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Electromagnetic Resonances of
Immersed Dielectric Spheres

Chi-Chih Chen,Member, IEEE

Abstract—The complex natural resonances (CNR) for lossless
dielectric spheres in a lossless dielectric medium are investigated.
Significant differences between the external and internal reso-
nances are presented. The external resonances are related to the
external creeping waves and the internal resonances to the inter-
nally reflected waves. The internal resonances are more important
in practice because of their smaller damping factors. Simple
physical interpretation for predicting the resonance behavior of
a general dielectric sphere is obtained.

Index Terms—Electromagnetic scattering, resonance.

I. INTRODUCTION

T HE need for a better understanding of dielectric target
resonances was found in a study of plastic land-mine

classification using the complex natural resonance (CNR)
signatures. The CNR’s of an immersed dielectric sphere were
investigated because of the available exact solutions. Note that
the scattering mechanisms of even a simple sphere can be very
complicated. Rainbow and glory ray scattering, for example,
have been studied for decades [1], [2]. The current paper
will focus on the resonant properties of dielectric spheres.
Both the sphere and its ambient medium are assumed to
be homogeneous, isotropic, and lossless. The CNR’s are
related to the singularities of expansion coefficients. These
CNR’s used as a signature are far less damped when the
dielectric constant of the sphere exceeds that of the ambi-
ent medium. This case will be referred to as a dielectric
sphere, whereas the reverse case is designated as a dielectric
bubble. The resonances associated with either a dielectric
sphere or bubble can be separated into internal and external
modes. The internal resonances are caused by the internal
waves that experience multiple internal reflections, whereas
the external modes are caused by the surface creeping waves.
The physical mechanisms associated with the internal and
external resonances are explored by examining the resonances
of impenetrable spheres and bubbles such as perfect electrical
conducting (PEC) and perfect magnetic conducting (PMC)
spheres and spherical cavities. The resonance mechanisms of
general dielectric spheres or bubbles are highly related to those
of impenetrable spheres and bubbles.
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The CNR’s of impenetrable cylinders have been examined
by numerous authors. These poles are related to surface
propagating waves (creeping waves) [3]. The same wave
mechanisms are also called “Franz waves” for acoustic
scattering from a “rigid sphere” in fluids [4], [5]. This type
of wave propagates in the external medium and is mainly
determined by the surface geometry instead of the interior
material property. Ashkin [6] has shown experimentally
that these creeping waves are launched by grazing incident
rays. Fahlen and Bryant [7] also provided an astonishing
visualization of surface waves on water droplets. Once
these creeping waves are launched, they propagate along the
surface with attenuation due to the continuous radiation in
the tangent direction. The diffraction coefficients of a smooth
transparent object has been derived by Chen [8]. Franz and
Beckmann [9] also studied the creeping waves for objects
of finite conductivity. Chanet al. [10] and Barberet al. [11]
used resonance signatures to characterize dielectric objects.
An excellent discussion about the high-frequency scattering
by a dielectric sphere is given by Nussenzveig [2], [12].
Although Conwellet al. [13] also discussed the resonances
of dielectric spheres, they did not separate the internal and
external modes. They dealt with only a sphere with refractive
index of 1.4. This paper investigates much more general
situations and also provides some physical understanding of
the resonances associated with dielectric spheres and bubbles.
Throughout this chapter, an time dependence is used.

II. CNR’S FOR IMPENETRABLE SPHERES ANDBUBBLES

An impenetrable sphere is defined as a solid PEC or PMC
sphere, whereas a impenetrable bubble is a spherical cavity
immersed in a infinite PEC or PMC space. The characteristic
equations of CNR’s for a PEC sphere are written as [14]

and

(1)

where “ ” is the sphere radius, is the order
Hankel function of the second kind, and and

are the wavenumber, permittivity, and permeability of the
ambient medium. The subscript “” designates the external
medium. The wave whose electrical fields are perpendicular
to the radial directions are designated as TE modes. The
field components with magnetic fields perpendicular to the
radial directions are designated as TM modes. Fig. 1 shows
the poles in the complex space obtained from the above
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Fig. 1. Normalized complex poles for a PEC sphere. TE and TM poles are
marked by “�” and “+,” respectively; the numbers indicate the order.

characteristic equations. The real and imaginary parts of each
pole are related to a CNR’s resonant frequency and damping
factor, respectively. Note that only poles satisfying

are selected to ensure the damping behavior. A PMC sphere
has the same set of characteristic equations as a PEC sphere
except that the roll of TM and TE are interchanged. It is well
known that the CNR of such impenetrable spheres are caused
by the creeping waves as shown by Dragonette and Flax [15].
Since these are impenetrable spheres, the CNR’s depend only
on the external dielectric constant.

The characteristic equations of CNR’s for a PEC bubble are
also well known [16] and can be written in terms of Bessel
functions and their derivatives such that

and

(2)

where and are the wavenumber, permit-
tivity, and permeability of the internal medium. The subscript
“ ” designates the internal medium. The roots of the above
equations are pure real numbers and the CNR’s are pure real,
i.e., the resonances are nondamped. This is expected since the
cavity is made of PEC. Tables of some the the roots can also
be found in [16]. The characteristic equations and the CNR’s
for PMC bubble can be obtained by simply interchanging the
roll of TE and TM. The physical interpretation of resonances
inside an impenetrable bubble can be understood by realizing
that the Bessel functions represent standing waves formed by
incoming and outgoing waves in the radial direction such that

(3)

where . Using the asymptotic expansion

Fig. 2. Internal bounced waves.

for as given by [17], one finds

(4)

where are coefficients, is the Gamma function, and
. The factor is a result of waves

propagating through caustics. The similar expansion can be
readily obtained for by changing the sign of each
“ ” term. The phase variation in the radial direction is given
by the second exponential term. As shown in [18], this phase
variation represents an internal wave reflected away from the
tangent plane at an angle of, as illustrated in Fig. 2.

Similarly, are related to the outgoing portion
waves which propagate toward the surface. It is interesting to
find that the shortest distance to the sphere center is ,
for mode waves is found to be , which also agrees with
the predictions of Nussenzveig [12] using the semiclassical
scattering mechanics. In this study, the distance “” refers to an
“impact parameter” associated with the semiclassical collision
problem. Also notice that if increases with fixed, then
increases anddecreases. The suggests that the large argument
approximation corresponds to waves propagating closer the
radial directions. Under such condition, the roots and

associated with (2) can be obtained using the McMahon’s
expansion [17] for such that

and

(5)

Thus, the corresponding resonant frequencies are

and

(6)
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Fig. 3. Normalized poles for a dielectric bubble.

where is the internal plane wave phase velocity. These
resonant frequencies are the same as those found in a confocal
case Fabry–Perot resonator [19].

III. CNR’ S FOR GENERAL DIELECTRIC BUBBLES

The characteristic equations of the CNR’s for general di-
electric spheres can be obtained from the denominators of the
expansion coefficients in the normal mode-field expansions
given by Harrington [20]. They are

and (7)

(8)

where and are th order modified spherical Bessel and
Hankel functions. In this paper, it is assumed that

(free-space permeability).
The CNR behavior for a dielectric bubble whose internal

permittivity is less than that of the ambient medium is now
studied. The poles in -space can be found from (7) nad
(8). As an example, we consider and

. The corresponding poles are plotted in
Fig. 3, where TE- and TM-mode pole are marked by “” and
“ ,” respectively. This figure is currently plotted in the
space, i.e., it is normalized by the external medium. Later, the
poles will be revisited in the space to study the internal
resonant modes. Two different groups of poles can be clearly
distinguished by their different vertical separation between
adjacent modes. The first group of poles which have smaller
vertical separations are linked by dashed lines, A, B, C,,
etc. Each line corresponds to the multiple poles associated
with an order number . The second group of poles which

have larger vertical separations are linked by dotted lines. Each
group will be examined separately.

A. External Resonances

Let us focus on the first group of poles (on lines A, B,
, etc.) and compare them with the poles for a PMC sphere

immersed in the same medium as shown in Fig. 4. The TE and
TM poles for the PMC sphere are marked by “” and “ ,”
respectively. It is observed that the poles for the current
dielectric bubble (marked by “”) are located very close to
the mode poles (marked by “”) for the PMC sphere
and that the mode poles are located close to
mode poles for the PMC sphere [18]. If one allows
but with fixed, the ambient becomes PMC and, thus,
the TE mode poles of the dielectric bubble will approach to
the TE mode poles of a PMC sphere.

From the above comparison, it is obvious that the CNR’s of
this group are external resonances and similar to those found
for the an impenetrable sphere. Since these CNR’s are caused
by the surface creeping waves and are mainly determined by
the geometry and the property of the ambient medium they
are fairly insensitive to the internal property. This is clearly
demonstrated in Fig. 5 where the CNR’s for bubbles with
internal dielectric constants of 1 and 2 are compared. As one
can see, both cases have similar external CNR’s locations.

B. Internal Resonances

Now the behavior of the second group of CNR’s found
in Fig. 3 will be examined by replotting the poles in the
space as shown in Fig. 6. Notice that most external poles are
not included here. Three major features are observed from
this group of CNR’s are: 1) all the poles have imaginary parts
greater than 4.3 indicating a low bound of damping factors;
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Fig. 4. Pole comparison for dielectric bubbles and for PMC spheres.

Fig. 5. Comparison of surface wave poles for dielectric bubbles with differ-
ent internal permittivity.

2) smaller imaginary parts compared to most external poles
studied earlier suggest lower damped resonances and more
practical use; 3) TE-mode poles have smaller imaginary parts
than those of TM-mode poles. In fact, all TE-mode poles tends
to have the same imaginary parts. Further discussion of this
behavior is explored below.

Physically, a dielectric bubble and a PEC spherical cavity
of the same size and internal material are similar as far
as the internal resonances are concerned. However, the for-
mer experiences damping due to energy leakage through the
penetrable surface and the latter is undamped. The resonant
frequency is determined by the coherent condition including
the propagation phase, the phase of surface reflection at each
bounce and the phase jumps due to caustics. Since all these
properties are the same between a dielectric bubble and a PEC
spherical cavity, one would expect them to have a very similar
resonant spectrum. This prediction is verified by comparing
their resonant frequencies of the first two modes

for the lowest five orders , as shown in Table I.
Indeed, very similar resonant frequencies are observed for
both cases. This indicates that this group of CNR’s shares
the same resonant mechanism as were previously found for
a spherical PEC cavity. This important discovery suggests
that these CNR’s are internal type and are insensitive to the
external medium.

The damping factors for a spherical PEC cavity and a
dielectric bubble are completely different. The CNR’s for
the PEC cavity are nondamped, however, the CNR’s for a
dielectric bubble are damped due to the energy leakage through
the partial transmission process occurring at each internal
reflection. In order to understand their damping behavior,
the spherical interface is locally approximated by a plane
interface near the reflection points. At each internal reflection,
partial energy leaks out the sphere through the transmission
process and the magnitude of the remained wave decreases
according to the reflection coefficient, which is determined by
the incident angle, the polarization, and the internal/external
dielectric contrast. Assume that a particular internal resonant
mode is formed by a plane wave experiencing internal
reflections as illustrated in Fig. 7. It is easy to show that the
time period is , where is the radius,
is the incident angle, and is the internal phase
velocity. Define aneffective damping factor(EDF) and the
normalized effective damping factor(NEDF) as

(9)

(10)

The reflection coefficient is defined as

(11)

where , , and is the refraction
angle.

The NEDF for the current bubble case whose internal and
external dielectric constants are one and six, respectively, is
shown in Fig. 8. Note that for both TE and TM mode
are always larger than 0.43 which corresponds to waves
bounced back and forth along the radial direction, similar to
a “Fabry–Perot resonator.” Note that TE modes have much
smaller damping than TM modes. The behavior of the NEDF
predicts correctly the imaginary parts of the actual CNR’s
observed in Fig. 6. The damping behavior of the internal
CNR’s of a dielectric bubble can be predicted by a simple
model involving multiple reflections. As the dielectric contrast
increases, the amplitude of the reflection coefficient also
increases. The resonance becomes less damped.

IV. CNR’S FOR GENERAL DIELECTRIC SPHERES

The CNR behavior for general dielectric spheres is now in-
vestigated by considering the internal and external resonances
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Fig. 6. Normalized poles (kda space) for a dielectric bubble.

TABLE I
COMPARING THE NORMALIZED RESONANT FREQUENCIESRe(kda) OF

THE FIRST AND SECOND MODES (s = 1; 2) POLES (n = 1; � � � ; 5)
FOR A DIELECTRIC BUBBLE WITH THOSE FOR APEC BUBBLE

Fig. 7. An internal wave going through multiple internal reflections.

separately. Let us first examine the CNR’s for a dielectric
sphere in free-space, as shown in Fig. 9. The poles
are plotted in space to focus on the internal CNR’s.

Fig. 8. Normalized effective damping factors (NEDF’s)� for dielectric
bubble with internal and external dielectric being one and six, respectively.

Only a few of the external CNR’s are visible as indicated
by “surface wave poles.” These CNR’s show quite different
behavior compared to those for the bubbles.

A. Internal Resonances

Several noticeable features are observed from Fig. 7. Both
TE and TM modes can have very small imaginary parts
and, thus, small damping. This is very important for practical
applications. Second, all internal TE-mode CNR’s are located
to the left of a certain vertical line . Third,
the imaginary parts of all internal TM-mode CNR’s increase
first as their order numbers increase and then decrease after
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Fig. 9. Normalized poles for a dielectric sphere(�r = 9) in free-space.

TABLE II
COMPARING THE NORMALIZED RESONANT FREQUENCIESRe(dda) OF

THE FIRST MODE (s = 1) POLES OF ORDER n = 1; � � � ; 5; FOR A

DIELECTRIC SPHERE (�r = 9) WITH THOSE FOR APMC SPHERICAL CAVITY

a certain order of numbers. The lowest branch TM modes
become less damped after the very first pole. All these features
will be examined below.

It was shown that the resonant frequencies inside a dielectric
bubble are very close to those inside a PEC spherical cavity
(see Tables I) since both have similar geometrical properties
except that the dielectric bubble has a penetrable boundary,
which results in damped resonances. Similarly, one would
expect the internal resonant frequencies for a dielectric sphere
to be close to those for a PMC spherical cavity. This pre-
diction is immediately verified by the close agreement when
comparing the resonant frequencies of the first two modes

for the five lowest orders , as shown
in Table II. The internal dielectric constant for both cases is
equal to nine. Therefore, the internal CNR’s for a dielectric
sphere are caused by the same internal reflection mechanism
as a in dielectric-filled PMC bubble.

It was shown that the internal CNR damping behavior
associated with a dielectric bubble can be predicted from

normalized effective damping factor (NEDF). Its damping was
due to the partially reflected waves. Here, the NEDF is used
again to predict the internal CNR damping behavior associated
with a dielectric sphere. The new NEDF plot is shown in
Fig. 10.

Total reflections occurs when the incident angleis greater
than the critical angle , where . It is
also noticed that for TM mode, a zero reflection occurs at the
Brewster angle where . It is also noticed
that for the TE modes are always smaller than 0.35 and
decrease as increases until reaches the critical angle

. Beyond the critical angle becomes zero and the CNR
becomes undamped. For the TM mode,first increases from
0.35 as increases in the region. In
region, decreases to zero again and remains to be zero for

. It is intriguing to notice that this unique TM mode
“turning back” behavior agrees with what observed in Fig. 6.
Further investigation about the turning point using the previous
relation with much
less than shows that the turning points occur when

.

B. Internal and External CNR Coupling

In Fig. 9, the internal and external CNR’s for dielectric
sphere in free-space are well separated due to
the very different imaginary part (or damping factor). As
the dielectric difference between the sphere and the ambient
medium decreases, the internal reflection coefficient decrease
and, thus, the damping increases. This will move the internal
CNR’s closer to the external CNR’s. Figs. 11 and 12 plot the
CNR’s for dielectric spheres whose dielectric constants are
six and three, respectively. Comparing these with Fig. 9, one
can clearly see that the internal CNR’s become more damped.
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Fig. 10. Normalized effective damping factor (NEDF)� for dielectric sphere
with internal and external dielectric constant being nine and one, respectively.

Fig. 11. Normalized poles for a dielectric sphere(�r = 6) in free-space.

Fig. 11 shows that some external pole locations belonging to
the left-most string have been affected. This results in an
unusual properties of this string. Much stronger coupling is
also seen in Fig. 12 where the behavior of the first string of
external CNR’s have been completely altered as shown by the
dotted line. The vertical spacing of this string is no longer the
same as would be expected from a purely external resonances.
The spacing of the high-order poles becomes similar to that
of internal resonances. Strictly speaking, one can no longer
classify them as either internal or external resonances.

C. External Resonances

It has been shown that the resonant frequencies and damping
factors of external modes for a dielectric bubble are very simi-
lar to those for an impenetrable PMC sphere due to the similar
surface wave mechanism caused by the continuous curvature
diffraction. It was also shown that those external modes are

insensitive to the internal medium. Similar properties will be
shown to exist for the external resonances associated with a
dielectric sphere except that the PMC sphere is replaced by
a PEC sphere and the damping factors of the TE modes are
more sensitive to the internal medium. Fig. 13 plots the poles
for a dielectric sphere in free-space in the space.
The TE- and TM-mode poles are marked by “” and “ ,”
respectively. For comparison, the normalized TE and TM poles
associated with a PEC sphere are also plotted and marked by
“ ” and “ ,” respectively. The following discussion focuses
on the external resonant poles indicated by the strings marked
by etc. As one can see, the TM poles are located
very close to those for a PEC sphere except for string A
whose locations are affected by the internal resonance poles,
as discussed earlier. It is also observed that all the external
TE-mode poles deviate from the PEC poles toward higher
damping factors (i.e., right of the figure). Nevertheless, all TE-
mode resonant frequencies remain close to those associated
with a PEC sphere whose resonant frequencies are determined
by the phase velocities of the surface creeping waves and
independent of internal material. Therefore, it is concluded
that the external resonances of a dielectric sphere are caused
by creeping waves similar to those on a PEC sphere except
that the former have larger damping factors. For impenetrable
spheres, the damping is due to the continuous power lost by
radiating waves away from the spherical surface along the
tangent direction. For a dielectric sphere, in addition to the
radiation tangent to the surface, part of energy is continuously
shedding into the sphere at the critical angle direction. The
existence of such a wave mechanism was first suggested by
van der Hulst [21] while studying the resonant peaks observed
in the scattered fields from rain droplets. This unique process
does not occur in the dielectric bubble case since no internal
critical angle exists.

As the dielectric contrast decreases, the-string pole lo-
cations become severely distorted as the internal CNR poles
move further away from the real axis as discussed earlier. This
is demonstrated by Fig. 14. All other surface wave poles also
move farther away from the PEC poles to the right, as shown
in Fig. 14.

V. SUMMARY AND CONCLUSION

The main contribution of this study is to provide a simple
physical interpretation for predicting the resonance behavior of
a general dielectric sphere. This is achieved by: 1) interpreting
the internal standing waves as internal bouncing waves whose
incident angles upon the sphere boundary are determined by

and ; 2) relating the internal and external resonances
to those for impenetrable cavities and spheres, respectively;
and 3) using a simple flat interface reflection/transmission
model and the newly defined effective damping factor (EDF)
to correctly predict the damping behavior of the internal
resonances.

The resonances of a dielectric sphere (or bubble) were
separated into external modes and internal modes. The former
are caused by the surface creeping waves and have been shown
to be very similar to PEC (or PMC) spheres. These external
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Fig. 12. Normalized poles for a dielectric sphere(�r = 3) in free-space.

Fig. 13. Normalized poles in thekxa space for a dielectric sphere(�d = 9�0) in free-space.(�) TE modes(+) TM modes(x) TE modes for PEC
sphere (�) TM modes for PEC sphere.
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Fig. 14. Normalized poles for a dielectric sphere(�d = 3�0) in free-space.(�) TE modes(+) TM modes (x) TE modes for PEC sphere (�) TM
modes for PEC sphere.

resonances are fairly independent of internal material. They
are also found to have much larger damping factors compared
to the internal resonances and, thus, are less important in
practice. The internal resonances associated with a dielectric
sphere (or bubble) were shown to be related to internal
bouncing waves which experience multiple reflections. Their
resonant frequencies were shown to be close to those of
an impenetrable PMC (or PEC) bubble filled with the same
dielectric material. It was also found that the internal res-
onances associated with a dielectric bubble are mainly in
the radial direction. The damping of internal resonances is
determined by the amount of energy transmitted out at each
internal reflection. For both dielectric sphere and bubble,
it was found that the internal TE modes are usually less
damped than the TM modes. For dielectric spheres, it is
interesting to find that higher TM modes could have very
small damping factors when the internal incident angle is
larger than the Brewster angle. A final note here is that almost
all external resonance poles and off-axis internal resonance
poles do not satisfy the large argument approximation, i.e.,

. Therefore, they are often not included in the
literature that studies the resonances using large argument
approximations.

From this study, it was found that the internal CNR’s are
less damped than the external ones. It was also found that the
internal CNR’s for a dielectric sphere are much less damped
than those for a dielectric bubble. Therefore, it would be
expected that the CNR’s for buried plastic land mines would
correspond to the bubble case and would be highly damped.
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