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Near-Field Far-Field Transformation in Time
Domain from Optimal Plane-Polar Samples
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Abstract—This paper presents a new approach to the time-
domain near-field far-field transformation technique recently
introduced by Hansen and Yaghijan [1], [2] and is based either
on a time-domain or frequency-domain scheme. The approach
presented here attempts to overcome the main drawbacks of
this technique related to the computer time and memory re-
quirements, which could make unrealistic the application of the
technique to cases of practical interest. To this end, the advanced
representation of the (time and frequency domain) near field
recently introduced by the authors, which requires a minimum
number of nonequispaced field samples, are exploited. This leads
to new relationship between the near-field measured samples
and the far field, which requires a minimal set of time–space
measurements. Various computational schemes are considered
and compared showing that the presented algorithm requires
a reduced measurement effort, computer time, and memory
occupancy, while allowing a lower far-field reconstruction error
for a fixed number of measurements.

Index Terms—Sampling methods, time-domain analysis.

I. INTRODUCTION

I N the last decades a large amount of work has been devoted
to the characterization of radiating systems by means of

near-field far-field transformation techniques. Almost all the
work in this area has been carried out by considering harmonic
fields so that these methods can only be used to characterize
the radiated far-field at a single frequency. However, wide-
band antennas for radar and telecommunication applications
require the determination of the antenna performance in a wide
frequency range. For these antennas, a time-domain analysis
appears to be attractive since with the classical frequency
domain approach a large number of measurements at different
frequencies must be carried out in order to cover all the
working band of the antenna under test. Furthermore, the near-
field truncation error can be rigorously zero in the time-domain
analysis, provided that the observation time is not too large.
This new point of view has been first introduced by Hansen
and Yaghijian [1]–[3].

The main problem related to the practical exploitation of
this approach concerns the required amount of measured
data and measurement time and, thus, the required computer
time and memory storage, which can become unrealistically
large for large antennas and large observation times. The
number of measurements is strictly related to the available
representation of the field as a function of the space–time
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coordinates. As a matter of fact, the existing time-domain
near-field far-field (TDNF-FF) transformation techniques are
based on standard (redundant) representations of the field,
which, furthermore, require an unrealizable number of samples
(up to infinity, in principle) when an unbounded surface is
considered. Accordingly, their performances are still far from
the optimal ones.

Very recently, a new optimal time-domain interpolation
series has been proposed [4] for the plane-polar geometry
which extend to time domain the nonredundant sampling field
interpolation algorithm already introduced in the frequency
domain. It allows a (numerically efficient) representation of the
field with a minimum number of samples, which, furthermore,
stays finite also for an unbounded observation surface. Aim
of this paper is to apply these optimal interpolations of the
near field for devising an effective and feasible TDNF-FF
algorithm.

In Section II, two near-field far-field transformation compu-
tational schemes, based on the optimal sampling representation
are introduced and discussed. The main results of an ex-
tensive numerical analysis, which show also the possibility
of minimizing the size of the scanning area, are reported
in Section III wherein both far-field time-signal reconstruc-
tion and frequency-domain radiation pattern evaluation are
considered. Conclusions are drawn in Section IV.

II. TIME-DOMAIN NEAR-FIELD FAR-FIELD TRANSFORMATION

Let us consider a planar (nonsuperdirective) sourcecon-
tained in a circle of radius of the plane (Fig. 1),
a circular measurement region with radius on the plane

, and a nonharmonic radiated signal which is Fourier
transformable (in the ordinary sense) and isessentiallyban-
dlimited to 1 is the free-space light
velocity and is the wavelength corresponding to
with a spectrum negligible inside the interval
being .2 A couple of coordinates
wherein are the canonical plane-polar coordinates and

is given in [4], (3) is considered on the measurement
plane. As shown in [4], the frequency-domain field—say

—and the time domain one—say at
—can be expressed by means of nonredundant interpolating

1i.e., such that its spectrum outside[�!max; !max] can be neglected.
2Due to the high-pass nature of radiating systems and to the use of pass-

band signals in all applications of our interest, this assumption is always
satisfied in real cases.
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Fig. 1. Geometry of the problem.

series as

(1)

and

(2)

wherein , , , and are given in [7] (central
interpolation series case), is given in [4],
are the spatial coordinates of the sampling point nearest to the
observation point , is the coordinate of the sampling
time nearest to the observation time, and , , and control
the truncation error of the series (1) and (2) (typical values
range between five and seven).

The frequency-domain far-field pattern in the half
space —say —and the time domain one—say

—such that
, are given by [1]

(3)

and

(4)

wherein is the direction
of the observation point and denotes a point
on the plane .3

3It is understood that only the two tangential components of the electric field
need to be measured since thez component does not contribute to integrals
(3) and (4).

Due to the nonsuperdirectivity of the source and assuming
, the integrals in (3) and (4) can be discretized

at a rate by neglecting the invisible part of the
field spectrum [2] so that the far-field can be expressed by
means of the near-field values at all the points

. For a scanning zone radius large
enough, the contribution corresponding to the indexes
such that can be neglected.

Following [2], two different computational schemes can
be devised for the TDNF-FF, which are based on the series
obtained from (3) or (4) by discretizing the integrals and
expressing the frequency- and time-domain near-field at
by the sampling representation (1) and (2), respectively.

Both schemes start from measurements at, saypoints
, located on a plane-polar grid covering the

circular measurement region.

A. Frequency-Domain Scheme

The measurements are taken at times
wherein is the time of arrival of the signal at the

th measurement point andrange between zero and
, being the time interval wherein the near

field is significant. The computational steps involved in this
scheme follow.

1) Time-domain to frequency-domain transformation of the
measured fields at , points . Exploiting
the fast Fourier transform (FFT),
complexoperations are required [2].

2) For each ,4 a
frequency-domain interpolation (1) of the samples
obtained at step 1) is performed in order to evaluate
the near-field on the points
spaced inside the measurement circle. Assuming that
the sampling functions have been computed in advance,

complexoperations results.
3) Evaluation of the far-field from (3) via an

FFT [2]. points and frequency are in-
volved and complex
operations are required.

4) Frequency-domain to time-domain transformation of the
radiated far field by means of an inverse FFT requiring

elementary operations.

When the near field is directly measured on the regular
lattice of spaced points [2], step 1) involves all the

points and require (1/2)
complex operations. Step 2) disappear and the steps 3) and 4)
remain unchanged [2]. In all cases of practical interest, even
if , the additional term
related to step 2) suggests to perform a direct measurement of
the field at the regular lattice of spaced points.

However, it is possible to exploit a convenient computa-
tional strategy which allows to overcame this drawback. In
fact, the computations required by steps 1) and 2) and in-
volving the field data corresponding to a given sampling point
can be performedduring the measurement process, i.e., in the

4Because the time signal is real, only positive frequencies can be consid-
ered.
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time interval occurring between the end of the data acquisition
at the considered point and the start of measurements at the
next point. To this end let us note that because only
terms are involved in the summation (1), each sampling point
contributes to the evaluation of only a small number of the

spaced grid points, say . And so, the number of
complex operations required to perform the computations of
step 1) and 2) and involving the considered sample is given
by . Because is approximately
equal to times the ratio between the number of points
in the regular grid and the number of sampling points in the
circle of radius , i.e., , we can safely state
that it is possible to perform the required computations during
the time elapsing between the two successive measurements.
Accordingly, taking into account that the number of required
measurements can be much lower than , we
can say that the proposed frequency-domain computational
scheme allows a substantial reduction of the measurement
time without increasing the computational time. Furthermore,
the memory requirements in the proposed approach are even
smaller than in the standard one because we do not need to
store the measured near-field values.

B. Time-Domain Scheme

Time-domain near-field to far-field transformation relies on
(4) (through the discretization of the integrals) and requires the
knowledge of the near-field time derivatives on a regular lattice
of points at times

being the oversampling factor that control
the truncation error in the time interpolation. While in the
approach adopting a plane-rectangular scanning, these values
are directly measured, in our case they must be computed
by means of (2), starting from the measured time-domain
data at the sampling points.5 This first step requires

real elementary operations. Then, the
calculation of the far field for each observation direction

and time instant requires first a time interpolation in
order to evaluate the near field (on the regular lattice) at
the times and then the evaluation of the sum
corresponding to the discretization of the integral in (4), i.e.,

operations.
In order to minimize the overall computer time, it is

convenient to evaluate only the far-field samples required to
cover the region of interest and then to proceed to a further
sampling interpolation. Accordingly, in the extreme case of

far-field samples and far-
field directions,

real elementary operations are required. Since
in any practical instance , it results in

so that a high-
time oversampling, which allows a small value of, is highly
advisable if it is compatible with memory resources. For

5As in [2], we assume that the field-time derivatives are the measured
quantities. Should this not be the case, a corresponding derivative of the time-
sampling functions should be inserted in series (2). It is worth noting that
the exploitation of the field derivative deteriorates the signal-to-noise ratio
(SNR) and is an intrinsic drawback of the approach. A careful choice of the
time-domain signal should be made in order to reduce this difficulty.

, we have . Accord-
ingly, this computational scheme allows a plane-polar scan-
ning geometry with a minimum measurement effort

instead of points), with a corre-
sponding decrease of time and memory requirements.

A much more significant increase of the overall efficiency
of the measurement procedure can be obtained by again
performing the required computations sequentially during the
measurement process. As in the frequency-domain computa-
tional scheme, the contributions to the far field due to the
time-domain near-field data corresponding to a single spatial
sampling point are evaluated in the time interval occurring
between two successive measurements at two successive sam-
pling points. Taking into account that the number of measured
samples to be considered for the summation with respect to the
time variable is , that each sampling point contributes to the
evaluation of the far field only through points
spaced from each other, and assuming that the sampling
functions have been previously evaluated and stored, the
number of operations required to compute the contribution
of each (spatial) sampling point to the time-domain far field
at times along sampling directions is given by

.
Again, a large oversampling turns out to be advisable.6

Assuming that operations relative to a single sampling point
can be performed in the time interval occurring between
successive measurements (which is safely true in the case
of not too large antennas and can be obtained, in any case,
by an easy parallelization of the computational process), the
only extra time is that required to evaluate the far field by
sampling interpolation, which, as seen before, is proportional
to . And so we get the significant result that,
thanks to the devised computational strategy, the overall
time actually required by the time-domain approach can be
substantially equivalent to the frequency-domain one, thus
eliminating the main drawback of the former.

Concerning the memory requirements of the technique, only
the time-domain far-field (real) samples, i.e.,

data for each far-field component, must be
stored.

III. N UMERICAL RESULTS

In order to show the effectiveness of the presented time-
domain near-field far-field transformation technique, an array
of five directed electric dipoles, placed at the edges and
at the center of a square inscribed in a circle with radius

cm, has been considered. The dipoles are fed by
a cosinusoidal current modulated by a Gaussian signal, i.e.,

. The time axis is such that the
signal at the origin of the coordinate system (Fig. 1) attains
its maximum at . Assuming that the bandwidth of
the Gaussian signal isapproximatelyequal to [2],
the current feeding each dipole isapproximatelya pass-band

6Note that the time interpolation can be avoided completely if a sufficiently
close array of (time) near-field value is precalculated from the�tNt measured
values at the required (n;m) point by FFT interpolation via zero-padding,
which does not increase significantly either the computer time or the memory
requirements.
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Fig. 2. Radiated far-field̂y component(# = 0). t: retarded time; :
exact signal;� � � � �: proposed approach;� � � �min=2 uniform
near-field sampling.

function with and .
The numerical results reported in the following refers to

GHz and GHz, i.e., GHz,
GHz. The circle enclosing the source has a radius

. The source is placed on the plane .
Although the radiated field in an ideal case has an infinite

time duration, in the worked examples, the signal at a point
on the measurement plane has been assumedapproximately
zero when the observation timefalls outside the interval

being the time when the
signal at reaches its maximum.

The (spatial) sampling intervals and and the
number and were chosen in order to ensure an overall
interpolation error less than 45 dB. In particular, it has
been assumed (i.e., 100 retained samples around
each interpolated point) and the values of and
corresponding to and in [7, Tables I,
II]. With these values, we get 1008 spatial sampling points
distributed on 17 circumferences, the last one having radius
equal to . The signal has been strongly oversampled
in time ( corresponding to a sampling interval
equal to 1.23 ps) in order to optimize the time interpolation
(see Section II-B) while ensuring a completely negligible
interpolation error.

As a first example, let us consider the far-field7

in the direction . The component of the exact field
(solid line) and the one obtained by applying the proposed
approach (dotted line) are reported in Fig. 2 as function of the
(normalized) retarded time . All the 1008 (space) samples
have been considered and the interpolation area has been
suitably increased with in order to include all the signal.
There is a good reconstruction of the signal with a maximum
absolute error (normalized to the maximum absolute value of
the signal) lower than 35 dB. For the sake of comparison,
the far field obtained from (4) by the discretization of the
integral and a direct evaluation of the near field on the
regular grid of spaced points covering a scanning area

7In the following the far-field patternf(#; '; t) is considered wherein
t = t� r=c is the “retarded” time.

Fig. 3. Radiated far-field̂y component(# = 30�; ' = 90�). t: retarded
time; : exact signal;� � � � �: proposed approach;� � � �min=2
uniform near-field sampling.

Fig. 4. Normalized error [dB] of the reconstructed far-field̂y compo-
nent (# = 30�; ' = 90�). t: retarded time, : proposed approach;
� � � �min=2 uniform near-field sampling.

wide (for a total of 1849 space samples)
is shown as a dashed line in the same figure. In this case,
the far-field reconstruction in essentially exact until the signal
reaches the edges of the scanning area, whereas it becomes
increasingly incorrect for larger observation time.

For larger observation angles, the required measurement
region size increases. For the observation direction

, the exact component of the far field (solid
line), the one reconstructed by the proposed approach (dotted
line), and the one calculated by directly exploiting near-field
values at the regular lattice (dashed line) are
reported in Fig. 3. Again, the proposed algorithm allows to
reconstruct the field for larger values (essentially all the
signal). The reconstruction error normalized to the maximum
value of the signal is reported in Fig. 4 for the presented
approach (continuous line) and the standard one based on mea-
surements on a regular grid of spaced points (dashed
line). As can be seen, while the error of the proposed algorithm
at the early times is higher, due to the interpolation error for
larger value of it is significantly lower and well behaved.
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Fig. 5. Far-field pattern atf = 627 MHz (0 � # � 45�; ' = 90�);
“�”: exact far-field value; “+”: proposed approach ; “�”: �min=2 uniform
near-field sampling.

This significant feature of the proposed approach is strictly
related to the adoption of the optimal sampling expansion (2).
As a matter of fact,within the bandlimitation and truncation
errors implicit in the use of (2), the reconstructed near field
(hence, the corresponding far field) is effectively exact until
the field wavefront reaches the sampling points lying outside
the measurement region. As a consequence, because the radius
of the circumference increases rapidly with (i.e.,

, the time required to reach the external sampling
points is significantly larger for the optimal sampling than
for the usual one. Moreover, because the neglected
samples are further away from the source, the corresponding
field levels are lower and the effect of truncation error is
ultimately lower.

Finally, let us consider the frequency-domain radiation
pattern of the antenna in the band 0.5–1.5 GHz as it is obtained
by Fourier transforming the time-domain far-field signal. It
must be explicitly noted that while in time domain, the error
due to the finite extension of the scanning zone is essentially
confined to late times; in the frequency domain, such error
will affect, in principle, all the radiation pattern. Furthermore,
since the proposed approach allows a better time-domain far-
field reconstruction for late times (involving smaller value of
the far field), it is expected that a better performance also in
the frequency domain, expecially for those frequency wherein
the radiated field is small (for the considered signal, occurs
away from ). This is confirmed by Fig. 5, which shows
the exact (solid line) component of the far-field pattern,
the one obtained by the proposed approach (crosses), and the
one obtained by the uniform sampling approach (circles) at

GHz.
Similar results are obtained also at 1.41 GHz, whereas

smaller differences between the two approaches are observed
at GHz (the bandwidth center), thus confirming the
previous discussion.

IV. CONCLUSIONS

A new near-field far-field transformation technique in time
domain based on the optimal field representations available in
frequency and time domain has been presented and numer-
ically validated. Various computational schemes have been
presented and discussed both from the computational and
memory requirements points of view. It results that the use of
both an optimal representation of the field over the scanning
plane and a proper computation strategy allows a lower num-
ber of samples, a lower overall measurement effort, a lower
reconstruction error (in both time and frequency domains),
and, for a given scanning area, a negligible truncation error
for longer times.
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