLL), there is a need to better understand
the propagation channel. This work describes an approach to
predict the propagation loss between a base-station transmitter
and a mobile receiver in a vegetated residential area. A
residential area is defined as an area outside the high-rise
core of a city where the heights of the buildings or houses
are of relatively uniform height. A residential area may also
have trees whose canopies are adjacent to and above the
buildings or houses. A PCS or WLL system is expected to have
the base-station transmitters located close to the surrounding
rooftops so that the propagation takes place over the rooftops.
Theoretical models allow precise quantitative descriptions of
a residential environment in terms of parameters such as the
building heights, street widths, and type of trees in contrast to
the ambiguous nature of more conventional empirical models
[1].

A theoretical model is proposed to include the effects of
trees as well as houses or buildings on the propagation loss
in residential areas. As in past models [2], [3], the row
of houses or blocks of buildings are viewed as diffracting
cylinders lying on the earth and the canopy of the trees
are located adjacent to and above the houses/buildings. In
this approach, a row of houses or buildings is represented
by an absorbing screen and the adjacent canopy of trees
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by a partially absorbing phase screen [3]. The field at the
aperture of the first absorbing screen depends on the mean
field going through the first tree due to an incident plane wave.
Physical optics (PO) is then used to evaluate the diffracting
field at each of the successive absorbing/phase half-screens
configuration up to the mobile receiver by using the multiple
Kirchhoff–Huygens integration. In order to find the properties
of a partially absorbing phase screen such as the mean field,
the attenuation, and phase delay, trees are represented as an
ensemble of leaves and branches all having prescribed location
and orientation statistics. Leaves are modeled as flat, circular,
lossy-dielectric discs and branches as finitely long, circular,
lossy-dielectric cylinders. The mean field in the canopy is
calculated using the discrete scattering theory of Foldy and Lax
[4]–[6]. By solving the wave equation for the mean scattered
field propagating through a tree, it is found that the wave
propagation constant has both real and imaginary components.
The integrated effect of the propagation constant over the tree
volume leads to expressions for the attenuation and phase
delay of the partially absorbing phase screen. As it has been
shown in [3], in a residential environment the overall path loss
depends very much on the real and imaginary parts of the tree
propagation constant. Finally, the shape of the cylinder of tree
crowns is modeled as an ellipse.

Following this approach, results are presented to charac-
terize the effects of trees on the propagation loss in resi-
dential environments for different grazing incident angles as
well as different separation distances between absorbing/phase
screens.

II. TREE MODELING

To find the mean field, the attenuation, and the phase delay
of a partially absorbing phase screen, trees are modeled as
discrete random ensemble of leaves and branches all having
prescribed orientation and location statistics. Because of the
randomness associated within the medium of discrete scatters,
the wave behavior in a tree is better represented by a modern
stochastic model [4]–[6]; this provides the basis for computing
the mean field and the propagation constant. The integrated
effect of the propagation constant over the tree volume leads to
expressions for the attenuation and phase delay of a partially
absorbing screen.

The model was first developed by Foldy [4] and later
extended by Lax [5], Twersky [6], Lang [7], and Chauhanet
al. [8]. Consider the canopy of a tree as a layer of thickness,
which is modeled by a slab of leaves and branches (as shown in
Fig. 1). The leaves are modeled as randomly positioned flat-
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Fig. 1. Incident plane wave on slab with thin discs and thin cylinders.

circular lossy-dielectric discs and the branches as randomly
positioned finitely long lossy-dielectric cylinders. It is assumed
that the thin cylinders and the flat circular disc are distributed
uniformly in azimuthal coordinates. The probability densities
for the azimuthal coordinates and the polar coordinates are
independent for the leaves as well as for the branches. Here,
the azimuthal angle is defined in the plane perpendicular to
the slab. As shown in Fig. 1, we have three-layered medium
with free-space for and having a free-space
permeability and permittivity . In the region ,
we consider identical discs with a constant volume density

and identical cylinders with a constant volume density
within the slab of width . Each disc or cylinder has its

volume and dielectric constant . A free-space background
medium is assumed in the slab. The interface between the
slab and free-space is considered smooth—not introducing any
reflections.

The calculation of the mean field in the canopy is obtained
by determining the dyadic scattering amplitudes of an arbi-
trarily oriented thin disc and of an arbitrarily oriented thin
cylinder.

A. Scattering Amplitude—Thin Disc

Assume that a plane wave of unit amplitude and polarization
(hatted quantities are unit vectors) is incident upon the disc

(1)

where is the direction of propagation and is the free-space
propagation constant. The disc is assumed to have cross-
sectional shape , a radius , a thickness , and a complex
relative permittivity throughout the disc. As is shown in
Fig. 2, the orientation of the disc is defined by the angle
with respect to the axis and the angle with respect to the

axis.
From the radiation condition, the vector scattered amplitude

, as observed in direction, can be related to the total electric
field induced within the disc [9] as follows:

(2)

Fig. 2. Leaf (thin-disc) orientation with respect to the slab.

where is the susceptibility of the disc, is a unit
dyadic, and is the volume of the disc. The induced field in
the disc can be found when the disc radiusis much greater
than the thickness of the discand the disc is electrically thin

, where . Here, the induced field
within the disc may be approximated by the electric field in an
unbounded slab having the same orientation as the disc. Under
this approximation, the electromagnetic boundary condition
requiring the continuity of the tangential field components
across an arbitrary interface can be employed to show that
the induced electric field within the disc is given by

(3)

where is the unit vector normal to the disc (as shown in
Fig. 2). Finally, the vector scattering amplitude is obtained by
substituting (3) into (2) and assuming that there is no-phase
variation in the induced field normal to the disc
and that the wavelength is greater than the radius of the disc

, we find that

(4)

Note that the scalar scattering amplitude can be obtained
by

(5)

where is the scattering polarization in direction.

B. Scattering Amplitude—Thin Cylinder

Consider a plane wave as (1) to be incident upon a cylinder
of radius , length , and complex relative permittivity . As
is shown in Fig. 3, the cylinder axis is inclined by an angle
from the axis and by an azimuthal anglefrom the axis.

To find the vector scattering amplitude using (2), we
need to find the induced electric field within the cylinder. The
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Fig. 3. Branch (thin-cylinder) orientation with respect to the slab.

induced field within the cylinder is found by using quasi-static
techniques. Under this approximation, the electromagnetic
boundary condition requiring the continuity of the tangential
field components across an arbitrary interface can be employed
to show that the induced electric field within the cylinder is
given by

(6)

where is a unit vector directed along the cylinder axis as
shown in Fig. 3. Finally, the vector scattering amplitude is
obtained by substituting (6) into (2), to obtain

(7)

where is the susceptibility of the cylinder and
is a unit dyadic.

C. Mean Field

The mean field in the canopy is derived by using the
multiple scattering theory of Foldy–Lax [4], [5]. The Foldy
[4] approximation assumes that the total field incident on
a scatterer is equal to the mean field. This approximation
requires that the fractional volume occupied by the scatters
be small in comparison to the total volumeof the canopy.
The vector wave equation for the mean field in the canopy is
given by [7]

(8)

where , is the density of particles
at , and is equal to where is the source
current density and is the free-space permeability. Also,

is the dyadic transition operator of a particle
located at where the brackets means the average angular

dependence. The transition operator is related to the scattering
amplitude as shown in [7]. It should be noted that (8) differs
from the vector Helmholtz equation only because of the added
integral term arising as a result of the scatterers. The first term
of the right side of the equation is due to the source; if we
assume plane wave incidence then this term is equal to zero.
The second term on the right side of (8) is due to the scatterers
and is zero if there are no scatterers in the medium.

Now, consider a plane wave of unit amplitude and polar-
ization is incident on the slab of scatters in the direction,
as in (1). The incident plane wave makes an angle ofwith
respect to the axis, as shown in Fig. 1. The mean field in
the canopy is obtained by solving the vector wave equation
(8) and can be written as

(9)

where

(10)

Here, is the propagation constant in thedirection of polar-
ization . is the mean forward scattering amplitude
over the scatterers orientation and the sum is over scatterer
type . The solution reveals that to a first approximation, the
scattering amplitude is obtained in the forward direction, and
because of the assumed independence of the distribution
on the transverse coordinates, the mean field in the canopy
behaves like a plane wave in the transverse coordinates. It is
important to mention that the propagation constant cannot be
calculated to a higher accuracy than to the first order, since
the mean equation in the medium has also been found to
this accuracy. The mean forward-scattering amplitude can be
written as

(11)

where is the probability density function of the inclination
angle and it is assumed that the probability density of the
azimuthal angle is uniformly distributed from 0 to 2. Because
of the assumed azimuthal symmetry of the scatterers, the mean
wave of the vertical and horizontal polarizations do not couple
so that no depolarization effects occur at the level of the mean
wave.

In general, the wave propagation constant in the canopy
has a real and imaginary component. This results from the fact
that the scatterers have loss. The imaginary part ofgives the
specific attenuation in nepers per meter or alternatively in dB
per meter and is given by

(12)

The implication of the fact that the scatterers have loss is that
the mean field in the canopy decays in its respective direction
of propagation. A measure of this decay is the skin depth
in meters defined by

(13)
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Fig. 4. Calculated tree-specific attenuation versus frequency for a 90� incident plane wave.

Fig. 5. Calculated tree-specific attenuation versus incident angle for an incident plane wave at 900 MHz.

The importance of the skin depth is that whenever the thick-
ness of the slab is less than the skin depth we only need to
consider the mean fields; otherwise, we may need to consider
the mean fields as well as the incoherent fields. In this analysis,
it is assumed that the incoherent field is small compared to the
mean field, therefore, it has been disregarded.

D. Numerical Results

The numerical calculation of the specific attenuation and
the skin depth of a tree is given in this section. The procedure
is to specify the disc and cylinder parameters including their
respectively probability density distributions of the inclination
angle and the azimuthal angle. The specific attenuation
and the skin depth are calculated for different frequencies
and for different incident angles. The leaves are assumed to

have a radius cm and a thickness mm, a
dielectric constant of [10], and a density of

/m . The branches are assumed to have a radius
cm and a branch length cm, a dielectric

constant , and a density /m . The
probability density for the leaves and the branches in the
azimuthal coordinate is assumed to be uniformly distributed
from 0 to 360 . The probability density in the coordinate is
dependent on vegetation type. For the branches and the leaves
it is considered to be uniformly distributed

(14)

where for the leaves, and and for the
branches and . Finally, it is important to note
that the relative dielectric constants of the leaves and branches
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Fig. 6. Calculated skin depth versus frequency for a 90� incident plane wave.

Fig. 7. Row of houses and row of trees with its equivalent geometry.

are frequency dependent [10]. In our analysis constant values
for the permittivities of the leaves and the branches have
been assumed, because the permittivities of the leaves and
the branches do not change much between 800–2000 MHz.

Fig. 4 shows a plot of tree-specific attenuation versus fre-
quency for both incident polarizations. It is seen that the
specific attenuation for vertically polarized waves is higher
than for horizontal polarization. The reason lies in the statis-
tical distribution of leaves and branches in reference to the
angle of incidence of the plane wave. In Fig. 5, we plot the
specific attenuation of a tree versus the angle the incident plane
wave makes with the slab interface for both polarizations. It
is observed that for incident angles between 80and 90, the
specific attenuation changes very little.

Fig. 6 shows a plot of skin depth versus frequency for both
polarizations for . The importance of the skin depth
is that whenever the thickness of the tree is less than the skin
depth we only need to consider the mean fields; otherwise,
we may have to consider the incoherent field as well as the
mean field.

Fig. 8. Geometry for a single elliptical tree/building configuration.

III. M ULTIPLE BUILDINGS AND TREES FORMULATION

Extending the method of Walfisch and Bertoni [2], a the-
oretical approach is introduced to account for trees in the
propagation loss in residential areas. As in the past model
[2], [3], a row of houses or block of buildings is viewed as
a diffracting cylinder lying on the earth, with the canopy of
a row of trees located adjacent to and above the buildings.
Because of the small grazing angle between the incident field
and the rooftops of the buildings, the buildings are modeled
as perfect absorbing screens and the trees, which are adjacent
to and above the buildings, are modeled as partially absorbing
phase screens. The properties of a partially absorbing phase
screen were derived in Section II.

PO is used to compute the fields diffracted by a series
of absorbing/phase screens, as shown in Fig. 7. The ab-
sorbing/phase screens lie in the- plane, the height of
the absorbing screens above theaxis is , the separation
distance between screens is, the origin coincides with
the first screen, and the phase screens are located above
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Fig. 9. Calculated height gain curves for 20 buildings/trees at the mobile receiver, for a 90� incident plane wave, and 50-m distance separation between
buildings/trees at 900 MHz.

and to the left of the absorbing screens. The method used
to find the field in successive apertures is based on the
multiple Kirchhoff–Huygens integrations. The mean field in
the aperture of the first absorbing/phase screen configuration
is assumed to be that of a unit-amplitude time-harmonic

plane wave with polarization and incident angle
as in (1), multiplied by a factor giving the attenuation and

phase delay of the mean field as a result of going through
the first phase screen that is located adjacent to and above the
first absorbing screen. The mean field incident on the aperture
of any other absorbing/phase screen is found by integrating
over the previous aperture the product of the mean field
illuminating the previous aperture, the change in the mean
field as a result of going through the phase screen, and the
far-field two-dimensional free-space Green’s function. This
process is repeated up to the mobile receiver. Thus, the mean
field in the aperture of the absorbing/phase
screen or at the location of the mobile receiver, where

and is the number of absorbing/phase screens can
be found from

(15)

where is the mean field at the aperture of the
previous absorbing/phase screen and is given by

(16)

Here, is the width of a tree at different heights above
the absorbing screen, is the propagation constant in the tree
given by (10), and

(17)

We note from (16), that the mean field at the
aperture of the absorbing/phase screen is composed of two
terms; the first term is the phase change and attenuation due to
the tree and the second term is the field incident on the aperture

. The effect of phase change due to propagation through the
trees is like that of a lens where focusing can occur. The
imaginary part of causes attenuation of the signal.

In general, the integral of the mean field
cannot be carried out in a closed form and we must resort to
numerical techniques, keeping in mind the need for reasonable
accuracy and realistic computational time. In developing a
numerical approach as in [2], it is necessary to convert the
continuous integration into a sum of terms, where each term
represents an approximation to the integral over a small
interval. The mean field given in (15) is rewritten as

(18)

where

(19)

and

(20)

with . In order to evaluate the mean field (18)
numerically, we convert the continuous integral into a sum
of terms, where each term represents an approximation to the
integral over a small interval. First, we divide the integration
aperture into intervals of such that the mean field in
the plane on the aperture or at the mobile receiver
is given by

(21)
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Fig. 10. Calculated height gain curves for 20 buildings/trees at the mobile receiver, for an 89.5� incident plane wave, and 50-m distance separation
between buildings/trees at 900 MHz.

Fig. 11. Propagation loss relative to free-space loss at the top of the absorbing screens versus number of screens for a incident plane wave of different
incident angles and 50-m distance separation between buildings/trees at 900 MHz.

where

(22)

and

Then, by using the first two terms of a Taylor series expansion
for and for and integrating over the
interval in a closed form, we
find the solution of the mean field .

In addition, the sum in (21) must be finite, which means that
the field must be artificially limited in the axis. However, an
abrupt truncation of the field will result in strong reflections
from the nonphysical upper boundary. A practical approach to

this problem is to add an absorbing region above the maximum
altitude of interest [11] where the field is attenuated smoothly
to zero. In the calculations we have used a Hamming window
in the absorbing region.

A. Numerical Results

In the previous sections, expressions were derived for the
field incident on a mobile receiver or on successive absorbing
edges. The numerical calculations of the propagation loss
relative to free-space loss is given in this section. The canopy
of the trees is modeled as having an elliptical shape, with a
minor axis equal to and a major axis equal to. The minor
axis of the ellipse is parallel with the axis and the major
axis is parallel to the axis. The elliptical shapes of the tree
canopies have their centers at the tops of the buildings and
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Fig. 12. Propagation loss relative to free-space loss at the top of the absorbing screens versus number of screens for a incident plane wave of different
incident angles and 33-m distance separation between buildings/trees at 900 MHz.

are located meters to the left of the buildings; the heights of
the trees are meters above the buildings as shown in Fig. 8.
The electrical characteristics of a tree are given in Section II.
The buildings have a height of 8 m, a separation distance
between buildings of 50 m, and a 20 m distance separation
between the last building and the mobile receiver as shown in
Fig. 7. All the results that follow are based on an incident plane
wave of unit amplitude at 900 MHz. Throughout the numerical
calculations, it is assumed that the propagation constant of the
trees does not change with the tree heights.

In Fig. 9, we plot the propagation loss relative to free-space
loss as a function of height at the mobile receiver after 20
rows of buildings (solid line), after 20 rows of buildings/trees
with tree canopy dimensions m and m (dashed
line) and after 20 rows of buildings/trees with tree canopy
dimensions m and m (dotted line). For these
calculations, the plane wave was taken to be propagating
along the axis . The corresponding results for
an oblique plane wave are shown in Fig. 10.
It is observed that both figures show the interference patterns
for different sizes of trees in the shadow region of the last
building/tree configuration. Note, that as we double the width
of the trees the interference pattern in the shadow region gets
more severe, because the effects of trees on the propagation
loss is like that of a lens where focusing and defocusing effects
occur. Comparing Figs. 9 and 10, we see that by changing the
incident angle of the incident plane wave, we shift each of the
curves, but not by the same amount.

Figs. 11 and 12 show the propagation loss relative to free-
space loss at the top of successive buildings with and without
trees. The results in Fig. 11 are for the same geometry used
to obtain the results in Figs. 9 and 10, whereas the results in
Fig. 12 were obtained assuming m instead of 50 m.
For the oblique plane wave , after 10 rows the
fields at the tops of the buildings vary by less than 1 dB. As is
to be expected, for incidence along theaxis the

fields continue to decrease with. This behavior is similar to
that found previously for buildings alone. After ten rows the
wider trees are seen to give 4–5 dB more path loss than the
buildings by themselves.

IV. CONCLUSION

A theoretical model has been developed to compute the
path loss in a vegetated residential environment for mobile
applications. The model shows the effects of trees on the
propagation loss and identifies those physical properties of
the trees that are significant in computing their propagation
constant. These properties include the probability density
functions of the scatterers, the electrical characteristics of the
scatterers, and the dimensions of the scatterers.
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